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Modeling 1/ noise
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The noise of signals or currents consisting of a sequence of pulses, elementary events, or moving discrete
objects(particles, is analyzed. A simple analytically solvable model is investigated in detail both analytically
and numerically. It is shown that fLhoise may result from the statistics of the pulses’ transit times, with
random increments of the time intervals between the pulses. The model also serves as a basis for revealing
parameter dependences of hbise, and allows one to make some generalizations. As a result the intensity of
1/f noise is expressed through the distribution and characteristic functions of the time intervals between the
subsequent transit times of the pulses. The conclusion thaibige may result from the clustering of the signal
pulses, elementary events, or particles can be drawn from an analysis of the model systems.
[S1063-651%98)00812-5

PACS numbegps): 05.40:+j, 02.50~r, 72.70+m

[. INTRODUCTION on the superposition of a large number of Lorentzian spectra
and requiring a very wide distribution of relaxation times,
The omnipresence of fLhoise is one of the oldest puzzles our model contains only one relaxation rateand can have
in contemporary physics. During more than 70 years since itan exact 1ff spectrum in any desirably wide range of fre-
first observation by Johnson, long-memory processes witlquency. The model may be used as a basis for checking
long-term correlations have been observed in many types aissumptions made in the derivation of fibise spectra for
systems from physics, technology, biology, astrophysicsdifferent systems. Furthermore, it allows us to make a heu-
geophysics, and sociologigee Refs[1-4] and references ristic presumption of the generalizations of the theory éf 1/
herein. Recently 1f noise was discovered in human cogni- noise. Numerical simulations and comparisons with analyti-
tion [5], human coordinatiopg], and even in the distribution cal results confirm this supposition.
of prime numberg7].

Despite the widespread occurrence of fluctuations of sig- Il. MODEL
nals and variables exhibiting ff/ (6=1) behavior of the _ _ _

diversity of systems, no generally recognized explanation oP€ represented by a sequence of randbawever, as a rule,

the ubiquity of 1f noise has been proposed. Physical modeldnutually correlatefipulses or elementary evemg(t—ty).

of 1/f noise in some physical systems are usually very spetiere the functiomA,(¢) represents the shape of thepulse

cialized, or complicatedsee Refs[1-4] and references having an influence on the signidt) in the region of transit

herein, and they do not explain the omnipresence of thetime t,. The signal or intensity of the current of particles in

processes with a 1 spectrum[8—10. Note also some SOME space Cross section may, therefore, be expressed as

mathematical analysd4.1], models, and algorithms for the

generation of processes withf Iifoise[12—14. These mod- ()=, Adt—ty). (1)

els also expose some shortcomings: they are very specific, K

formal (like “fractional Brownian motion” or the half-

integral of a white noise signalor unphysical. They cannot, It is easy to show that the shapes of the pulses mainly influ-

as a rule, be solved analytically, and they do not reveal thence the high frequency=At, with At, being the charac-

origin nor the necessary and sufficient conditions for the apteristic pulse length, power spectral density, while fluctua-

pearance of Titype fluctuations. tions of the pulse amplitudes result, as a rule, in white or
In such a situation the simple analytically solvable modelLorentzian, but not ¥/ noise[18]. Therefore, we restrict our

system generating fl/noise may essentially influence the analysis to noise due to correlations between the transit times

revelation of the origin and essence of the effect. Here wéx. In such an approach we can replace the funch(t

present a model which generate$ hbise in any desirably —t,) by the Dirac delta functiod(t—t,), and the signal is

wide range of frequency. Our model is a result of the searclgxpressed as

for necessary and sufficient conditions for the appearance of

1/f fluctuations in simple systems affected by the random I(t)=2 S(t—t,) )

external perturbations, which was initiated in Rlf5] and K K

originated from the observation of the transition from chaotic

to nonchaotic behavior in the ensemble of randomly drivenThis model also corresponds to the flow of identical objects:

systemg 16]. Contrary to the McWhorter modgl7], based electrons, photons, cars, and so on. On the other hand, fluc-
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tuations of the amplitude&, may result in additional noise period of the drift of the particle around the contour fluctu-

but cannot reduce the fLhoise we are looking for. ating (due to the external random perturbatipedout the
The power spectral density of curre® is average valuer [19].
2 kmax . 2
S(H=lm{ = > e 2k lll. SOLUTIONS
T—o T k=Kmin

) An advantage of moddH) is that it may be solved ana-
matt Iytically. So, an iterative solution of Eq$4) results in an
eIZWf(tk+q tk)

—2 o 2 » (3 expression for the period,

= lim

T—w

. . . . k
whereT is the whole observation time intervid,,,, andk .«

are minimal and maximal values of indéin the interval of n=T+(mo—7)(1- 7)k+0j21 1=y ey, (9
observation, and the bracke{s--) denote the averaging
over realizations of the process.

