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Abstract: We analyze the point processes generated by the autoregressive equation
for the interevent time. The correlated point process with the Poissonian-like dis-
tribution of the time between the neighboring events results in the 1/f fluctuations
and the power-law distribution of the signal. This is in contrast to the white shot
noise and Gaussian distribution of the true Poisson process. The model may be
used for the analysis of different long-range processes with the power-law statistics.
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1 Introduction

The power spectra of fluctuations of a large variety of systems ranging from astro-
physics and technology to sociology and psychology exhibit “1/f noise”, i.e., at low
frequencies f the power spectral density of fluctuations behaves as S(f) ∼ 1/fβ ,
where the exponent β is close to 1. Both time-dependent phenomena and spatial
series may show such characteristics against the frequency. Great efforts have been
made to explain and model the universal presence of 1/f noise (see, e.g., com-
prehensive bibliography of 1/f noise in the website [1], review articles [2, 3] and
references in the recent papers [4, 5]).

Usually 1/f noise theories are formulated for the intensity of the currents or
signals. In such cases one starts from the systems of sufficiently complicated, as a
rule nonlinear, differential equations with partial derivatives or from the system of
equations with a wide and specific distribution of times of the linear relaxations of
the signal components. In such a way the obtained signals are, as a rule, Gaussian.
However, not all signals exhibiting 1/f noise are Gaussian. Some of them are
non-Gaussian, exhibiting power-law or even fractal distributions.

In contrast to the Brownian motion generated by the linear stochastic equation,
the simple systems of differential, even linear stochastic equations generating sig-
nals with 1/f noise are not known. Therefore, usually the mathematical models
and algorithms for the generation of processes with 1/f noise also expose some
shortcomings: they are very specific, formal (like “fractional Brownian motion”)
or unphysical. They cannot usually be solved analytically, and they do not reveal
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either the origin or the necessary and sufficient conditions for the appearance of
1/f -type fluctuations. This makes the problem of the omnipresent 1/f noise one
of the oldest problems and puzzles in the contemporary physics.

Some random phenomena, however, occur at discrete times or locations with the
individual events largely identical and can be represented as the point processes.
A stochastic point process is a mathematical construction which represents these
events as random points in space or time. Point processes arise in different fields,
such as physics, economics, cosmology, ecology, neurology, the Internet, signaling
and telecoms networks and seismology, i.e., in a large variety of systems with the
flow of point objects (electrons, photons, cars, pulses, events, and so on) or sub-
sequent actions, like seismic events, neural action potentials, transactions in the
financial markets, human heart beats, biological ion-channel openings, burst errors
in many communication systems, the Internet network packets, etc.

The complete characterization of a stochastic process involves a description of
all possible joint probabilities of various events occurring in the process. Different
statistical characteristics provide complementary views of the process. One single
statistical characteristic cannot in general describe a stochastic process completely.
Fractal stochastic processes exhibit scaling in their statistics. Fractal stochastic
point processes exhibit scaling in all statistics, while the fractal-rate stochastic
point processes are endowed with rate functions that are either fractal themselves
or their increments are fractal [6].

1/f noise, or 1/f fluctuations are usually related with the power-law distribu-
tions of other statistics of the fluctuating signals, first of all with the power-law
decay of autocorrelations, with the power-law distribution of the signal intensities
and with the long-memory processes.

It is the purpose of this paper to present analytical and numerical results of
the modeling of flows represented as a correlated non-Poissonian, however with
the Poissonian-like distribution of the time between the neighboring events, point
process resulting in 1/f noise and power-law distribution of the signal intensity.
Such Poissonian-like processes may exhibit the power-law distribution of the signal
intensity and the truncated power-law distributions of the counting statistics, i.e.,
the phenomena observable in different systems, including the financial one (see,
e.g., paper [7] and references herein, as well as references in papers [5, 8]).

