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Modeling 1/f noise
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The noise of signals or currents consisting of a sequence of pulses, elementary events, or moving discrete
objects~particles!, is analyzed. A simple analytically solvable model is investigated in detail both analytically
and numerically. It is shown that 1/f noise may result from the statistics of the pulses’ transit times, with
random increments of the time intervals between the pulses. The model also serves as a basis for revealing
parameter dependences of 1/f noise, and allows one to make some generalizations. As a result the intensity of
1/f noise is expressed through the distribution and characteristic functions of the time intervals between the
subsequent transit times of the pulses. The conclusion that 1/f noise may result from the clustering of the signal
pulses, elementary events, or particles can be drawn from an analysis of the model systems.
@S1063-651X~98!00812-5#

PACS number~s!: 05.40.1j, 02.50.2r, 72.70.1m
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I. INTRODUCTION

The omnipresence of 1/f noise is one of the oldest puzzle
in contemporary physics. During more than 70 years since
first observation by Johnson, long-memory processes w
long-term correlations have been observed in many type
systems from physics, technology, biology, astrophys
geophysics, and sociology~see Refs.@1–4# and references
herein!. Recently 1/f noise was discovered in human cogn
tion @5#, human coordination@6#, and even in the distribution
of prime numbers@7#.

Despite the widespread occurrence of fluctuations of
nals and variables exhibiting 1/f d (d.1) behavior of the
power spectral densityS( f ) at low frequencies in a large
diversity of systems, no generally recognized explanation
the ubiquity of 1/f noise has been proposed. Physical mod
of 1/f noise in some physical systems are usually very s
cialized, or complicated~see Refs.@1–4# and references
herein!, and they do not explain the omnipresence of
processes with a 1/f d spectrum @8–10#. Note also some
mathematical analyses@11#, models, and algorithms for th
generation of processes with 1/f noise@12–14#. These mod-
els also expose some shortcomings: they are very spe
formal ~like ‘‘fractional Brownian motion’’ or the half-
integral of a white noise signal!, or unphysical. They cannot
as a rule, be solved analytically, and they do not reveal
origin nor the necessary and sufficient conditions for the
pearance of 1/f -type fluctuations.

In such a situation the simple analytically solvable mo
system generating 1/f noise may essentially influence th
revelation of the origin and essence of the effect. Here
present a model which generates 1/f noise in any desirably
wide range of frequency. Our model is a result of the sea
for necessary and sufficient conditions for the appearanc
1/f fluctuations in simple systems affected by the rand
external perturbations, which was initiated in Ref.@15# and
originated from the observation of the transition from chao
to nonchaotic behavior in the ensemble of randomly driv
systems@16#. Contrary to the McWhorter model@17#, based
PRE 581063-651X/98/58~6!/7013~7!/$15.00
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on the superposition of a large number of Lorentzian spe
and requiring a very wide distribution of relaxation time
our model contains only one relaxation rateg, and can have
an exact 1/f spectrum in any desirably wide range of fr
quency. The model may be used as a basis for chec
assumptions made in the derivation of 1/f noise spectra for
different systems. Furthermore, it allows us to make a h
ristic presumption of the generalizations of the theory off
noise. Numerical simulations and comparisons with anal
cal results confirm this supposition.

II. MODEL

In many cases, the intensity of some signal or current
be represented by a sequence of random~however, as a rule
mutually correlated! pulses or elementary eventsAk(t2tk).
Here the functionAk(w) represents the shape of thek pulse
having an influence on the signalI (t) in the region of transit
time tk . The signal or intensity of the current of particles
some space cross section may, therefore, be expressed

I ~ t !5(
k

Ak~ t2tk!. ~1!