In this approach the power spectral density of the signarv
depends on the statistics and correlations of the transit times
t, only. It is well known that a sequence of random, Poisson

herer, is the initial period. The dispersion of the perieg

transit times i [ o’[1-(1- %]
generates whitsho) noise[18]. The sequence o2(K)=(2) — (r )%=

of transit timest, with random incrementg,=t,_,+7 ! 2y(1=~12)

+ 0z (Wherer is the average time interval between pulses, o’k, 2ky<1

{e\} denotes the sequence of uncorrelated normally distrib- [02/2% 2ky> 1, (6)

uted random variables with zero expectation and unit vari-

ance, i.e., the white noise source, ands the standard de- L . )

viation of white noisg results in a Lorentzian spectfa5. Therefore, after a characteristic transition to the stationary

Here we will consider sequences of transit times with ranprocess time,t,=r/y, the d|sper3|on of the period ap-

dom increments of the time intervals between pulsgs, proaches the limiting value _0'2/2'y

=71+t 0ogy, Wherer,=t,—t,_;. Itis natural to restrict in After some algebra we can also obtain an explicit expres-

some way the infinite Brownian increase or decrease of theion for the transit timeg, (k=1),

intervals 7, e.g., by the introduction of relaxation to the

average period ratey. So we have recurrent equations for — 11—y ‘ —

the transit times: t=tot+kr+ > [1-(1=») 7o)

=t t+ 7, P

o2 (1= e, )
=1

=Ty 1— Y(Tk_1— 7) T o8y (4)

The simplest physical interpretation of modd) corre-  wheret is the initial time. The dispersion of the transit time
sponds to one particle moving in a closed contour with the, is

1— (1= 72| [(aly)A(k=3I2y)+5/4= ), 2yks1,
®)

o? 1— ,1-(1—y)% 2(kI6+ K32+ K313+ --+), 2yk<1
aP(K)=(tf) — (t)?= Ik 2—[1 (1= +(1-y)? 1=y ] [0 7

At k>y~1, Eq.(7) generates a stationary time series. The difference of the transit timgandt, in Eq. (3), for ro=7or
2vyk>1,is

k k+q
terq— =0+ [[1 (1- yq]E (1—y)kri- 's+ E [1—(1—y)kratis ']s] q=0. (9)

The dispersion of this times difference equals

2
((taq—t) D — 72q2=%g(q), (10)

where
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2 K a
9(q)= ﬂ [1-(1- y)‘*]ﬂ; <1—y>2'+|§1 [1-(1- w']z], q=0. (11)

Summation in Eq(11) results in

2 1— 1—(1—y)d
g<q>=—f SR - 1 - 7)2“1}]. (12

1—(1—y)?
At yg<1,
(2k+1)g%+q/3+2g°%/3, 2yk<1

gl@=¢(1 1), 1 1, (12a
while for 2yk>1 we have
2 (1-p[1-(1-99]
g(q)=—{q— (13
¥ 1-(1-7y)?
1+ ] P P 3 <1
5 Q°+t30-3 q v 74
(133
2 1 2
Slats]— =+, q>y >1.
y 2]y

Note that forq<0 we should replace in Egs. (9)—(13) by |gq| andk by k—|q|. Therefore, the functiom(q) at k—|q|

>y 1is even, ie.g(—q)=g(q).
Substituting Eq(9) into Eqg.(3), and replacing the summations in the exponents by the multiplications of the exponents, we
have the following expression for the power spectral density of the current

2 e _ K 2afo
S(f)=lim <? 2 E eizqrfrqll_[ eXp[iT[l—(l—y)q](l—'y)k+1_|s|
=1

T—o k  g=Kmin—k
k+q
2mnfo
X expl i ——[1—(1—y)kta+ti-! ] . '
11 S 1-(1-) le, 3)

