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In this paper we investigate the quantum Zeno and anti-Zeno effects without using any particular model of
the measurement. Making a few assumptions about the measurement process we derive an expression for the
jump probability during the measurement. From this expression the equation, obtained by Kofman and Kurizki
[Nature(London) 405, 546 (2000)] can be derived as a special case.
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I. INTRODUCTION

The description of the measurement process has been a
problem since early development of quantum mechanics[1].
During recent years the measurement problem attracted
much attention due to the advancement in experimental tech-
niques. Nevertheless, the full understanding of quantum-
mechanical measurements has not been achieved as yet.
Typically, the measurement in quantum mechanics is de-
scribed by von Neumann’s state reduction(or projection)
postulate[1]. However, this postulate refers only to an ideal
measurement, which is instantaneous and arbitrarily accu-
rate. Real measurements are represented by the projection
postulate only roughly.

The so-called “quantum Zeno effect” is directly related to
the measurement problem. In quantum mechanics the short-
time behavior of nondecay probability of an unstable particle
is not exponential but quadratic[2]. The deviation from the
exponential decay has been observed by Wilkinsonet al. [3].
Using the behavior of nondecay probability Misra and Su-
darshan[4] in 1977 showed that the frequent observations
can slow down the decay. An unstable particle would never
decay when continuously observed. Misra and Sudarshan
have called this effect the quantum Zeno paradox or quantum
Zeno effect. The very first analysis does not take into account
the actual mechanism of the measurement process involved,
but it is based on an alternating sequence of unitary evolu-
tion and a collapse of the wave function. The quantum Zeno
effect has been experimentally proved[5] in a repeatedly
measured two-level system undergoing Rabi oscillations.
The outcome of this experiment has also been explained
without the collapse hypothesis[6–8].

Later it was realized that the repeated measurements
could not only slow down the quantum dynamics but the
quantum process may be accelerated by frequent measure-
ments, as well[9–15]. This effect was called a quantum anti-
Zeno effect. Quantum Zeno and anti-Zeno effect were ex-
perimentally observed in an atomic tunneling process[16].

Simple interpretation of quantum Zeno and anti-Zeno ef-
fects was given in Ref.[11]. Using projection postulate the
universal formula describing both quantum Zeno and anti-
Zeno effects was obtained. According to Ref.[11], the decay

rate is determined by the convolution of two functions: the
measurement-induced spectral broadening and the spectrum
of the reservoir to which the decaying state is coupled.

In this paper we analyze the quantum Zeno and anti-Zeno
effects without using any particular measurement model and
making only few assumptions. We obtain a more general
expression for the jump probability during the measurement.
Expression derived in Ref.[11] is a special case of our for-
mula.

The work is organized as follows. In Sec. II we present
the description of the measurement. A simple case is consid-
ered in Sec. III. In Sec. IV we derived a general formula for
the probability of the jump into another level during the mea-
surement. The pulsed measurements when there is a period
of the measurement-free evolution between the measure-
ments is analyzed in Sec. V. Particular case of the expres-
sion, obtained in Sec. IV, is investigated in Sec. VI. Section
VII summarizes our findings.

II. DESCRIPTION OF THE MEASUREMENT

We consider a system that consists of two parts. The first
part of the system has the discrete energy spectrum. The

Hamiltonian of this part isĤ0. The other part of the system is

represented by HamiltonianĤ1. HamiltonianĤ1 commutes

with Ĥ0. In a particular case the second part can be absent

and Ĥ1 can be zero. The operatorV̂std causes the jumps

between different energy levels ofĤ0. Therefore, the full

Hamiltonian of the system is of the formĤS=Ĥ0+Ĥ1+V̂std.
The example of such a system is an atom with the Hamil-

tonian Ĥ0 interacting with the electromagnetic field, repre-

sented byĤ1, while the interaction between the atom and the

field is V̂std.
We will measure in which eigenstate of the Hamiltonian

Ĥ0 the system is. The measurement is performed by coupling
the system with the detector. The full Hamiltonian of the
system and the detector equals

Ĥ = ĤS+ ĤD + ĤI , s1d

where ĤD is the Hamiltonian of the detector andĤI repre-
sents the interaction between the detector and the measured

system, described by the HamiltonianĤ0. We can choose the*Electronic address: ruseckas@itpa.lt
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basisunal= unl ^ ual common for the operatorsĤ0 and Ĥ1,

Ĥ0unl = Enunl, s2d

Ĥ1ual = Eaual, s3d

wheren numbers the eigenvalues of the HamiltonianĤ0 and
a represents the remaining quantum numbers.