It is easy to show that the shapes of the pulses mainly in
ence the high frequency,f >Dtp with Dtp being the charac-
teristic pulse length, power spectral density, while fluctu
tions of the pulse amplitudes result, as a rule, in white
Lorentzian, but not 1/f , noise@18#. Therefore, we restrict ou
analysis to noise due to correlations between the transit ti
tk . In such an approach we can replace the functionAk(t
2tk) by the Dirac delta functiond(t2tk), and the signal is
expressed as

I ~ t !5(
k

d~ t2tk!. ~2!

This model also corresponds to the flow of identical objec
electrons, photons, cars, and so on. On the other hand,
7013 © 1998 The American Physical Society
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7014 PRE 58B. KAULAKYS AND T. MEŠKAUSKAS
tuations of the amplitudesAk may result in additional noise
but cannot reduce the 1/f noise we are looking for.

The power spectral density of current~2! is

S~ f !5 lim
T→`

K 2

TU (
k5kmin

kmax

e2 i2p f tkU2L
5 lim

T→`
K 2

T(
k

(
q5kmin2k

kmax2k

ei2p f ~ tk1q2tk!L , ~3!

whereT is the whole observation time interval,kmin andkmax
are minimal and maximal values of indexk in the interval of
observation, and the brackets^•••& denote the averaging
over realizations of the process.

In this approach the power spectral density of the sig
depends on the statistics and correlations of the transit ti
tk only. It is well known that a sequence of random, Poiss
transit times generates white~shot! noise@18#. The sequence
of transit times tk with random incrementstk5tk211 t̄

1s«k ~wheret̄ is the average time interval between puls
$«k% denotes the sequence of uncorrelated normally dist
uted random variables with zero expectation and unit v
ance, i.e., the white noise source, ands is the standard de
viation of white noise! results in a Lorentzian spectra@15#.
Here we will consider sequences of transit times with r
dom increments of the time intervals between pulses,tk
5tk211s«k , wheretk5tk2tk21 . It is natural to restrict in
some way the infinite Brownian increase or decrease of
intervals tk , e.g., by the introduction of relaxation to th
average periodt̄ rateg. So we have recurrent equations f
the transit times:

tk5tk211tk ,

tk5tk212g~tk212 t̄ !1s«k . ~4!

The simplest physical interpretation of model~4! corre-
sponds to one particle moving in a closed contour with
l
es
n

,
-

i-

-

e

e

period of the drift of the particle around the contour fluct
ating ~due to the external random perturbations! about the
average valuet̄ @19#.

III. SOLUTIONS

An advantage of model~4! is that it may be solved ana
lytically. So, an iterative solution of Eqs.~4! results in an
expression for the period,

tk5 t̄1~t02 t̄ !~12g!k1s(
j 51

k

~12g!k2 j« j , ~5!

wheret0 is the initial period. The dispersion of the periodtk
is

st
2~k![^tk

2&2^tk&
25

s2@12~12g!2k#

2g~12g/2!

.H s2k, 2kg!1

s2/2g, 2kg@1.
~6!

Therefore, after a characteristic transition to the station
process time,t tr5 t̄/g, the dispersion of the period ap
proaches the limiting valuest

25s2/2g.
After some algebra we can also obtain an explicit expr

sion for the transit timestk (k>1),

tk5t01kt̄1
12g

g
@12~12g!k#~t02 t̄ !

1
s

g(
l 51

k

@12~12g!k112 l #« l , ~7!

wheret0 is the initial time. The dispersion of the transit tim
tk is
s t
2~k![^tk

2&2^tk&
25

s2

g2H k22
12g

g
@12~12g!k#1~12g!2

12~12g!2k

12~12g!2 J 5H s2~k/61k2/21k3/31••• !, 2gk!1

~s/g!2~k23/~2g!15/46••• !, 2gk@1.
~8!

At k@g21, Eq. ~7! generates a stationary time series. The difference of the transit timestk1q and tk in Eq. ~3!, for t05 t̄ or
2gk@1, is

tk1q2tk5 t̄q1
s

g H @12~12g!q#(
l 51

k

~12g!k112 l« l1 (
l 5k11

k1q

@12~12g!k1q112 l #« lJ , q>0. ~9!