2 Point process

In many cases the intensity of the fluctuating signals or currents can be repre-
sented by a sequence of random (however, as a rule, mutually correlated) pulses or
elementary events Ak(t − tk),

I(t) =
∑

k

Ak(t − tk) (1)
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where the function Ak(φ) represents the shape of the k pulse making an influence
on the signal I(t) in the region of the pulse occurrence time tk.

Fluctuations of the shape and of the magnitude of the pulses Ak(t − tk) usu-
ally are uncorrelated or without the long-range correlations. Consequently, they do
not result in the low frequency noise and the power-law decay of the autocorrela-
tions. Therefore, here we will restrict our analysis to the fluctuations due to the
correlations between the occurrence times tk. In such approach we can replace the
function Ak(t − tk) by the Dirac delta function and then express the signal as

I(t) = ā
∑

k

δ(t − tk) (2)

with ā being an average contribution to the signal of one pulse. This model also
corresponds to the flow of identical objects: electrons, photons, cars, and so on,
and is called the point process model.

The point process is completely described by the set of event times {tk} or,
equivalently, by the set of interevent, interpulse intervals τk = tk+1−tk. Such point
processes might be called fractal if some relevant statistical characteristics display
scaling, characterized by a power-law behavior, with related scaling coefficients
indicating that the phenomena contain clusters of points over a relatively large set
of time scales.

The power spectrum of the point process signal is described completely by the
set of the correlated interevent intervals τk = tk+1−tk. Moreover, the low frequency
noise is defined by the statistical properties of the signal at a large-time-scale, i.e.,
by the fluctuations of the time difference

Δ(k; q) ≡ tk+q − tk =
k+q−1∑

i=k

τi (3)

at large q, determined by the slow dynamics of the mean (average) interpulse time
between the occurrence of pulses k and k + q with q � 1.

Quite generally the dependence of the mean interevent time τ̃k may be described
by the general Langevin equation. The Langevin equation may be written down in
the actual time t or, equivalently, in the space of the occurrence numbers k with
the drift coefficient h(τ̃k) and a multiplicative noise g(τ̃k)ξ(k),

dτ̃k

dk
= h(τ̃k) + g(τ̃k)ξ(k). (4)

Here we interpret k as a continuous variable while the white Gaussian noise ξ(k)
satisfies the standard condition

〈ξ(k)ξ(k′)〉 = δ(k − k′) (5)

with the brackets 〈. . .〉 denoting the averaging over the realizations of the process.
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We will use the Itô definition [9] of the stochastic equations.
Transition from the occurrence numbers k to the actual time t in Eq. (4) may

be fulfilled using the relation dt = τ̃kdk [10, 11].
The actual sequence of the interevent times τk may be superimposed by some

additional noise or stochasticity, e.g., τk may be determined by the ”Poisson” dis-
tribution

P (τk) =
1
τ̃k

e−τk/τ̃k (6)

with the slowly, according to Eq. (4), or similarly variable the mean interevent
time τ̃k. Such additional stochasticity does not influence the long-range statistical
properties and the low frequency spectra of the process. Therefore, further we will
restrict the analysis to the processes generated by Eq. (4) and will identify τk with
τ̃k.

3 Power spectral density

The power spectral density of the point process may be entirely defined by the
occurrence times tk and expressed as

S(f) = lim
T→∞

〈
2
T

∣∣∣∣∣∣
tf∫

ti

I(t)e−iωtdt

∣∣∣∣∣∣
2〉

= lim
T→∞

〈
2ā2

T

∑
k

kmax−k∑
q=kmin−k

eiωΔ(k;q)

〉
(7)

where ti and tf are initial and final observation times, T = tf − ti � ω−1 is the
whole observation time and ω = 2πf is the cyclic frequency. Here kmin and kmax

are minimal and maximal values of index k in the interval of observation T , the
quantity Δ(k; q) is defined by Eq. (3) and the brackets 〈. . .〉 denote the averaging
over the realizations of the process.