The initial density matrix of the system isr̂Ss0d. The ini-
tial density matrix of the detector isr̂Ds0d. Before the mea-
surement the measured system and the detector are uncorre-
lated, therefore, the full density matrix of the measured
system and the detector isr̂s0d= r̂Ss0d ^ r̂Ds0d. The duration
of the measurement ist.

When the interaction of the detector with the environment
is taken into account, the evolution of the measured system
and the detector cannot be described by a unitary operator.
More general description of the evolution, allowing to in-
clude the interaction with the environment, can be given us-
ing the superoperators. Therefore, we will assume that the
evolution of the measured system and the detector is given
by the superoperatorSstd. The explicit form of the superop-
erator Sstd can be obtained from a concrete model of the
measurement.

Due to the finite duration of the measurement it is impos-
sible to realize the infinitely frequent measurements. The
highest frequency of the measurements is achieved when the
measurements are performed one after another without the
period of the measurement-free evolution between two suc-
cessive measurements. Therefore, we model a continuous
measurement by the subsequent measurements of the finite
duration and finite accuracy. AfterN measurements the full
density matrix of the measured system and the detector is

r̂sNtd = SstdNr̂s0d. s4d

We assume that the density matrix of the detector,r̂Ds0d,
is the same before each measurement. Such an assumption is
valid when the initial condition for the detector, modified by
the measurement, is restored at the beginning of each mea-
surement or each measurement is performed with a new de-
tector. For example, the detector can be an atom which is
excited during the measurement. After the interaction of the
atom with the measured system is interrupted, the atom re-
turns to the ground state due to spontaneous emission, and
the result of the measurement is encoded in the emitted pho-
ton. Thus the initial state of the detector is restored.

III. MEASUREMENT OF THE UNPERTURBED SYSTEM

In this section we investigate the measurement of the un-
perturbed system, i.e., the case whenVstd=0.

We assume that the measurement of the unperturbed sys-
tem is a quantum non-demolition measurement[17–20]. The
measurement of the unperturbed system does not change the
state of the measured system when initially the system is in

an eigenstate of the HamiltonianĤ0. After such an assump-
tion, the most general form of the action of the superoperator
Sstd can be written as

Sstdfunalkma8u ^ r̂Ds0dg

= unalkma8ueivma8,nat
^ Sna,ma8stdr̂Ds0d, s5d

where

vma8,na =
1

"
sEm + Ea8 − En − Ead s6d

and the superoperatorSna,ma8std acts only on the density
matrix of the detector. The full density matrix of the detector
and the measured system after the measurement is

r̂std = Sstdr̂s0d = o
na,ma8

unalsrSdna,ma8e
ivma8,natkma8u

^ Sna,ma8stdr̂Ds0d. s7d

From Eq.s7d it follows that the nondiagonal matrix elements
of the density matrix of the system after the measurement
srSdna,ma8std are multiplied by the quantity

Fna,ma8std ; TrhSna,ma8stdr̂Ds0dj. s8d

Since after the measurement the nondiagonal matrix ele-
ments of the density matrix of the measured system should
become smallsthey must vanish in the case of an ideal mea-
surementd, Fna,ma8std must be also small whennÞm.

IV. MEASUREMENT OF THE PERTURBED SYSTEM

The operatorV̂std represents the perturbation of the unper-

turbed HamiltonianĤ0+Ĥ1. We will take into account the

influence of the operatorV̂std by the perturbation method,
assuming that the strength of the interaction between the
system and detector is large and the duration of the measure-
mentt is short. Similar method was used in Ref.[21].

We assume that the Markovian approximation is valid,
i.e., the evolution of the measured system and the detector
depends only on their state at the present time. Then the
superoperatorS, describing the evolution of the measured
system and the detector, obeys the equation

]

] t
S = LstdS, s9d

whereL is the Liouvillian. There is a small perturbation of

the measured system, given by the operatorV̂. We can write
L=L0+LV, whereLV is a small perturbation. We expand the
superoperatorS into powers ofV,

S = Ss0d + Ss1d + Ss2d + ¯ . s10d

Then from Eq.s9d it follows

]

] t
Ss0d = L0stdSs0d, s11d
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]

] t
Ssid = L0stdSsid + LVstdSsi−1d. s12d

We will denote asSs0dst ,t0d the solution of Eq.s11d with the
initial condition Ss0dst= t0,t0d=1. The formal solutions of
Eqs.s11d and s12d are