The dispersion of this times difference equals

^~ tk1q2tk!
2&2 t̄2q25

s2

2
g~q!, ~10!

where
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g~q!5
2

g2H @12~12g!q#2(
l 51

k

~12g!2l1(
l 51

q

@12~12g! l #2J , q>0. ~11!

Summation in Eq.~11! results in

g~q!5
2

g2H q2
~12g!@12~12g!q#

12~12g!2
$21@12~12g!q#~12g!2k11%J . ~12!

At gq!1,

g~q!5H ~2k11!q21q/312q3/3, 2gk!1

S 1

g
1

1

2Dq21
1

3
q2

1

3
q3, 2gk@1,

~12a!

while for 2gk@1 we have

g~q!5
2

g2Fq22
~12g!@12~12g!q#

12~12g!2 G ~13!

.5 S 1

g
1

1

2Dq21
1

3
q2

1

3
q3, gq!1

2

g2S q1
1

2D2
2

g3
1•••, q@g21@1.

~13a!

Note that forq,0 we should replaceq in Eqs. ~9!–~13! by uqu and k by k2uqu. Therefore, the functiong(q) at k2uqu
@g21 is even, i.e.,g(2q)5g(q).

Substituting Eq.~9! into Eq.~3!, and replacing the summations in the exponents by the multiplications of the exponen
have the following expression for the power spectral density of the current

S~ f !5 lim
T→`

K 2

T (
k

(
q5kmin2k

kmax2k

ei2p f t̄q)
l 51

k

expH i
2p f s

g
@12~12g!q#~12g!k112 l« l J

3 )
l 5k11

k1q

expH i
2p f s

g
@12~12g!k1q112 l #« l J L . ~38!

The average over realizations of the process coincides with the average over the distribution of the random varia« l .
Using the fact that random variables« l are independent and mutually uncorrelated, we can fulfill the averaging over e
random variable« l independently. Therefore, Eq.~38! may be rewritten in the form

S~ f !5 lim
T→`

2

T (
k,q

ei2p f t̄q)
l 51

k K expH i
2p f s

g
@12~12g!q#~12g!k112 l« l J L )

l 5k11

k1q K expH i
2p f s

g
@12~12g!k1q112 l #« l J L .

~39!

The result of the averaging of the exponent exp$ic«l% ~with c being a constant! over the normally distributed random
variable« l with zero expectation and unit variance is

^eic« l&5E
2`

1`

eic« l
1

A2p
e2« l

2/2d« l5e2c2/2.

Therefore, after the averaging over the normal distribution of the random variables« l , Eq. ~39! takes the form

S~ f !5 lim
T→`

2

T (
k,q

ei2p f t̄q)
l 51

k

expH 2
2p2f 2s2

g2
@12~12g!q#2~12g!2~k112 l !J )

l 5k11

k1q

expH 2
2p2f 2s2

g2
@12~12g!k1q112 l #2J .

~3-!
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The transition in Eq.~3--! from the multiplications of
the exponents to the summations in the exponents and tr
formations, in analogy with Eq.~11! of the two sums’ sum-
mation indexesl→k112 l and l→k1q112 l , respec-
tively, yields, according to Eq.~11!, the final expression for
the power spectral density:

S~ f !5 lim
T→`

2

T (
k,q

ei2p f t̄q2p2f 2s2g~q!. ~14!

