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Weak measurement of arrival time
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The arrival time probability distribution is defined by analogy with classical mechanics. The difficulty of
requiring knowledge of the values of noncommuting operators is circumvented using the concept of weak
measurements. The proposed procedure is suitable for free particles as well as for those subjected to an
external potential. It is shown that such an approach imposes an inherent limitation on the accuracy of the
arrival time determination.
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I. INTRODUCTION

Time plays a special role in quantum mechanics. Unl
other observables, time remains a classical variable. It is
known that the self-adjoint operator of time does not ex
for bounded Hamiltonians. The problems with time ar
from the fact that in quantum mechanics many quanti
cannot have definite values simultaneously. However, the
tection of particles in time-of-flight and coincidence expe
ments is common, and quantum mechanics should giv
method for the calculation of the arrival time. The arriv
time distribution may be useful in solving the tunneling tim
problem, as well. Therefore, the quantum description of
rival time has attracted much attention@1–15#.

Aharonov and Bohm introduced the arrival time opera
@1#

T̂AB5
m

2 S ~X2 x̂!
1

p̂
1

1

p̂
~X2 x̂!D . ~1!

By imposing several conditions~normalization, positivity,
minimum variance, and symmetry with respect to the arri
point X) a quantum arrival time distribution for a free pa
ticle was obtained by Kijowski@2#. Kijowski’s distribution
may be associated with the positive operator valued mea
generated by the eigenstates ofT̂AB . However, Kijowski’s
set of conditions cannot be applied in a general case@2#.
Nevertheless, arrival time operators can be constructed e
if the particle is not free@15,16#.

In this paper we take another approach. Since the m
arrival time even in classical mechanics can be infinite or
particle may not arrive at all, it is convenient to deal not w
the mean arrival time and corresponding operatorT̂, but with
the probability distribution of the arrival time. The probab
ity distribution of the arrival time can be obtained from
suitable classical definition. The noncommutativity of the o
erators in quantum mechanics is circumvented by using
concept of weak measurements. Such an approach has
eral advantages. It gives, in principle, a procedure for m
suring the quantity obtained. Since in classical mechanics
quantities can have definite values simultaneously, w
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measurements give the correct classical limit. The concep
weak measurements has already been applied to the
problem in quantum mechanics@17#.

We proceed as follows. In Sec. II we discuss various d
nitions of the arrival time in classical mechanics. The we
measurement of the quantum arrival time distribution is p
sented in Sec. III. The properties of the quantity obtained
analyzed in Sec. IV. Section V summarizes our findings.

II. ARRIVAL TIME IN CLASSICAL MECHANICS

In classical mechanics the particle moves along the tra
tory H(x,p)5const ast increases. This allows us to wor
out the time of arrival at the pointx(t)5X, by identifying
the point (x0 ,p0) of the phase space where the particle is
t50, and then following the trajectory that passes by t
point, up to arrival at the pointX. If multiple crossings are
possible, one may define a distribution of arrival times w
contributions from all crossings, when no distinction is ma
between first, second, andnth arrivals. In this article we will
consider such a distribution.

We can ask whether there is a definition of the arriv
time, that is valid in both classical and quantum mechan
In our opinion, the words ‘‘the particle arrives from the le
at the pointX at the timet ’’ mean that~i! at timet the particle
was in the regionx,X and ~ii ! at time t1Dt(Dt→0) the
particle is found in the regionx.X. Now we apply this
definition, given by~i! and ~ii !, to the time of arrival in the
classical case.

Since quantum mechanics deals with probabilities, it
convenient to use a probabilistic description of the class
mechanics as well. Therefore, we will consider an ensem
of noninteracting classical particles. The probability dens
in the phase space isr(x,p;t).

Let us denote the regionx,X as G1 and the regionx
.X as G2. The probability that the particle arrives from
region G1 at regionG2 at a time betweent and t1Dt is
proportional to the probability that the particle is in regio
G1 at timet and in regionG2 at timet1Dt. This probability
is

P1~ t !Dt5
1

N1
E

V
dpdxr~x,p;t !, ~2!
©2002 The American Physical Society06-1
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whereN1 is the constant of normalization and the region
phase spaceV has the following properties:~i! the coordi-
nates of the points inV are in the space regionG1 and~ii ! if
the phase trajectory goes through a point of the regionV at
time t then the particle at timet1Dt is in the space region
G2. SinceDt is infinitesimal, the change of coordinate du
ing the time intervalDt is equal to (p/m)Dt. Therefore, the
particle arrives from regionG1 at regionG2 only if the mo-
mentum of the particle at the pointX is positive. The phase
space regionV consists of the points with positive mome
tum p and with coordinates betweenX2p/mDt andX. Then
from Eq. ~2! we have the probability of arrival time

P1~ t !Dt5
1

N1
E

0

`

dpE
X2(p/m)Dt

X

dxr~x,p;t !. ~3!