Ss0dst,t0d = T expSE
t0

t

L0st8ddt8D s13d

and

Ssidst,0d =E
0

t

dt1Ss0dst,t1dLVst1dSsi−1dst1,0d. s14d

HereT represents the time ordering. In the second-order ap-
proximation we have

Sst,0d = Ss0dst,0d +E
0

t

dt1Ss0dst,t1dLVst1dSs0dst1,0d

+E
0

t

dt1E
0

t1
dt2Ss0dst,t1dLVst1dSs0dst1,t2d

3LVst2dSs0dst2,0d. s15d

Using Eq.s10d, the full density matrix of the measured sys-
tem and the detector can be represented as

r̂std = r̂s0dstd + r̂s1dstd + r̂s2dstd + ¯ , s16d

where

r̂sidstd = Ssidst,0dr̂s0d. s17d

Let the initial density matrix of the system and detector be

r̂s0d = uialkiau ^ r̂Ds0d. s18d

The probability of the jump from the leveluial into the level
ufa8l during the measurement is

Wsia → fa8d = Trhufa8lkfa8ur̂stdj. s19d

Using Eq.s5d we can write

Ss0dst,t0dfunalkma8u ^ r̂Ds0dg

= unalkma8ueivma8,nat
^ Sna,ma8

s0d st,t0dr̂Ds0d. s20d

From Eq.s20d it follows that the superoperatorSma,ma
s0d with

the equal indices does not change the trace of the density
matrix r̂D, since the trace of the full density matrix of the
measured system and the detector must remain unchanged
during the evolution.

When the system is perturbed by the operatorV̂std then
the superoperatorLV is defined by the equation

LVstdr̂ =
1

i"
fV̂std,r̂g. s21d

The first-order term isr̂s1dstd=Ss1dst ,0dr̂s0d. Using Eqs.s14d,
s18d, s20d, ands21d, this term can be written as

r̂s1dstd = o
pa1

1

i"
E

0

t

dt2fupa1lVpa1,iast2deivia,pa1
st−t2dkiau

^ Spa1,ia
s0d st,t2d − uialVia,pa1

st2deivpa1,iast−t2dkpa1u

^ Sia,pa1

s0d st,t2dgSia,ia
s0d st2,0dr̂Ds0d. s22d

When i Þ f then the first-order term does not contribute to
the jump probability, since from Eqs.s19d ands22d it follows
that the expression for this contribution contains the scalar
productkfa8uial=0.

For the second-order termr̂s2dstd=Ss2dst ,0dr̂s0d, using
Eqs.(14) and (20), we obtain the equality

Trhufa8lkfa8ur̂s2dstdj =
1

i"
E

0

t

dt1Trhkfa8uV̂st1dr̂s1dst1dufa8l

− kfa8ur̂s1dst1dV̂st1dufa8lj. s23d

In Eq. s23d the superoperatorS
fa8,fa8
s0d is omitted, since it does

not change the trace. Then from Eqs.s22d ands23d we obtain
the jump probability

Wsia → fa8d

=
1

"2E
0

t

dt1E
0

t1
dt2TrhfVfa8,iast1dVia,fa8st2d

3Sia,fa8
s0d st1,t2deivfa8,iast1−t2d + Vfa8,iast2dVia,fa8st1d

3S fa8,ia
s0d st1,t2deivia,fa8st1−t2dgSia,ia

s0d st2,0dr̂Ds0dj. s24d

Equation s24d allows us to calculate the jump probability
during the measurement when the evolution of the measured
unperturbed system is known. The explicit form of the su-
peroperatorS

na,ma8
s0d can be obtained from a concrete model

of the measurement. The main assumptions, used in the deri-
vation of Eq.s24d, are Eqs.s5d ands9d, i.e., the assumptions
that the quantum measurement of the unperturbed system is
nondemolition measurement and that the Markovian ap-
proximation is valid. Thus, Eq.s24d is quite general.

The probability that the measured system remains in the
initial stateuial is

Wsiad = 1 − o
f,a8

Wsia → fa8d. s25d

After N measurements the probability that the measured sys-
tem remains in the initial state equals

WsiadN < exps− RNtd, s26d

whereR is the jump rate,

R= o
f,a8

1

t
Wsia → fa8d. s27d

V. FREE EVOLUTION AND MEASUREMENTS

In practice, it is impossible to perform the measurements
one after another without the period of the measurement-free
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evolution between two successive measurements. Such inter-
vals of the measurement-free evolution were also present in
the experiments demonstrating the quantum Zeno effect
[5,16,22]. Therefore, it is important to consider such mea-
surements. This problem for the definite model was investi-
gated in Ref.[23].