The average over realizations of the process coincides with the average over the distribution of the random sariables
Using the fact that random variables are independent and mutually uncorrelated, we can fulfill the averaging over every
random variables, independently. Therefore, E(B’) may be rewritten in the form

S(f)= lim

T—w

k+q
) |27TquH <eXp{IT[1 (1 'y)q](l ,y)k+1l }> H <exp{i?[1—(1—7/)“‘”1—']8']>_
d

I=k+1
3"

The result of the averaging of the exponent {&xg} (with ¢ being a constahtover the normally distributed random
variablee, with zero expectation and unit variance is

=N

. +o . 1 2 2
<eIC£|>: gicel > e—s|/2d8|:e—c /2_
—w 24

Therefore, after the averaging over the normal distribution of the random varighlés. (3") takes the form

2 2.72§2 52 k+q 2772f2 2
1= 2 3 ] eXp{ -y '] 1 ex [1-(1-prariIp2
T—w! kg =1 ¥? I=k+1 Y

(3///)
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The transition in Eq(3”m) from the multiplications of

the exponents to the summations in the exponents and tran:

formations, in analogy with Eq11) of the two sums’ sum-
mation indexesl—k+1—1 and |—k+q+1—1, respec-
tively, yields, according to Eq11), the final expression for
the power spectral density:

S(f): lim E 2 eiZWf?q—’ﬂszO'zg(q).
q

T ¢ (14

T—oo
Since the expansion of the functig(q) in powers of
v|lq|<1 at 2yk>1, according to Eqs(12) and(13), is

1, 1 .1
g(a)= 0"~ glaP’+ 0% (15

for f<f7=(277?)‘1 and f<f,=2\y/7o, we can replace
the summation in Eq14) by the integration

S(f) — ZI_J +mei27rf?q—772f2<rzg(q)dq

[’

(16)

where I=lim___(Kmax—knin+1)T=(9)"" is the averaged

current.

Furthermore, atf>f,=vy% 7o, it is sufficient to take
into account only the first term of expansiofl5),
g(9)=q?%vy. Integration in Eqg.(16) hence yields the 1/
spectrum

H

[+ ) —  (wfo)? —a
S(f)=2|f expi2mfrq— " qquzlzT,

fi<f<f,, f, 7

whereay is a dimensionless constaitihe Hooge parameter

:iKeszy

Jr

Using an expansion of the functiog(q) at yg>1 ac-
cording to expressiofil3), g(q)=2q/y?, from Eq.(16) we
obtain the Lorentzian power spectrum density fferf :

(18

ay

a? 1 — A1y

f)=21= S .
st y? 1+ (wfa?l 7y?)? 2 w2

(19

Here w=2=f, and 7,q=D,=c%27y? is the “diffusion”
coefficient of the time, according to Eqs(7) and(8). The
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FIG. 1. Power spectral density vs frequency of the current gen-
erated by Eqs(2)—(4) with the Gaussian distribution of the random
increments e, } for different parameters, o, andy. The sinuous
fine curves represent the results of numerical simulations averaged
over five realizations, the heavy lines correspond to the numerical
integration of Eq.(16) with g(gq) from Eq. (13), and the thin
straight lines represent the analytical spectra according to(E@s.
and(18).

time random variables;, (I=1,2, ... k), our model repre-
sents a “long-memory” random process.

IV. GENERALIZATIONS AND NUMERICAL ANALYSIS

Equations(16)—(20) describe quite well the power spec-
trum of the random procesd). As an illustrative example,
in Fig. 1 the numerically calculated power spectral density
averaged over five realizations of procdds is compared
with the analytical calculations according to E¢s6)—(20).
The analytical results are in good agreement with the nu-

model is, therefore, free from the unphysical divergence ofnerical simulations. Note that analytical results predict not

the spectrum af—0; for f<fy=ry%/mo2=1/2mw7,, We
have, from Eq(19), the white noise

S(f)=12(20% 79?). (20)

only the slope and intensity of fLhoise, but the frequency
rangef,—f,,f_of 1/f noise and the intensity of the very low
frequencyf <f, white noise[Eq. (20)] as well.