We have proposed [12, 13, 14] the autoregressive in time axis model for the
interevent times. The generalization of it is the multiplicative autoregressive model
[5, 8] described by the recurrent equation

τk+1 = τk + γτ2μ−1
k + στμ

k εk (8)

for the interevent time. Here γ represents the nonlinear relaxation of the signal
I � ā/τ , while τk fluctuates due to the perturbation by normally distributed un-
correlated random variables εk with a zero expectation and unit variance and σ
is a standard deviation of the white noise. Eq. (8) is the difference (discrete) ver-
sion of the differential equation (4) with the nonlinear drift h(τk) = γτ2μ−1

k and
the multiplicative noise στμ

k εk, resulting in 1/fβ noise and the power-law steady-
state [9] distribution, Pk (τk) ∼ τα

k , of the interevent time τk with the exponent
α = 2γ/σ2 − 2μ [5, 8].

Performing the numerical simulations according to Eq. (8) one should restrict
in some way the diffusion of the interevent time in some interval (τmin, τmax) [5, 8].
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The power spectrum for the process (8), when γ/(πτ2−δ
max)lf lγ/(πτ2−δ

min ), is [5, 8]

S(f) ∼ 1
fβ

(9)

where
β = 1 +

α

3 − 2μ
,

1
2

< β < 2. (10)

For μ = 1 we have a completely multiplicative point process when the stochastic
change of the interpulse time is proportional to itself. Another case of interest
concerns μ = 1/2, when we have the Brownian motion of the interevent time in the
actual time with the linear relaxation of the signal I � ā/τ and the additive noise,

dτ

dt
= γ

1
τ

+ σξ (t) , (11)

(see Refs [5, 8] for details).
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Figure 1: Distribution density of the interevent time τk generated according to
Eq. (13) with σ = 0.01 and of the added up together n = 10, 100 and 1000
independent such processes with the same intensity of the total signal, different
symbols. The solid line represents the analytical distribution (12).

4 Poissonian-like process

Here we will consider the model generating the Poissonian-like process, i.e., with
the exponential distribution of the interevent time τk,

Pk (τk) = e−τk (12)
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Figure 2: Power spectral density of the Poissonian-like process (2) with ā = 1
generated by Eq. (13), the upper curve represented by the open circles, and of the
added up together 10, 100 and 1000 independent such processes with the same
intensity of the total signal, the curves represented by different symbols with the
decreasing intensity of the noise, respectively.

with the mean interevent time τ̃k = 1. Such steady-state distribution may be
generated by the particular autoregressive equation (8), i.e.,

τk+1 = τk − σ2/2 + σεk (13)

with the reflective boundary condition at τk = 0.
The distribution density of the interevent time τk generated by this equation

is exponential, as of the true Poisson process (see Fig. 1). However, in contrast
to the white shot noise of the real Poisson process, the power spectrum of this
autoregressive process is 1/f (see Fig. 2). In figure 2 the power spectral densities of
the added up together n = 10, 100 and 1000 independent such processes with the
same total average intensity of the flow, Ī, i.e., with the resulting average interevent
time τ̄k = 1, generated by Eq. (13) are shown, as well. We see the decrease of the
intensity of 1/f noise,

S(f) ∼ Ī2 1
nf

, (14)

with increasing of the number of the independent noise sources n, in accordance
with the empirical Hooge [15] formula and with the theoretical results of Ref. [14].
The increase of the number n of independent processes moves the resulting process
closer the entirely random, uncorrelated, i.e., true Poisson process.