SinceDt is infinitesimal and the momentum of every partic
is finite, we can replacex in Eq. ~3! by X and obtain the
equality

P1~ t,X!5
1

N1
E

0

`

dp
p

m
r~X,p;t !. ~4!

The obtained arrival time distributionP1(t,X) is well
known and has appeared quite often in the literature~see,
e.g., the review@15# and references therein!.

The probability current in classical mechanics is

J~x;t !5E
2`

1` p

m
r~x,p;t !dp. ~5!

From Eqs.~4! and ~5! it is clear that the time of arrival is
related to the probability current. This relation, however,
not straightforward. We can introduce the ‘‘positive probab
ity current’’

J1~x;t !5E
0

` p

m
r~x,p;t !dp ~6!

and rewrite Eq.~4! as

P1~ t,X!5
1

N1
J1~X;t !. ~7!

The proposed@14,18,19# various quantum versions ofJ1

even in the case of the free particle can be negative~the
so-called backflow effect!. Therefore, the classical expre
sion ~7! for the time of arrival becomes problematic in qua
tum mechanics.

Similarly, for arrival from the right we obtain the prob
ability density

P2~ t,X!5
1

N2
J2~X;t !, ~8!

where the negative probability current is

J2~x;t !5E
2`

0 upu
m

r~x,p;t !dp. ~9!
05210
f
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-

We see that our definition, given at the beginning of th
section, leads to the proper result in classical mechanics.
will try to use the definition of the arrival time, given in thi
section by conditions~i! and ~ii !, for analysis of the arrival
time probability distribution in quantum mechanics.

III. WEAK MEASUREMENT

The proposed definition of the arrival time probability di
tribution can be used in quantum mechanics only if the
termination of the region in which the particle is does n
disturb the motion of the particle. This can be achieved us
the weak measurements of Aharonov, and others@20–25#.

We have the detector in the initial stateuF&. The detector
interacts with the particle only in the regionG1. In order for
weak measurements to provide meaningful information,
measurements must be performed on an ensemble of id
cal systems. Each system with its own detector is prepare
the same initial state. The readings of the detectors are
lected and averaged.

We take the operator describing the interaction betw
the particle and the detector of the form@17,26,27#

ĤI5lq̂P̂1 , ~10!

whereP̂1 is the projection operator projecting into the regio
G1 and l characterizes the strength of the interaction w
the detector. The interaction operator~10! only slightly dif-
fers from the one used by Aharonov, Albert, and Vaidm
@21#. A similar interaction operator was considered by v
Neumann@28# and has been widely used in strong measu
ment models~e.g.,@29–34# and many others!.

The measurement time ist. We assume that the interac
tion strengthl and the timet are small. The very smal
parameterl ensures that the particle’s evolution is und
turbed. The operatorq̂ acts in the Hilbert space of the dete
tor. We require a continuous spectrum of the operatorq̂. For
simplicity, we can consider this operator as the coordinate
the detector. The momentum conjugate toq is pq .

Since the interaction strengthl and the duration of the
measurementt are small, the probabilitŷP̂1& of finding the
particle in the regionG1 does not change significantly durin
the measurement. The action of the Hamiltonian~10! results
in a small change of the mean detector’s momentum^ p̂q&
2^ p̂q&052lt^P̂1&, where ^ p̂q&05^F(0)u p̂quF(0)& is the
mean momentum of the detector at the beginning of the m
surement and̂ p̂q&5^F(t)u p̂quF(t)& is the mean momen
tum of the detector after the measurement. Therefore
analogy with Ref.@21#, we define the ‘‘weak value’’ of the
probability of finding the particle in the regionG1,

W~1![^P̂1&5
^ p̂q&02^ p̂q&

lt
. ~11!

In order to obtain the arrival time probability using th
definition from Sec. II, we measure the momentapq of each
detector after the interaction with the particle. After timeDt
we perform the final, postselection measurement on the
6-2
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WEAK MEASUREMENT OF ARRIVAL TIME PHYSICAL REVIEW A 66, 052106 ~2002!
ticles of our ensemble and measure if the particle is foun
region G2. Then we collect the outcomespq only for the
particles found in regionG2.

The projection operator projecting into regionG2 is P̂2.
In the Heisenberg representation this operator is

P̃2~ t !5Û~ t !†P̂2Û~ t !, ~12!

whereÛ is the evolution operator of the free particle. Aft
the measurement the state of the particle and the detect
ÛM(t)uF&uC&, whereuC& is the initial state of the particle
and ÛM is the evolution operator of the particle interactin
with the detector. The joint probability that the detector h
momentumpq and the particle after timeDt is found in
regionG2 is

W~pq,2!