This model may also be generalized for non-Gaussian and
for continuous perturbations of the systems’ parameters, re-

Therefore, the model containing only one relaxation ratesulting in the fluctuations of the periogl So, for perturba-
v for a sufficiently small parametey can produce an exact tions by the non-Gaussian sequence of random imdagis
1/4-like spectrum in any desirably wide range of frequency,with zero expectations Eqél)—(13) remain valid. Only re-

fo<f<f,,f..

Furthermore, due to the contribution to the sult (14) of the averaging over realizations of the process in

transit timest, of the large number of the very separated inthe case of the non-Gaussian perturbations may have a dif-
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FIG. 2. Same as in Fig. 1 but for the uniform distribution of the ~ FIG. 3. Same as in Figs. 1 and 2, but for the asymmegéic
random increment$e,}. Note that for the non-Gaussian distribu- distribution of the random incremengs,}.
tions of the random perturbations we have no explicit expression

analogous to Eq(16) for the integral representation of the noise +oo
power spectral density. S(f)=2T< f el27fnaq q>

— ([t
=2|f <e|2wfrkq>dq_

ferent form. We now consider such a situation in more detail. (23

The power spectral densit{8) may be rewritten in the  ere the averaging over and over the realizations of the
form process coincides with the averaging over the distribution of
the periodsr, i.e.,

s(fy=21{ >, e‘z’”’k(q>q>, (21 , o
“ (e!2miang = f e?may(r)dr=x (2mfq), (24)
where the difference between the transit timgs, andt, is
expressed as k where (1) is the distribution density of periods,, and
x-() is the characteristic function of the distributigir{r).
k+q Taking into account the property of the characteristic func-
tion
tk+q_tk:|:%1 n=7(q)dq, =0, (22 ’

f x9dv=2m(0),

and the brackets denote the averaging over the (intexk)
and over the realizations of the process. Here®) = (ty, , i
—t)/q is the averaged time interval between the subsequen¥€ have, from Eqg23) and(24), the final expression for the
transit times in the time interval-t,,,. Note that for the ~POWer spectral density:

slow (diffusivelike) fluctuations of the averaged interval

7(q) with the change of the indek Eq. (22) is valid also S(f)=21y(0)/f. (25
when <0, ie., tyiq—t= 1+ q(A)g=7c(q)g, g<0. At . .
2mfr(q)<1 we may replace the summation in Eg1) by Substituting  into  Eq. (25 the value y(0)

the integration, and do not take into account the dependenceeXp(—72/20§)/\/27Tcr, for the Gaussian distribution of the
of 7.(q) ong. In such a case Eq21) yields periodsT,, we recover result§l7) and (18).
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Since different processes result in the Gaussian distributhrough the integral of the characteristic function of the dis-
tion, it is likely that perturbation by the non-Gausssian im-tribution of the time intervals between the subsequent tran-
pacts{e,} in Eq. (4) nevertheless yields the Gaussian distri-sition times of the elementary events, pulses, or particles.
bution of the periodsr,. For a demonstration of such a It should be noted, however, that E@5) represents an
statement, and of the validity of approa¢kl)—(25), we idealized 1f noise. Real systems have finite relaxation times,
have performed a numerical analysis of the modg(4) and, therefore, an expression of the noise intensity in the
for different distributions of the perturbatiofis,}. Figures 2  form of Eq. (23) is valid only for f>(2m7,) "1, with 7
and 3 represent the calculated power spectral densities fareing the relaxation time of the periodss fluctuations. On
the rectangulatuniform) and asymmetrig3 distributions of ~ the other hand, due to deviations from the approximation
the sequencege,}, with zero expectations and the same vari-ty; q—t=7q at largeq, for sufficiently low frequency we
ances and other parameters as those in Fig. 1. We note on®n obtain a finite intensity of 17 (5=1) noise even in the
the slight dependence of the spectra on the distribution funasasey(0)=0, for signals with fluctuations resulting in dense
tion of the perturbing impactée,}, with the same expecta- concentrations of the transit timgs. Generalizations of ap-
tions and variances. These results also confirm the presumproach(21)—(25), and an analysis of the deviations from the
tions made in the derivatiori21)—(24) of the 1f noise idealized 1f noise expressiof25), are subjects of separate

intensity[Eq. (25)]. investigations.
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