The distribution density of the signal, defined as I = 1/τk, is shown in Fig. 3 for
the process generated by Eq. (13) and for the the added up together n = 10, 100
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Figure 3: Distribution densities of the signals of the processes (2) with ā = 1
described in captures to Fig. 1 and Fig. 2. The solid curve corresponds to Eq. (15).

and 1000 independent processes generated by Eq. (13), as well. We see that the
distribution density of all processes is the same and may be described be equation

P (I) = exp
{
−1

I

}
1
I3

, (15)

following from Eq. (13) after transformation of the variable (see paper [5] for de-
tails). This is essentially the power-law, P (I) ∼ 1/I3, distribution for large I � Ī.

The distribution density of the counts, i.e., of the number N of events [6] in
some time interval Δt for the pure Poisson process is

Pp(N) =
N̄N

N !
e−N̄ (16)

with N̄ = Δt/τ̄k being the average number of events in the time interval Δt. For
N̄ � 1 this distribution approaches the Gaussian distribution with the variance
equal to the average, σ2

N = N̄ .
For the autoregressive process (13) the distribution density P (N) of the count-

ing is essentially different from the Poissonian one Pp(N) (see Fig. 4 where both
distribution densities for N̄ = 10 are shown).

In figure 5 the cumulative distributions

P>(N) =
∞∑

i=N

P (i) (17)

of the counting of the point process generated by the autoregressive model (13) for
the different average number of events N̄ = 1, 10, 100, 1000 and 10000 are shown
together with those of the pure Poisson process.
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Figure 4: Distribution densities of the counting of events for the pure Poisson
process, open circles, and for the process generated by Eq. (13) with N̄ = 10, open
squares. The solid curve corresponds to the Gaussian distribution with N̄ = σ2

N =
10.

We see the power-law “fat tails” of the counting events of the autoregressive
process with the Poissonian-like distribution (12) of times between the neighboring
events.

For the pure Poisson process the cumulative distributions decrease very fast for
N > N̄ , as the error function,

Pp(N > N̄) � 1
2
erfc(x), x =

N − N̄√
2N̄

, (18)

for N̄ � 1.
We see the huge difference between the probabilities to observe the large de-

viation of the counting number N from the average N̄ of the autoregressive point
process comparing to the true Poisson process.

5 Possible generalizations

The possible generalization of the proposed model may be the analysis of the more
general equations (4) and (8). We can consider, as well, the more realistic model
with the autoregressive change of the mean interevent time τ̃k superimposed by
the Poisson distribution (6) of the actual interevent time τk. The distribution
of the actual interevent time in such a case would be the average of the Poisson
distribution (6) over the distribution of the mean interevent time τ̃ in the time axis,
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Figure 5: Cumulative distribution of the counting of events for the pure Poisson
process, full symbols of the numerical simulations and solid lines of the analytical
expressions (16)–(18); and for the autoregressive process (13), open symbols. Re-
sults are presented for N̄ = 1, 10, 100, 1000 and 10000, the increasing probabilities,
respectively.

Pt (τ̃), i.e.,

Pt (τk) =
∫

Pt (τ̃) e−τk/τ̃ τ̃−1dτ̃ . (19)

This additional stochasticity of the interevent time by the randomization of the
concrete occurrence times does not influence the low frequency power spectra of
the signal.

On the other hand, the stochastic nonlinear differential equations may be de-
rived [10, 11] for the intensity of the signal, I � ā/τ , starting from the point process
models (4) and (8). These equations generate the long-range dependent processes
with power-law distributions and 1/fβ fluctuations.

6 Conclusions

We have analysed the stochastic point process with the power-law distribution of
the intensity of the signal and 1/f noise of the power spectral density generated
by the autoregressive equation. The analysis shows that even the Poissonian-like
process with the exponential distribution of the interevent time may exhibit scaling
and even fractal dependences.

The power-law distributions are observable in different systems from physics,
astronomy and seismology to the Internet, financial markets, neural spikes, and hu-
man cognition. The analysed model relates the power-law spectral density with the
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power-law distribution of the signal intensity and may be used for the explanation
of different long-range processes (see, e.g., papers [5, 8, 16] and references herein).
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