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Weak measurement of arrival time
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The arrival time probability distribution is defined by analogy with classical mechanics. The difficulty of
requiring knowledge of the values of noncommuting operators is circumvented using the concept of weak
measurements. The proposed procedure is suitable for free particles as well as for those subjected to an
external potential. It is shown that such an approach imposes an inherent limitation on the accuracy of the
arrival time determination.
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[. INTRODUCTION measurements give the correct classical limit. The concept of
weak measurements has already been applied to the time
Time plays a special role in quantum mechanics. Unlikeproblem in quantum mechani¢7].
other observables, time remains a classical variable. It is well We proceed as follows. In Sec. Il we discuss various defi-
known that the self-adjoint operator of time does not existnitions of the arrival time in classical mechanics. The weak
for bounded Hamiltonians. The problems with time arisemeasurement of the quantum arrival time distribution is pre-
from the fact that in quantum mechanics many quantitiesented in Sec. Ill. The properties of the quantity obtained are
cannot have definite values simultaneously. However, the dexnalyzed in Sec. IV. Section V summarizes our findings.
tection of particles in time-of-flight and coincidence experi-
ments is common, and quantum mechanics should give a
method for the calculation of the arrival time. The arrival Il. ARRIVAL TIME IN CLASSICAL MECHANICS
time distribution may be useful in solving the tunneling time . . . .
problem, as well. Therefore, the quantum description of ar- In classical mechanlc_s the particle moves along the trajec-
rival time has attracted much attentiph—15] tory H(xzp):const. ast increases. This allows_ us to lwork
Aharonov and Bohm introduced the arrival time operator®Ut the time of arival at the point(t) =X, by identifying
[1] the point §q,pg) of thg phase space where the particle is gt
t=0, and then following the trajectory that passes by this
m 1 1 point', up to arrival at 'ghe poinl(. 'If multiple cr'ossir]gs are
Taa==| X=X) =+ =(X=x) |. (1)  possible, one may define a distribution of arrival times with
2 p p contributions from all crossings, when no distinction is made
between first, second, amdh arrivals. In this article we will
By imposing several conditiongnormalization, positivity, consider such a distribution.
minimum variance, and symmetry with respect to the arrival We can ask whether there is a definition of the arrival
point X) a quantum arrival time distribution for a free par- time, that is valid in both classical and quantum mechanics.
ticle was obtained by Kijowskj2]. Kijowski's distribution  In our opinion, the words “the particle arrives from the left
may be associated with the positive operator valued measue the pointX at the timet” mean that(i) at timet the particle

generated by the eigenstates Tofs. However, Kijowski's ~Was in the regiorx<X and (ii) at timet+At(At—0) the
set of conditions cannot be applied in a general d&e Particle is found in the regiox>X. Now we apply this
Nevertheless, arrival time operators can be constructed evélgfinition, given by(i) and ii), to the time of arrival in the
if the particle is not fred15,16. classical case.

In this paper we take another approach. Since the mean Since quantum mechanics deals with probabilities, it is

arrival time even in classical mechanics can be infinite or th&onvenient to use a probabilistic description of the classical
particle may not arrive at all, it is convenient to deal not with mechanics as well. Therefore, we will consider an ensemble

of noninteracting classical particles. The probability density
in the phase space X, p;t).
Let us denote the regior<X asI'; and the regiorx

the mean arrival time and corresponding operatobut with
the probability distribution of the arrival time. The probabil-
ity distribution of the arrival time can be obtained from a 2 X )
suitable classical definition. The noncommutativity of the op-— X @S I'>. The probability that the particle arrives from
erators in quantum mechanics is circumvented by using thEgion I', at regionl; at a time between and t+At is.
concept of weak measurements. Such an approach has s@/oPortional to the probability that the particle is in region
eral advantages. It gives, in principle, a procedure for meal 1 &t timetand in regionl’; at timet+ At. This probability
suring the quantity obtained. Since in classical mechanics alf

guantities can have definite values simultaneously, weak

1
11 tAtz—fdd X,p;t), 2
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whereN is the constant of normalization and the region of We see that our definition, given at the beginning of this
phase spac€) has the following propertiedi) the coordi- section, leads to the proper result in classical mechanics. We
nates of the points ifil are in the space regidn, and(ii) if  will try to use the definition of the arrival time, given in this
the phase trajectory goes through a point of the regloat  section by conditiongi) and (ii), for analysis of the arrival
time t then the particle at timé+ At is in the space region time probability distribution in quantum mechanics.

