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General expression for the quantum Zeno and anti-Zeno effects
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In this paper we investigate the quantum Zeno and anti-Zeno effects without using any particular model of
the measurement. Making a few assumptions about the measurement process we derive an expression for the
jump probability during the measurement. From this expression the equation, obtained by Kofman and Kurizki
[Nature(London 405 546 (2000] can be derived as a special case.

DOI: 10.1103/PhysRevA.69.032104 PACS nuniber03.65.Xp, 03.65.Ta, 03.65.Yz, 42.50.Lc

I. INTRODUCTION rate is determined by the convolution of two functions: the

measurement-induced spectral broadening and the spectrum

The description of the measurement process has been the reservoir to which the decaying state is coupled.
problem since early development of quantum mechalics In this paper we analyze the quantum Zeno and anti-Zeno
During recent years the measurement problem attractegkfects without using any particular measurement model and
much attention due to the advancement in experimental ted?ﬁaking only few assumptions. We obtain a more general
niques. Nevertheless, the full understanding of quantumgyression for the jump probability during the measurement.
mechanical measurements has not been achieved as yeYpression derived in Refll] is a special case of our for-
Typically, the measurement in quantum mechanics is dega.
scribed by von Neumann's state reducti@r projection The work is organized as follows. In Sec. Il we present
postulatef1]. However, this postulate refers only to an ideal ihe gescription of the measurement. A simple case is consid-
measurement, which is instantaneous and arbitrarily acClsyeq in Sec. Iil. In Sec. IV we derived a general formula for
rate. Real measurements are represented by the projectigiy probability of the jump into another level during the mea-
postulate only roughly. o surement. The pulsed measurements when there is a period

The so-called “quantum Zeno effect” is directly related t04f the measurement-free evolution between the measure-
the measurement problem. In quantum mechanics the shotients is analyzed in Sec. V. Particular case of the expres-

time behavior of nondecay probability of an unstable particlesion obtained in Sec. 1V, is investigated in Sec. VI. Section
is not exponential but quadratj@]. The deviation from the /|| summarizes our findings.

exponential decay has been observed by Wilkinstoal. [3].

Using the behavior of nondecay probability Misra and Su-
darshan[4] in 1977 showed that the frequent observations
can slow down the decay. An unstable particle would never We consider a system that consists of two parts. The first
decay when continuously observed. Misra and Sudarshapart of the system has the discrete energy spectrum. The

have called this effect the quantum Zeno paradox or quanturfamiltonian of this part i$,. The other part of the system is

Zeno effect. The very first analysis does not take into ."’Iccour}éepresented by HamiltoniaH,. Hamiltonianl:ll commutes
the actual mechanism of the measurement process involved, -

but it is based on an alternating sequence of unitary evoluith Ho. In @ particular case the second part can be absent
tion and a collapse of the wave function. The quantum Zen@nd H; can be zero. The operatdf(t) causes the jumps

effect has been experimentally provgs] in a repeatedly petween different energy levels of,. Therefore, the full
measured two-level system undergoing Rabi OSC'"at'onSHamiltonian of the system is of the forﬁiS:I:Io+l:|1+\7(t).

The outcome of this experiment has also been explaine . . .
without the collapse hypothesi6—8]. ﬁihe ex:ample of such a system is an atom with the Hamil

Later it was realized that the repeated measurement&nian Hojnteracting with the electromagnetic field, repre-
could not only slow down the guantum dynamics but thesented byH;, while the interaction between the atom and the
quantum process may be accelerated by frequent measumgsid is V/(t).

ments, as well9-19. This effect was called a quantum anti-  \ve will measure in which eigenstate of the Hamiltonian

Zeno effect. Quantum Zeno and anti-Zeno effect were exy . . .
perimentally observed in an atomic tunneling procis. H, the system is. The measurement is performed by coupling

Simple interpretation of quantum Zeno and anti-Zeno ef_the system with the detector. The full Hamiltonian of the

fects was given in Refl11]. Using projection postulate the system and the detector equals
universal formula describing both quantum Zeno and anti- H=Hs+Hp+H,, (1)
Zeno effects was obtained. According to Réfl], the decay