5^Cu^FuÛM~t!†upq&^pquP̃2~Dt !ÛM~t!uF&uC&,

~13!

where upq& is the eigenfunction of the momentum opera
p̂q , and P̂2 is the projection operator projecting into th
region G2. In quantum mechanics the probability that tw
quantities simultaneously have definite values does not
ways exist. If the joint probability does not exist then t
concept of conditional probability is meaningless. Howev
in our case the operatorsP̂2 and upq&^pqu act in different
spaces and commute; therefore, the joint probabilityW(pq,2)
exists.

Let us define the conditional probability, i.e., the probab
ity that the momentum of the detector ispq , provided that
the particle after timeDt is found in regionG2. This prob-
ability is given according to Bayes’ theorem as

W~pqu2!5
W~pq,2!

W~2!
, ~14!

whereW(2) is the probability that the particle after timeDt
is found in regionG2. The average momentum of the dete
tor on condition that the particle after timeDt is found in
regionG2 equals

^ p̂q&25E pqW~pqu2!dpq

5
1

W~2!
^Cu^FuÛM~t!†p̂qP̃2~Dt !ÛM~t!uF&uC&,

~15!

where P̃2(Dt)5Û(Dt)†P̂2Û(Dt) is the operatorP̂2 in the
Heisenberg picture. According to Eq.~11!

W~1u2!5
^ p̂q&02^ p̂q&2

lt
5

^ p̂q&0W~2!2^ p̂q&2W~2!

ltW~2!
~16!
05210
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is the weak value of the probability of finding the particle
region G1 on condition that the particle after timeDt is in
region G2. The probability that the particle is in regionG1
and after timeDt is in regionG2 equals

W~1,2!5W~2!W~1u2!. ~17!

When the measurement timet is sufficiently small, the
influence of the Hamiltonian of the particle can be neglec
and the evolution operator of the particle and the detec
can be expressed as

ÛM~t!5expS 2
i

\
ltq̂P̂1D .

We expand the operatorÛM(t) in a series of the paramete
l, assuming thatl is small. In the first-order approximation
using Eqs.~16! and ~17!, we obtain

W~1,2!'
1

2
^P̃2~Dt !P̂11 P̂1P̃2~Dt !&1

i

\
~^ p̂q&^q̂&

2Rê q̂p̂q&!^@ P̂1 ,P̃2~Dt !#&. ~18!

The probabilityW(1,2) is constructed using conditions~i!
and~ii ! from Sec. II: the weak measurement is performed
determine if the particle is in regionG1 and after timeDt the
strong measurement determines if the particle is in reg
G2. Therefore, according to Sec. II, the quantityW(1,2) after
normalization can be considered as the weak value of
arrival time probability distribution.

Equation~18! consists of two terms and we can introdu
two quantities

P (1)5
1

2Dt
^P̂1P̃2~Dt !1 P̃2~Dt !P̂1& ~19!

and

P (2)5
1

2iDt
^@ P̂1 ,P̃2~Dt !#&. ~20!

Then

W~1,2!5P (1)Dt2
2Dt

\
~^ p̂q&^q̂&2Rê q̂p̂q&!P (2).

~21!

If the commutator@ P̂1 ,P̃2(Dt)# in Eqs. ~19!–~21! is not
zero, then, even in the limit of the very weak measureme
the measured value depends on the particular detector.
fact means that in such a case we cannot obtain a defi
value for the arrival time probability. Moreover, the coef
cient (̂ p̂q&^q̂&2Rê q̂p̂q&) may be zero for a specific initia
state of the detector, e.g., for a Gaussian distribution of
coordinateq and momentumpq .

The quantitiesW(1,2), P (1), andP (2) are real. However,
it is convenient to consider the complex quantity
6-3
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PC5P (1)1 iP (2)5
1

Dt
^P̂1P̃2~Dt !&. ~22!

We call it the ‘‘complex arrival probability.’’ We can intro-
duce the corresponding operator

P̂15
1

Dt
P̂1P̃2~Dt !. ~23!

By analogy, the operator

P̂25
1

Dt
P̂2P̃1~Dt ! ~24!

corresponds to arrival from the right.

The introduced operatorP̂1 has some properties of th
classical positive probability current. From the conditio
P̂11 P̂251 andP̃1(Dt)1 P̃2(Dt)51 we have

P̂12P̂25
1

Dt
~ P̃2~Dt !2 P̂2!.

In the limit Dt→0 we obtain the probability currentĴ

5 limDt→0(P̂12P̂2), as in classical mechanics. Howeve

the quantitŷ P̂1& is complex and the real part can be neg
tive, in contrast to the classical quantityJ1 . The reason for
this is the noncommutativity of the operatorsP̂1 and
P̃2(Dt). When the imaginary part is small, the quant

^P̂1& after normalization can be considered as the appr
mate probability distribution of the arrival time.