I',. SinceAt is infinitesimal, the change of coordinate dur-

ing the time intervalAt is equal to p/m)At. Therefore, the . WEAK MEASUREMENT

particle arrives from regioih’; at regionI’, only if the mo- . ) _ o
mentum of the particle at the poibtis positive. The phase . Th_e proposed deflnl_tlon of the arrival time probab_lllty dis-
space regiorf) consists of the points with positive momen- tribution can be used in quantum mechanics only if the de-
tum p and with coordinates betweét- p/mAt andX. Then termination of the region in which the particle is does not

from Eq. (2) we have the probability of arrival time disturb the motion of the particle. This can be achieved using
the weak measurements of Aharonov, and oth2ds-25.
1 (= X We have the detector in the initial state). The detector
I, (H)At= N_jo dp ‘o )AthP(X,IO;t)- (3)  interacts with the particle only in the regidh. In order for
+ —(p/m

weak measurements to provide meaningful information, the

SinceAt is infinitesimal and the momentum of every particle measurements must be performed onan ensemble of iden.ti—
is finite, we can replace in Eq. (3) by X and obtain the cal systems. Each system with its own detector is prepared in
equality the same initial state. The readings of the detectors are col-

lected and averaged.
1 (= p We take the operator describing the interaction between
I, (t,X)= N_fo dp—p(X.p;t). (4)  the particle and the detector of the foffi7,26,27
+
The obtained arrival time distributiodI, (t,X) is well Hi=\qPy, (10
known and has appeared quite often in the literaises,

e.g., the reviewi15] and references therdin whereP; is the projection operator projecting into the region

The probability current in classical mechanics is 'y and A characte_rizes the strength of the int_eractior_1 with
the detector. The interaction operatdf) only slightly dif-

+o fers from the one used by Aharonov, Albert, and Vaidman

J(x;t)= fﬁ EP(X,p;t)dp- (5 [21]. A similar interaction operator was considered by von

Neumann 28] and has been widely used in strong measure-

From Egs.(4) and (5) it is clear that the time of arrival is ment models(e.g.,[29—_34] a_nd many othejs .
related to the probability current. This relation, however, is . 1 N€ measurement time is \We assume that the interac-

not straightforward. We can introduce the “positive probabil-ion strengthh and the timer are small. The very small
ity current’ parameter\ ensures that the particle’s evolution is undis-

turbed. The operatay acts in the Hilbert space of the detec-
oo [TP . tor. We require a continuous spectrum of the opergtdfor
I+ (60 = fo mp(x,p,t)dp ® simplicity, we can consider this operator as the coordinate of
the detector. The momentum conjugategts pg .
and rewrite Eq(4) as Since the interaction strength and the duration of the
1 measurement are small, the probabilityP,) of finding the
I, (t,X)=——J, (X;t). 7) particle in the regiod’; does not change significantly during
N the measurement. The action of the Hamiltonia) results
The proposeq14,18,19 various quantum versions af, " @ small change of the mean detector’s momeh(m
even in the case of the free particle can be negatiie ~ —(Pg)o= —A7(P1), where(pg)o=(P(0)|py|®(0)) is the
so-called backflow effegt Therefore, the classical expres- mean momentum of the detector at the beginning of the mea-
sion(7) for the time of arrival becomes problematic in quan- surement andpg) =(®(7)|py|®(7)) is the mean momen-

tum mechanics. tum of the detector after the measurement. Therefore, in
Similarly, for arrival from the right we obtain the prob- analogy with Ref[21], we define the “weak value” of the
ability density probability of finding the particle in the regidn,,
1 N
I (1X)= - (Xit), ®) W(1)=(y)= PP 1
- T
where the negative probability current is In order to obtain the arrival time probability using the
0 definition from Sec. II, we measure the momeptgof each
I (xt)= M )d 9 detector after the interaction with the particle. After tiche
~(x1) p(x,p;t)dp. €) . :
—o M we perform the final, postselection measurement on the par-
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ticles of our ensemble and measure if the particle is found ins the weak value of the probability of finding the particle in
regionI',. Then we collect the outcomgs, only for the  regionI’; on condition that the particle after timgt is in
particles found in regiof’,. regionI',. The probability that the particle is in regidny,
The projection operator projecting into regidh is P,. ~ and after timeAt is in regionI’, equals
In the Heisenberg representation this operator is
W(1,2=W(2)W(1|2). a7
S Ot [
P)=U(1PU), (12 When the measurement timeis sufficiently small, the