II. DESCRIPTION OF THE MEASUREMENT

where I:|D is the Hamiltonian of the detector arﬁu repre-
sents the interaction between the detector and the measured

*Electronic address: ruseckas@itpa.lt system, described by the Hamiltoniﬁha. We can choose the

1050-2947/2004/63)/0321046)/$22.50 69 032104-1 ©2004 The American Physical Society



J. RUSECKAS AND B. KAULAKYS PHYSICAL REVIEW A69, 032104(2004)

basis|na)=|n)®|a) common for the operatod, andHj, S(7)[[na)ma’| ® pp(0)]
Holn) = E;Jn), ) = Ina)(ma’[&“ne'ne” & Sy mar (NPp(0), (5)
R where
Hile) = Ejla), (3

wheren numbers the eigenvalues of the Hamiltonfa{mand Oma’ na = %(Em+ E, -E,—E,) (6)

a represents the remaining quantum numbers.

The initial density matrix of the system f&(0). The ini- dth | he densi
tial density matrix of the detector i&(0). Before the mea- an _t € superoperat@,,ma(7) aCt? only on the density
surement the measured system and the detector are uncorfaatrix of the detector. The full density matrix of the_detector
lated, therefore, the full density matrix of the measuredand the measured system after the measurement is

system and the detector i$0) =p<(0) ® pp(0). The duration

of the measurement is p(D=8(Dp0)= 2 N (pYnama€ ™" 1 (me’|
When the interaction of the detector with the environment na,ma’
is taken into account, the evolution of the measured system ® Sparma(DPp(0). 7)

and the detector cannot be described by a unitary operator.

More general description of the evolution, allowing 10 In- £rom Eq (7) it follows that the nondiagonal matrix elements

clude the interaction with the environment, can be given USy¢ the gensity matrix of the system after the measurement
ing the superoperators. Therefore, we will assume that thfe 9 (7) are multiplied by the quantity
evolution of the measured system and the detector is giver{) fema

by the superoperata®(t). The explicit form of the superop-
erator S(t) can be obtained from a concrete model of the
measurement.

Fna,ma'(T) = Tr{Sna,ma’(T)ﬁD(o)}' (8)

Due to the finite duration of the m rement it is im Since after the measurement the nondiagonal matrix ele-
ue to the € duration of the measureme S IMPOS ants of the density matrix of the measured system should

sible to realize the infinitely frequent measurements. Thg .0 smalithey must vanish in the case of an ideal mea-
highest frequency of the measurements is achieved when ﬂ%%remen)t = (7) must be also small whem#m
na,ma’ '

measurements are performed one after another without the
period of the measurement-free evolution between two suc-
cessive measurements. Therefore, we model a continuous |v. MEASUREMENT OF THE PERTURBED SYSTEM
measurement by the subsequent measurements of the finite .

duration and finite accuracy. Afté&M measurements the full The operatoN/(t) represents the perturbation of the unper-
density matrix of the measured system and the detector is turbed Hamiltoniari:|0+lz|1. We will take into account the

p(N7) = S(nNp(0). (4)  influence of the operatof?(t) by the perturbation method,
assuming that the strength of the interaction between the

~ We assume that the density matrix of the detegig(0),  gystem and detector is large and the duration of the measure-
is the same before each measurement. Such an assumptionyj&nt - is short. Similar method was used in REZL].

valid when the initial condition for the detector, modified by  \\e assume that the Markovian approximation is valid

the measurement, is restored at the beginning of each mepg ' the evolution of the measured system and the detector
surement or each measurement is performed with a new dgpends only on their state at the present time. Then the

tector. For example, the detector can be an atom which igheroperatorS, describing the evolution of the measured
excited during the measurement. After the interaction of th%ystem and the detector, obeys the equation

atom with the measured system is interrupted, the atom re-

turns to the ground state due to spontaneous emission, and 9

the result of the measurement is encoded in the emitted pho- —S=L([)S, 9
ton. Thus the initial state of the detector is restored. Jt

where £ is the Liouvillian. There is a small perturbation of

the measured system, given by the operﬁlthe can write
In this section we investigate the measurement of the un£=Ly+ Ly, whereL,, is a small perturbation. We expand the