We have the repeated measurements separated by the free
evolution of the measured system. For the purpose of the
description of such measurements we can use Eq.(24), ob-
tained in Sec. IV. The duration of the free evolution istF,

and the duration of the free evolution and the measurement
together ist. The superoperator of the free evolution without

the perturbationV̂ is SF
s0dstd, and the superoperator of the

measurement isSM
s0dst ,t0d. We will assume that during the

measurement the superoperatorL0 does not depend on time
t. Then the superoperatorSM

s0dst ,t0d depends only on the time
differencet− t0. Therefore, we will writeSM

s0dst− t0d instead of
SM

s0dst ,t0d. When the free evolution comes first and then the
measurement is performed, the full superoperator equals

Sna,ma8
s0d st,t1d = 5SM na,ma8

s0d st − t1d, t . t1 . tF andt . t . t1

SF
s0dst − t1d, tF . t1 . 0 andtF . t . t1

SM na,ma8
s0d st − tFdSF

s0dstF − t1d, tF . t1 . 0 andt . t . tF.

s28d

Equations28d can be written as

Sna,ma8
s0d st,t1d = SM na,ma8

s0d st − t1dQst1 − tFd

+ SF
s0dst − t1dQstF − td + SM na,ma8

s0d st − tFd

3SF
s0dstF − t1dQst − tFdQstF − t1d, s29d

whereQ is Heaviside unit step function. From Eqs.s24d and
s29d it follows that the jump probability consists of three
terms

Wsia → fa8d = WMsia → fa8d + WFsia → fa8d

+ WIsia → fa8d, s30d

where the jump probability during the free evolution is

WFsia → fa8d

=
1

"2E
0

tF

dt1E
0

tF

dt2Vfa8,iast1dVia,fa8st2deivfa8,iast1−t2d,

s31d

the jump probability during the measurement

WMsia → fa8d

=
1

"2E
tF

t

dt1E
tF

t1
dt2TrhfVfa8,iast1dVia,fa8st2d

3SM ia,fa8
s0d st1 − t2deivfa8,iast1−t2d

+ Vfa8,iast2dVia,fa8st1dSM fa8,ia
s0d st1 − t2deivia,fa8st1−t2dg

3SM ia,ia
s0d st2 − tFdSF

s0dstFdr̂Ds0dj, s32d

and the interference term is

WIsia → fa8d

=
1

"2E
tF

t

dt1E
0

tF

dt2TrhfVfa8,iast1dVia,fa8st2d

3SM ia,fa8
s0d st1 − tFdeivfa8,iast1−t2d + Vfa8,iast2dVia,fa8st1d

3SM fa8,ia
s0d st1 − tFdeivia,fa8st1−t2dgSF

s0dstFdr̂Ds0dj. s33d

If we assume that the free evolution does not change the

density matrix of the detector and the perturbationV̂ does not
depend on time, we have the jump probability during the
measurement-free evolution

WFsia → fa8d = uVia,fa8u
2
4 sin2s 1

2v fa8,iatFd
"2v fa8,ia

2 , s34d

the jump probability during the measurement

WMsia → fa8d

=
1

"2uVia,fa8u
2E

tF

t

dt1E
tF

t1
dt2

3TrhfSM ia,fa8
s0d st1 − t2deivfa8,iast1−t2d

+ SM fa8,ia
s0d st1 − t2deivia,fa8st1−t2dg

3SM ia,ia
s0d st2 − tFdr̂Ds0dj, s35d

and the interference term

WIsia → fa8d = uVia,fa8u
2
2 sins 1

2v fa8,iatFd
"2v fa8,ia

3E
tF

t

dt1TrhfSM ia,fa8
s0d st1 − tFd

3eivfa8,iast1−1
2

tFd + SM fa8,ia
s0d st1 − tFd
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3eivia,fa8st1−1
2

tFdgr̂Ds0dj. s36d

VI. SIMPLIFICATION OF THE EXPRESSION
FOR THE JUMP PROBABILITY

The expression for the jump probability during the mea-

surement can be simplified if the operatorV̂ does not depend
on time t. Then Eq.(24) can be written as