Since the expansion of the functiong(q) in powers of
guqu!1 at 2gk@1, according to Eqs.~12! and ~13!, is

g~q!5
1

g
q22

1

3
uqu31

1

2
q26••• ~15!

for f ! f t5(2pt̄)21 and f , f 252Ag/ps, we can replace
the summation in Eq.~14! by the integration

S~ f !52 Ī E
2`

1`

ei2p f t̄q2p2f 2s2g~q!dq ~16!

where Ī 5 lim
T→`

(kmax2kmin11)/T5(t̄)21 is the averaged

current.
Furthermore, atf @ f 15g3/2/ps, it is sufficient to take

into account only the first term of expansion~15!,
g(q)5q2/g. Integration in Eq.~16! hence yields the 1/f
spectrum

S~ f !52 Ī E
2`

1`

expF i2p f t̄q2
~p f s!2

g
q2Gdq5 Ī 2

aH

f
,

f 1, f , f 2 , f t ~17!

whereaH is a dimensionless constant~the Hooge parameter!

aH5
2

Ap
Ke2K2

, K5
t̄

A2st

5
t̄Ag

s
. ~18!

Using an expansion of the functiong(q) at gq@1 ac-
cording to expression~13!, g(q)52q/g2, from Eq. ~16! we
obtain the Lorentzian power spectrum density forf , f 1 :

S~ f !52 Ī
s2

t̄2g2

1

11~p f s2/ t̄g2!2
5 Ī 2

4t rel

11t rel
2 v2

. ~19!

Here v52p f , and t rel5Dt5s2/2t̄g2 is the ‘‘diffusion’’
coefficient of the timetk according to Eqs.~7! and ~8!. The
model is, therefore, free from the unphysical divergence
the spectrum atf→0; for f ! f 05 t̄g2/ps251/2pt rel , we
have, from Eq.~19!, the white noise

S~ f !5 Ī 2~2s2/ t̄g2!. ~20!

Therefore, the model containing only one relaxation r
g for a sufficiently small parameterg can produce an exac
1/f-like spectrum in any desirably wide range of frequen
f 1, f , f 2 , f t . Furthermore, due to the contribution to th
transit timestk of the large number of the very separated
ns-

f

e

,

time random variables,« l ( l 51,2, . . . ,k), our model repre-
sents a ‘‘long-memory’’ random process.

IV. GENERALIZATIONS AND NUMERICAL ANALYSIS

Equations~16!–~20! describe quite well the power spec
trum of the random process~4!. As an illustrative example
in Fig. 1 the numerically calculated power spectral dens
averaged over five realizations of process~4! is compared
with the analytical calculations according to Eqs.~16!–~20!.
The analytical results are in good agreement with the
merical simulations. Note that analytical results predict n
only the slope and intensity of 1/f noise, but the frequency
rangef 1–f 2 , f t of 1/f noise and the intensity of the very low
frequencyf ! f 0 white noise@Eq. ~20!# as well.

This model may also be generalized for non-Gaussian
for continuous perturbations of the systems’ parameters,
sulting in the fluctuations of the periodt. So, for perturba-
tions by the non-Gaussian sequence of random impacts$«k%
with zero expectations Eqs.~1!–~13! remain valid. Only re-
sult ~14! of the averaging over realizations of the process
the case of the non-Gaussian perturbations may have a

FIG. 1. Power spectral density vs frequency of the current g
erated by Eqs.~2!–~4! with the Gaussian distribution of the rando

increments$«k% for different parameterst̄, s, andg. The sinuous
fine curves represent the results of numerical simulations avera
over five realizations, the heavy lines correspond to the numer
integration of Eq.~16! with g(q) from Eq. ~13!, and the thin
straight lines represent the analytical spectra according to Eqs.~17!
and ~18!.
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PRE 58 7017MODELING 1/f NOISE
ferent form. We now consider such a situation in more det
The power spectral density~3! may be rewritten in the

form

S~ f !52 Ī K (
q

ei2p f tk~q!qL , ~21!

where the difference between the transit timestk1q andtk is
expressed as

tk1q2tk5 (
l 5k11

k1q

tk5tk~q!q, q>0, ~22!