IIl. MEASUREMENT OF THE UNPERTURBED SYSTEM

perturbed system, i.e., the case wh&it) =0. superoperatos into powers ofV,
We assume that the measurement of the unperturbed sys-
tem is a quantum non-demolition measurenid@@-2Q. The §=890+8V+5@+ ... (10

measurement of the unperturbed system does not change the
state of the measured system when initially the system is ifhen from Eq.(9) it follows

an eigenstate of the HamiltonianAfb. After such an assump-
tion, the most general form of the action of the superoperator iS(O) = £4(H)SO, (11)
S(7) can be written as at
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g . . R 1t - )
S0 = L8 + LS. w2 =3 f At PtV oltp) €102
pa 0

We will denote asSO(t,t,) the solution of Eq(11) with the ® SO . (t,t) = [ia)Vig pa. (tp)€“Paria™2(pa|
v e oy (0) _ _ . pay,la a,pay
initial condition S (t=ty,tg)=1. The formal solutions of © 0 R
Egs.(11) and(12) are ® Siqpa,(1:12)1Siaia(t2:0)pp(0). (22)

0 t Wheni # f then the first-order term does not contribute to

SO(tto) =T ex f Lo(t")dt’ (13)  the jump probability, since from Eq&l9) and(22) it follows
to

that the expression for this contribution contains the scalar
and product(fa’|ia)=0.
t For the second-order terrfp@(t)=S@(t,0)p(0), using
S0(t,0) :f At SOt ) L0(t) ST 1y, 0). (14) Egs.(14) and(20), we obtain the equality
0

1 (" ~
, Na@ ) = — ' ~(1) '
HereT represents the time ordering. In the second-order ap- Trilfe’Xie’[p=(0} iﬁJo dyTri(fa’[V(tp = (tlfa’)

proximation we have

t - (fa/ P Vt)Ifa)). (23
S(t,0=5(t,0 +f dtls(o)(t’tl)ﬁv(tl)s(o)(tli0) In Eq. (23) the superoperatofi’g, fo is omitted, since it does
. tlo not (_:hange the tr_a}ce. Then from E¢32) and(23) we obtain
+J dtlf dt,SO(t,t,) Lyt SOty 1) the jump probability
0 0 W(ia— fa')
X Lo(1)SO(t,,0). (15)

1 T ty
== dtJ dt,Tr{[ Vs, i (1) Vi, 5.0 (1
Using Eq.(10), the full density matrix of the measured sys- hzjo o 7 Viw jaltyViasar ()

tem and the detector can be represented as

X qg),fa’(tl’tz)eiwm,'ia(tl_tZ) + Vfa’,ia(tZ)Via,fa’(tl)
pO=p M +p V) +pP M) + o, (16)

XSt tp) @it RSO, (1,,055(0)}). (24)
where
) , Equation (24) allows us to calculate the jump probability
p(t) =S"(t,0)p(0). (17)  during the measurement when the evolution of the measured
unperturbed system is known. The explicit form of the su-

peroperatorS(O) can be obtained from a concrete model

na,ma’
p(0) =lia)ia| ® pp(0). (18)  of the measurement. The main assumptions, used in the deri-
- ] o vation of Eq.(24), are Egs(5) and(9), i.e., the assumptions
The probability of the jump from the levéile) into the level  ihat the quantum measurement of the unperturbed system is
|fa’) during the measurement is nondemolition measurement and that the Markovian ap-
proximation is valid. Thus, Eq24) is quite general.

Let the initial density matrix of the system and detector be

Wiia — fa’) = Tr{{fa’Xfa’|p(n}. (19 The probability that the measured system remains in the
Using Eq.(5) we can write initial statelia) is
SO(t,to)[|na)ma’| ® pp(0)] Wia)=1- 2 W(ia— fa'). (25)

f.a

= [na)(ma’|geme nat © S© (t,t)pp(0).  (20)
| | fevm ore After N measurements the probability that the measured sys-

From Eq.(20) it follows that the superoperataf'  with  tem remains in the initial state equals
W(ia)N = exp(- RN7), (26)

the equal indices does not change the trace of the density
matrix pp, since the trace of the full density matrix of the

measured system and the detector must remain unchangedhereR is the jump rate,
during the evolution.