Wsia → fa8d

=
2

"2uVia,fa8u
2ReE

0

t

dt1E
0

t1
dt2e

ivfa8,iast1−t2d

3TrhSia,fa8
s0d st1,t2dSia,ia

s0d st2,0dr̂Ds0dj. s37d

Introducing the function

Gsvd fa8,ia = uVia,fa8u
2dS1

"
sEa8 − Ead − vD , s38d

we can rewrite Eq.s37d in the form

Wsia → fa8d =
2pt

"2 E
−`

`

Gsvd fa8,iaPsvdia,fa8dv, s39d

where

Psvdia,fa8 =
1

pt
ReE

0

t

dt1E
0

t1
dt2e

isv−vi f dst1−t2dTrhSia,fa8
s0d

3st1,t2dSia,ia
s0d st2,0dr̂Ds0dj. s40d

Equation s39d is similar to that obtained by Kofman and
Kurizki in Ref. f11g.

Further simplification can be achieved when the superop-
erator L0 does not depend on timet and the order of the
superoperators in the expression

TrhSia,fa8
s0d st1,t2dSia,ia

s0d st2dr̂Ds0dj
can be changed. Under such assumptions we have

TrhSia,fa8
s0d st1,t2dSia,ia

s0d st2dr̂Ds0dj

= TrhSia,ia
s0d st2dSia,fa8

s0d st1,t2dr̂Ds0dj

= Fia,fa8st1 − t2d, s41d

where Fia,fa8std is defined by Eq.s8d. After changing the
variables intou= t1− t2 andv= t1+ t2 from Eq.s40d we obtain

Psvdia,fa8 =
1

p
ReE

0

t S1 −
u

t
DFia,fa8sudexpfisv − vi fdugdu.

s42d

Decaying system

We consider a decaying system with the HamiltonianĤ0
that due to the interaction with the field decays from the level
uil into the levelufl. The field initially is in the vacuum state
ua=0l. Only the energy levels of the decaying system are

measured and the detector does not interact with the field.
ThenS

ia,fa8
s0d andPsvdia,fa8 do not depend ona anda8. Using

Eqs.(27) and(39) we obtain the decay rate of the measured
system,

R= o
a

1

t
Wsi0 → fad =

2p

"2 E
−`

`

Gsvd f,iPsvdi,fdv, s43d

where

Gsvd f,i = o
a

Gsvd fa,i0. s44d

The functionPsvdi,f is related to the measurement-induced
broadening of the spectral linef11,14,15g. For example,
when instantaneous ideal measurements are performed at
time intervalst, we can takeFia,fa8std=Qst− td, whereQstd
is the unit step function. Then from Eq.s42d we get

Psvdi,f =
2 sin2f 1

2tsv − vi fdg
ptsv − vi fd2 .

We have that the width of the functionPsvdi,f increases
when the duration of the measurementt decreases.

Equation(39) represents a universal result: the decay rate
of the frequently measured decaying system is determined by
the overlap of the reservoir coupling spectrumGsvd f,i and
the measurement-modified level widthPsvdi,f.

Depending on the reservoir spectrumGsvd f,i and the fre-
quency of the measurements 1/t the inhibition or accelera-
tion of the decay can be obtained. If the frequency of mea-
surements is small and, consequently, the measurement-
induced broadening of the spectral line is much smaller than
the width of the reservoir coupling spectrum, the decay rate
equals the decay rate of the unmeasured system, given by the
Fermi’s golden rule. In the intermediate region, when the
width of the spectral line is rather small compared with the
distance betweenvi f and the nearest maximum in the reser-
voir spectrum, the decay rate grows with increase of the
frequency of the measurements. This results in the anti-Zeno
effect.

If the width of the spectral line is much greater compared
both with the width of the reservoir spectrum and the dis-
tance betweenvi f and the centrum of the reservoir spectrum,
the decay rate decreases when the frequency of measure-
ments increases. This results in the quantum Zeno effect.

VII. CONCLUSIONS

We analyze the quantum Zeno and quantum anti-Zeno
effects without using any particular model of the measure-
ment. The general expression(24) for the jump probability
during the measurement is derived. The main assumptions,
used in the derivation of Eq.(24), are assumptions that the
quantum measurement is nondemolition measurement[Eq.
(5)] and the Markovian approximation for the quantum dy-
namics is valid[Eq. (9)]. We have shown that Eq.(24) is also
suitable for the description of the pulsed measurements,
when there are intervals of the measurement-free evolution
between successive measurements[Eqs. (30)–(33)]. When
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the operatorV̂ inducing the jumps from one state to another
does not depend on time Eq.(39), which is of the form

obtained by Kofman and Kurizki[11], is derived as a special
case.
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