. _ . influence of the Hamiltonian of the particle can be neglected
whereU is the evolution operator of th_e free particle. After and the evolution operator of the particle and the detector
the measurement the state of the particle and the detector IS, pe expressed as

Uw(7)|®)| W), where|¥) is the initial state of the particle

and UM is the evolution operator of the particle interacting 0 B _ [ TS
with the detector. The joint probability that the detector has m(7)=€exg — ZA7qPy .
momentump, and the particle after tim@t is found in
regionI’; is We expand the operatdty,(7) in a series of the parameter
\, assuming thak is small. In the first-order approximation,
W(pqg,2) using Egs(16) and(17), we obtain
=(PH@|0n(7)"pg)(Pg|Po(A1) Oy (7)| @) W), 1. P
13) W(1,2)~§<P2(At)|°1+ P1P2(A)) + g(<pq><Q>
where|p,) is the eigenfunction of the momentum operator —Re(qPg))([P1,Po(AD)]). (18)

Pq, and P, is the projection operator projecting into the - ) ) o
regionI',. In quantum mechanics the probability that two ~ The probabilityW(1,2) is constructed using conditiofiy
quantities simultaneously have definite values does not aRnd(ii) from Sec. II: the weak measurement is performed to
ways exist. If the joint probability does not exist then the détermine if the particle is in region, and after imeAt the
concept of conditional probability is meaningless. HoweverStrong measurement determines if the particle is in region
in our case the operatoi, and Ipg)(pq| act in different I',. Therefore, according to Sec. Il, the quaniit§1,2) after

spaces and commute; therefore, the joint probalilify,,,2) nor_mall_zatlon can _b_e C(_)ns_lder_ed as the weak value of the
exists. arrival time probability distribution.

Let us define the conditional probability, i.e., the probabil- Equation(18) consists of two terms and we can introduce

ity that the momentum of the detector ig, provided that two quantities
the particle after time\t is found in regionl’,. This prob-

S e : \ 1 . - ~ .
ability is given according to Bayes’ theorem as H(l):m<plp2(m)+ P,(AD)P,) (19
W(pgl2)= W) (14  and
1 .~
whereW(2) is the probability that the particle after tinde H(Z)zqul,Pz(At)]). (20

is found in regionl’,. The average momentum of the detec-
tor on condition that the particle after timet is found in

regionI", equals Then
=11M 2At o o an (2)
(b2~ | paWipg2)0p, W(L,2) =TTDAt= == ((pe)(3) — Re(Gpg) 2.
(21
- WNIK(I)'UM(T)TﬁqﬁZ(At)oM(ﬂ'@)'\P)' If the commutatov[ﬁ’l,f’z(At)] in Egs.(19—(21) is not

zero, then, even in the limit of the very weak measurement,
(19 the measured value depends on the particular detector. This
- . .. . fact means that in such a case we cannot obtain a definite
where P,(At)=U(At)'P,U(At) is the operatol, in the  value for the arrival time probability. Moreover, the coeffi-
Heisenberg picture. According to ECL1) cient (pg)(a)—Re(ap,)) may be zero for a specific initial
. . . . state of the detector, e.g., for a Gaussian distribution of the
(Pg)o—(Pg)2 _ {Pg)oW(2) —(Pq)2W(2) coordinateq and momentunpy,.
AT B ATW(2) The quantitieaV(1,2), IT™®), andI1® are real. However,
(16) it is convenient to consider the complex quantity

W(1|2)=
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. 1 35 F
HC:H(1)+,H(2>:A_t<plP2(At)>. (22)

We call it the “complex arrival probability.” We can intro-
duce the corresponding operator

1.
H+=A—tP Po(AD). (23

Re <IT>

By analogy, the operator

N 1,

05 b o
corresponds to arrival from the right. i

The introduced operatdd , has some properties of the
classical positive probability current. From the conditions FIG. 1. The real part of the quantiép|I1 ., |p), according to Eq.

|51+ |52=1 andl31(At)+I~32(At)=1 we have (28). The corresponding classical positive probability current is
shown with the dashed line. The parameters usedfard, m
~ ~ 1 - ~ =1, andAt=1. In this system of units, the momentymis dimen-
H+_H—:E(P2(AU_P2)- sionless.