When the system is perturbed by the operafl(n) then R=> }W(ia—> fa'). (27)
the superoperatofy, is defined by the equation fa T
~ L1~
Ly(t)p=—[V(),p]. (21
i V. FREE EVOLUTION AND MEASUREMENTS
The first-order term i$®(t)=SW(t, 0)p(0). Using Eqs(14), In practice, it is impossible to perform the measurements
(18), (20), and(21), this term can be written as one after another without the period of the measurement-free
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evolution between two successive measurements. Such inteaand the duration of the free evolution and the measurement
vals of the measurement-free evolution were also present itngether isr. The superoperator of the free evolution without

the experiments demonstrating the quantum Zeno effeg,o perturbation\? is S(FO)(t), and the superoperator of the

[5,16,23. Therefore, it is important to consider such mea- - curement i§f\3)(t,to). We will assume that during the

surements. This problem for the definite model was investi- .
gated in Ref[23]. measurement the superoperafgrdoes not depend on time

We have the repeated measurements separated by the fled hen the superoperats}y(t,to) depenc(i)s only on the time
evolution of the measured system. For the purpose of theifferencet—to. Therefore, we will write§?(t-to) instead of
description of such measurements we can use(#, ob- S(h;))(t,to). When the free evolution comes first and then the
tained in Sec. IV. The duration of the free evolution7is  measurement is performed, the full superoperator equals

S#\;))na,ma’(t_tl)v T>t1> TE andT>t>t1
Spormar (L) = SEE = 1), m>t>0andr >t>t (28)
SF\(A)) na,ma’(t - TF)SE:O)(TF - tl)! TE > tl > 0 andT> t> TE.
I
Equation(28) can be written as W(ia— fa')
0) _ o0 1 (7 T
a,ma’(t’tl) - SM na,ma’(t - tl)®(tl - TF) = ﬁ dtl dtZTr{[Vfa’,ia(tl)via,fa’(tZ)
TF 0
+ SOt t)O(7E 1) + Siy o e (= 76)

XSO(7 —t)O(t - 70)O (7= — ty) (29 Xsﬁ)ia,fa'(tl_ )€t i V() Vi g (t)
Tl — )0~ 1), o (tm -
i XS tar ialts = 7)€t DS (1) pp(0)). (33)
where® is Heaviside unit step function. From Ed24) and
(29) it follows that the jump probability consists of three
terms

If we assume that the free evolution does not change the

density matrix of the detector and the perturbaﬁbﬂoes not
depend on time, we have the jump probability during the
Wiia— fa') =Wy(ia — fa') + Weia — fa') measurement-free evolution
ia— fa' 4 sir? lwar-ar
e tan, %0 Wil 1) = Ny I EAT) (g

wfa’,ia

where the jump probability during the free evolution is
the jump probability during the measurement

Weliar — fo) Wy(ia — fa')
- — , A , Wfg' ja\l1712 T
2], ty . Vi ia(t)Vig o (t2) € ; _ }?|Via,fa'|zj dtlf dt,
= E
(31) (0) jws i (t1—to)
XTF{[SM ia‘fa,(tl_tz)e fa'ial*1772
the jump probability during the measurement ;
J p p y g + 85\3) far'ia(tl _ tz)elwia’faf(tl—tz)]
Wlia — fa’) XS\ wialtz= T0)0(0)}, (35)
1 T ty .
= P f dt; f AT Vi ia(t)Vig e (t2) and the interference term
F F . (1
) 2 sin5 w5y o7
Xsﬁ)ia,far(tl ~ ty)gtaiai7) W(ia — fa') = |Via,fa’|2M

ﬁzwfa',ia
* Viat iVt (SN 1o ity — )€ ata 172)] f o

X dt, T[S\, . ,(t1— 7
% S&,. (= 7SO ()P0}, (32 . TS i (.= 70

- 1
. . oialti=3 (0) _
and the interference term is xgorasa(ti757) + S\ tariatL = 7F)
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Xeiwia,fa’(tl‘%TF)]ﬁD(O)}. (36)

VI. SIMPLIFICATION OF THE EXPRESSION
FOR THE JUMP PROBABILITY

The expression for the jump probability during the mea-
surement can be simplified if the operatbdoes not depend

on timet. Then EqQ.(24) can be written as

W(ia— fa')