and the brackets denote the averaging over the time~indexk)
and over the realizations of the process. Heretk(q)[(tk1q
2tk)/q is the averaged time interval between the subsequ
transit times in the time intervaltk–tk1q . Note that for the
slow ~diffusivelike! fluctuations of the averaged interv
tk(q) with the change of the indexk, Eq. ~22! is valid also
when q,0, i.e., tk1q2tk5tk1q(q)q.tk(q)q, q,0. At
2p f tk(q)!1 we may replace the summation in Eq.~21! by
the integration, and do not take into account the depende
of tk(q) on q. In such a case Eq.~21! yields

FIG. 2. Same as in Fig. 1 but for the uniform distribution of t
random increments$«k%. Note that for the non-Gaussian distribu
tions of the random perturbations we have no explicit express
analogous to Eq.~16! for the integral representation of the nois
power spectral density.
l.

nt

ce

S~ f !52 Ī K E
2`

1`

ei2p f tkqdqL 52 Ī E
2`

1`

^ei2p f tkq&dq.

~23!

Here the averaging overk and over the realizations of th
process coincides with the averaging over the distribution
the periodstk , i.e.,

^ei2p f qtk&5E
2`

1`

ei2p f qtc~t!dt5xt~2p f q!, ~24!

where c(t) is the distribution density of periodstk , and
xt(q) is the characteristic function of the distributionc(t).
Taking into account the property of the characteristic fun
tion,

E
2`

1`

xt~q!dq52pc~0!,

we have, from Eqs.~23! and~24!, the final expression for the
power spectral density:

S~ f !52 Ī c~0!/ f . ~25!

Substituting into Eq. ~25! the value c(0)
5exp(2t̄2/2st

2)/A2pst for the Gaussian distribution of th
periodstk , we recover results~17! and ~18!.

n

FIG. 3. Same as in Figs. 1 and 2, but for the asymmetricx3
2

distribution of the random increments$«k%.
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Since different processes result in the Gaussian distr
tion, it is likely that perturbation by the non-Gausssian i
pacts$«k% in Eq. ~4! nevertheless yields the Gaussian dis
bution of the periodstk . For a demonstration of such
statement, and of the validity of approach~21!–~25!, we
have performed a numerical analysis of the model~1!–~4!
for different distributions of the perturbations$«k%. Figures 2
and 3 represent the calculated power spectral densities
the rectangular~uniform! and asymmetricx3

2 distributions of
the sequence$«k%, with zero expectations and the same va
ances and other parameters as those in Fig. 1. We note
the slight dependence of the spectra on the distribution fu
tion of the perturbing impacts$«k%, with the same expecta
tions and variances. These results also confirm the presu
tions made in the derivation~21!–~24! of the 1/f noise
intensity @Eq. ~25!#.

V. CONCLUDING REMARKS

An analysis of the exactly solvable model of 1/f noise
displays the main features of the noise, and serves as a
for revealing the origin and parameter dependences of
flicker noise. This allows us to make generalizations of
model, resulting in an expression for the 1/f noise intensity
e,

re

tt

d

g

i

u-
-
-

for

-
nly
c-

p-

sis
e

e

through the integral of the characteristic function of the d
tribution of the time intervals between the subsequent tr
sition times of the elementary events, pulses, or particles

It should be noted, however, that Eq.~25! represents an
idealized 1/f noise. Real systems have finite relaxation tim
and, therefore, an expression of the noise intensity in
form of Eq. ~23! is valid only for f .(2pt rel)

21, with t rel
being the relaxation time of the period’stk fluctuations. On
the other hand, due to deviations from the approximat
tk1q2tk5tkq at largeq, for sufficiently low frequency we
can obtain a finite intensity of 1/f d (d.1) noise even in the
casec(0)50, for signals with fluctuations resulting in dens
concentrations of the transit timestk . Generalizations of ap-
proach~21!–~25!, and an analysis of the deviations from th
idealized 1/f noise expression~25!, are subjects of separat
investigations.
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