In the limit At—0 we obtain the probability currend ~
. ~ ~ . . . (Pa|TT 4 |p2)= A0 — D) (pz pyX
=limy_o(IT. —1IT1_), as in classical mechanics. However, (p

the quantity<ﬁ+> is complex and the real part can be nega- _ , iAt
tive, in contrast to the classical quantity . The reason for e("h)(“’zm)(plpz)erfc( - pI\I%)
this is the noncommutativity of the operatoi?; and

|53(At). When the imaginary part is small, the quantity —erfc(—pz /ﬂ)

(IT, ) after normalization can be considered as the approxi- 2hm/ |’

mate probability distribution of the arrival time.

(26)

where i =exp(/4). When

IV. ARRIVAL TIME PROBABILITY 1 At

A > (PI=P3) <1,
The operatodl , is obtained without specification of the
Hamiltonian of the particle and is suitable for free particles AL AL
and for particles subjected to an external potential as well. In D1\ [~ < A —>1
this section we consider the arrival time of the free particle. 2h 2hm
The calculation of the weak arrival time distribution ~
W(1,2) involves the averagdl ., ). Therefore, it is useful to the matrix elements of the operatdr. are

have the matrix elements of the operafdr . It should be . p1+p i
noted that the matrix elements of the operdtor as well as (el [p2)~—— ex;{ 7 (P2~ pl)x)- (27)
the operator itself are only auxiliary and do not have inde-
pendent meaning. This equation coincides with the expression for the matrix
In the basis of momentum eigenstates, normalized elements of the probability current operator.
according to the conditior(p,|p,)=2m%&(p;—p,), the From Eq.(26) we obtain the diagonal matrix elements of
matrix elements of the operatﬁh are the operatorﬁ+ ,
(PalTT p2) = = (P1lPLO(AD B,0(A0 py) _ At
At (pITT,|py= erf >7m
N ~_dx f dx,e” (/MPxax, |U(AL)T|x,) 2
At 1 2 2 + . e (ilh)(p /2m)At (28)
Vi2whmAt
w @(i1h)p2xo=(i/h)(p3/2m) At (25) X
The real part of the quantityp|IT, |p) is shown in Fig. 1
After performing the integration we obtain and the imaginary part in Fig. 2.
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FIG. 2. The imaginary part of the quanti()o|ﬁ+|p>. The pa- FIG. 3. The dependence of the quantity<B|eﬁ+|p) according
rameters used are the same as in Fig. 1. to Eg. (28) on the resolution timét. The corresponding classical

positive probability current is shown with the dashed line. The pa-
Using the asymptotic expressions for the function erfc werameters used ae=1, m=1, andp=1. In these units, the time
obtain from Eq.(28) that At is dimensionless.

on measurement models was obtained by Aharoebal.
[29]. The time-energy uncertainty realtions associated with
the time of arrival distribution, are also discussed in Refs.

and (p|II,|p)—0, whenp— —, i.e., the imaginary part [8,35].

tends to zero and the real part approaches the corresponding

classical value as the modulus of the momentiph in- V. CONCLUSION

creases. Such behavior is evident from Figs. 1 and 2, also. A definiti f arrival i bability densitv f i
The asymptotic expressions for the function erfc are valid efinition ot arrival ime probability density Tor one

. . ~—-——  sided arrivals is proposed, relying on particles being in dif-
v>vhlerc1)rthe argument of the erfc is large, i.gp| VAt/2Am ferent regions at different instances. This definition is ex-

tended quantum mechanics, using the concept of weak
measurements by Aharonet al. The proposed procedure is
At>—. (29 suitable for free particles and for particles subjected to an
Ex external potential, as well. It gives not only a mathematical
eexpression for the arrival time probability distribution but
) A ) L also a way of measuring the quantity obtained. However, this
of the quantity Rép|I1.,[p) from At is shown in Fig. 3. For  procedure gives no unique expression for the arrival time
small At the quantity(p|II,|p) is proportional to 1JAt. probability distribution.
Therefore, unlike in classical mechanics, in quantum me- In analogy with the complex tunneling time, the complex
chanicsAt cannot be zero. Equatidi29) imposes the lower arrival time probability distribution is introducddEqg. (22)].
bound on the resolution timAt. It follows that our model It is shown that the proposed approach imposes an inherent
does not permit determination of the arrival time with reso-limitation, Eq.(29), on the resolution time of the arrival time
lution greater thak/E, . A relation similar to Eq(29) based determination.

. ~ p
lim <p|H+|p>Ha

p—>+oc

HereE, is the kinetic energy of the particle. The dependenc
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