2 T ty )
- ﬁ|via,fa'|2Ref dtlJ dtye “ra a1t
0 0

XTHSY, (1) S (6,060} (37)
Introducing the function
1
G(0)aria = |via,fa,|25(%(Ea, -E,) - a)), (38)

we can rewrite Eq(37) in the form

2ma7 (7

Wia— fa') = 7

G(w)fa',iap(w)ia,fa’dw! (39)
where
1 T tq ) o
P(@)igfe =—Re| dt| diee eS|
mwT 0 0 ’

X (ty,1)8() (12, 0)pp(0)}. (40)

Equation (39) is similar to that obtained by Kofman and

Kurizki in Ref. [11].

Further simplification can be achieved when the superop,

erator £, does not depend on timeand the order of the
superoperators in the expression

THS{ 0t S ) 0)}
can be changed. Under such assumptions we have
Tr{S(O)

ot (1181 (1) Pp(0)}
= Tr{'Si(g),ia(tZ)Si(g?fa/(tlitZ)l}D(o)}
= Fia,fa’(tl - t2) y

where F;, ¢, (t) is defined by Eq.(8). After changing the
variables intau=t; —t, andv =t; +t, from Eq. (40) we obtain

(41)

Pl = 2R (1-2)Fi o Wi - ag o

(42)

Decaying system

We consider a decaying system with the Hamiltori?&p

PHYSICAL REVIEW A 69, 032104(2004)

measured and the detector does not interact with the field.
Thens® andP(w);, ¢, do not depend or anda’. Using

ia,fa’

Egs.(27) and(39) we obtain the decay rate of the measured
system,

1 2m (*
Rz% ;W(IO—>fa)=h—ZJ_w Glw);;P(w); 1w, (43)

where

G(w)s; = 2 G(@)faio- (44)

The functionP(w); ¢ is related to the measurement-induced
broadening of the spectral lingl1,14,13. For example,
when instantaneous ideal measurements are performed at
time intervalsr, we can take;, ¢, (1) =0O(7—t), where®(t)

is the unit step function. Then from E2) we get

2 SIFF[%T(w - wif):l
Tw=-w)®

We have that the width of the functioR(w); s increases
when the duration of the measuremendecreases.

Equation(39) represents a universal result: the decay rate
of the frequently measured decaying system is determined by
the overlap of the reservoir coupling spectr@fw); and
the measurement-modified level widtiw); ;.

Depending on the reservoir spectriw);; and the fre-
quency of the measurementsrithe inhibition or accelera-
tion of the decay can be obtained. If the frequency of mea-
surements is small and, consequently, the measurement-
induced broadening of the spectral line is much smaller than
the width of the reservoir coupling spectrum, the decay rate
equals the decay rate of the unmeasured system, given by the
Fermi’'s golden rule. In the intermediate region, when the
width of the spectral line is rather small compared with the
distance betweem;; and the nearest maximum in the reser-
voir spectrum, the decay rate grows with increase of the
frequency of the measurements. This results in the anti-Zeno
effect.

If the width of the spectral line is much greater compared
both with the width of the reservoir spectrum and the dis-
tance betweew;; and the centrum of the reservoir spectrum,
the decay rate decreases when the frequency of measure-
ments increases. This results in the quantum Zeno effect.

P(w); =

VII. CONCLUSIONS

We analyze the quantum Zeno and quantum anti-Zeno
effects without using any particular model of the measure-
ment. The general expressiodd) for the jump probability
during the measurement is derived. The main assumptions,
used in the derivation of Eq24), are assumptions that the
gquantum measurement is nondemolition measurerjteqt
(5)] and the Markovian approximation for the quantum dy-
namics is validEq. (9)]. We have shown that E(R4) is also

that due to the interaction with the field decays from the levekuitable for the description of the pulsed measurements,
|i) into the level|f). The field initially is in the vacuum state when there are intervals of the measurement-free evolution
|a=0). Only the energy levels of the decaying system arebetween successive measuremgiiigs. (30)«33)]. When
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the operatoV inducing the jumps from one state to anotherobtained by Kofman and KurizKiL1], is derived as a special
does not depend on time E¢(B9), which is of the form case.
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