IV. ARRIVAL TIME PROBABILITY

The operatorP̂1 is obtained without specification of th
Hamiltonian of the particle and is suitable for free partic
and for particles subjected to an external potential as wel
this section we consider the arrival time of the free partic

The calculation of the weak arrival time distributio

W(1,2) involves the averagêP̂1&. Therefore, it is useful to

have the matrix elements of the operatorP̂1 . It should be

noted that the matrix elements of the operatorP̂1 as well as
the operator itself are only auxiliary and do not have ind
pendent meaning.

In the basis of momentum eigenstatesup&, normalized
according to the condition̂ p1up2&52p\d(p12p2), the

matrix elements of the operatorP̂1 are

^p1uP̂1up2&5
1

Dt
^p1uP̂1Û~Dt !†P̂2Û~Dt !up2&

5
1

DtE2`

X

dx1E
X

`

dx2e2( i /\)p1x1^x1uÛ~Dt !†ux2&

3e( i /\)p2x22( i /\)(p2
2/2m)Dt. ~25!

After performing the integration we obtain
05210
-

i-
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^p1uP̂1up2&5
i\

2Dt~p22p1!
expS i

\
~p22p1!XD

3Fe( i /\)(Dt/2m)(p1
2
2p2

2)erfcS 2p1A iDt

2\mD
2erfcS 2p2A iDt

2\mD G , ~26!

whereAi 5exp(ip/4). When

1

\

Dt

2m
~p1

22p2
2!!1,

p1A Dt

2\m
.1, p2A Dt

2\m
.1,

the matrix elements of the operatorP̂1 are

^p1uP̂1up2&'
p11p2

2m
expS i

\
~p22p1!XD . ~27!

This equation coincides with the expression for the ma
elements of the probability current operator.

From Eq.~26! we obtain the diagonal matrix elements

the operatorP̂1 ,

^puP̂1up&5
p

2m
erfcS 2pA iDt

2\mD
1

\

Ai2p\mDt
e2( i /\)(p2/2m)Dt. ~28!

The real part of the quantitŷpuP̂1up& is shown in Fig. 1
and the imaginary part in Fig. 2.

FIG. 1. The real part of the quantity^puP̂1up&, according to Eq.
~28!. The corresponding classical positive probability current
shown with the dashed line. The parameters used are\51, m
51, andDt51. In this system of units, the momentump is dimen-
sionless.
6-4
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Using the asymptotic expressions for the function erfc
obtain from Eq.~28! that

lim
p→1`

^puP̂1up&→
p

m

and ^puP̂1up&→0, whenp→2`, i.e., the imaginary par
tends to zero and the real part approaches the correspon
classical value as the modulus of the momentumupu in-
creases. Such behavior is evident from Figs. 1 and 2, al

The asymptotic expressions for the function erfc are va
when the argument of the erfc is large, i.e.,upuADt/2\m
.1 or

Dt.
\

Ek
. ~29!

HereEk is the kinetic energy of the particle. The dependen

of the quantity RêpuP̂1up& from Dt is shown in Fig. 3. For

small Dt the quantity^puP̂1up& is proportional to 1/ADt.
Therefore, unlike in classical mechanics, in quantum m
chanicsDt cannot be zero. Equation~29! imposes the lower
bound on the resolution timeDt. It follows that our model
does not permit determination of the arrival time with res
lution greater than\/Ek . A relation similar to Eq.~29! based

FIG. 2. The imaginary part of the quantity^puP̂1up&. The pa-
rameters used are the same as in Fig. 1.
05210
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on measurement models was obtained by Aharonovet al.
@29#. The time-energy uncertainty realtions associated w
the time of arrival distribution, are also discussed in Re
@8,35#.

V. CONCLUSION

A definition of arrival time probability density for one
sided arrivals is proposed, relying on particles being in d
ferent regions at different instances. This definition is e
tended quantum mechanics, using the concept of w
measurements by Aharonovet al.The proposed procedure i
suitable for free particles and for particles subjected to
external potential, as well. It gives not only a mathemati
expression for the arrival time probability distribution b
also a way of measuring the quantity obtained. However,
procedure gives no unique expression for the arrival ti
probability distribution.

In analogy with the complex tunneling time, the compl
arrival time probability distribution is introduced@Eq. ~22!#.
It is shown that the proposed approach imposes an inhe
limitation, Eq.~29!, on the resolution time of the arrival tim
determination.

FIG. 3. The dependence of the quantity Re^puP̂1up& according
to Eq. ~28! on the resolution timeDt. The corresponding classica
positive probability current is shown with the dashed line. The
rameters used are\51, m51, andp51. In these units, the time
Dt is dimensionless.
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