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Starting from the simple point process model of 1/f noise, we derive a stochastic nonlinear differential
equation for the signal exhibiting 1/f noise, in any desirably wide range of frequency. A stochastic differential
equation(the general Langevin equation with a multiplicative noise) that gives 1/f noise is derived. The
solution of the equation exhibits the power-law distribution. The process with 1/f noise is demonstrated by the
numerical solution of the derived equation with the appropriate restriction of the diffusion of the signal in some
finite interval.
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The power spectra of a large variety of systems ranging
widely from astrophysics and technology to sociology and
psychology at low frequencies have 1/f behavior, i.e., the
power densitySsfd is inversely proportional to the frequency
f [1–9]. 1 / f noise, also known as flicker noise, is intermedi-
ate between white noise[no correlation in time,Ssfd
,1/ f 0] and Brownian motion[no correlation between in-
crements,Ssfd,1/ f 2]. Simple procedures of integration or
differentiation of such fluctuating signals do not yield the
signal exhibiting 1/f noise. Most of the 1/f noise models are
specialized or complicated. This makes the problem of om-
nipresent 1/f noise one of the oldest puzzles in contempo-
rary physics. In contrast to the Brownian motion generated
by the linear stochastic equation, simple systems of differen-
tial, even linear stochastic equations generating signals with
1/ f noise are not known.

The purpose of this paper is the derivation of a nonlinear
stochastic differential equation(generalized Langevin equa-
tion for the signal) generating a signal with 1/f noise. The
stochastic differential equation is obtained from the point
process model of 1/f noise, analyzed in Refs.[10–16]. Such
a method enables one to obtain various stochastic differential
equations, starting from different point processes and gener-
ating stochastic signals with different slopes of the power
density. Analysis of the concrete physical models and appli-
cation of the derived nonlinear stochastic equation for mod-
eling of the specific observable processes are beyond the
scope of this paper.

We start from the point process model recently proposed
and analyzed in Refs.[10–16]. The signal in the model con-
sists of pulses or series of events,

Istd = ao
k

d st − tkd. s1d

Here d std is the Dirac delta function,htkj is a set of the
occurrence times at which the particles or pulses cross the
section of observation, anda is a contribution to the signal of
one pulse or particle. The power spectral density of the point
process(1) may be expressed as[10–16]

Ssfd = lim
T→`
K2a2

T o
k,q

ei2pfDsk;qdL , s2d

whereT is the observation time and

Dsk;qd ; tk+q − tk = o
l=k

k+q−1

tl s3d

is the difference between the pulses occurrence timestk+q
and tk. Here the bracketsk¯l denote the averaging over the
realizations of the process andtk= tk+1− tk is the interevent
time. In the model[10–16], the interevent time of the signal
stochastically diffuses about some average value and the pro-
cess has been described by an autoregressive iteration with a
very small relaxation. Here we will consider the stochastic
point process described by the recurrent equations

tk+1 = tk + tk, s4d

tk+1 = tk + s«k s5d

with the appropriate boundary conditions, restricting the dif-
fusion oftk in the finite intervalftmin,tmaxg. In Eq.(5), «k are
normally distributed uncorrelated random variables with a
zero expectation and unit variance, i.e., a white noise, ands
is a standard deviation of the white noise.

The signal(1) generated according to Eqs.(4) and (5),
depending on the parameters and the intervalftmin,tmaxg,
exhibits 1/f noise in any desirably wide range of frequency.
According to the general theory[10–16], the power spectral
density of such a point process forf &t max

−1 andtmin→0 may
be estimated as

Ssfd ,
a2

t max
2

1

f
. s6d

The spectrum obtained from the numerical solution of Eqs.
(4) and (5) with reflective boundary conditions attmin and
tmax is shown in Fig. 1. We see that the considered point
process gives 1/f noise in a wide range of frequencies.*Electronic address: kaulakys@itpa.lt
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It is the purpose of this paper to derive a stochastic dif-
ferential equation for the signal, the solution of which exhib-
its 1/f noise. For this purpose, we rewrite Eq.(5) as a dif-
ferential Ito stochastic equation interpretingk as a
continuous variable, i.e.,

dtk

dk
= sjskd. s7d

Here jskd is a Gaussian white noise satisfying the standard
condition

kjskdjsk8dl = d sk − k8d. s8d

Then we rewrite Eq.(7) using the occurrence time. Transi-
tion from the occurrence numberk to the actual timet ac-
cording to the relationdt=tkdk yields the equation

dt

dt
=

s

Ît
jstd. s9d

The signal averaged over the time intervaltk according to
Eq. (1) is x=a/tk. The standard[17] transformation of the
variable fromt to x=a/t in Eq. (9) results in the stochastic
differential Ito equation

dx

dt
=

s 2

a3 x4 +
s

a3/2x5/2jstd. s10d

Equation(10) can be rewritten in a form that does not con-
tain any parameters. Introducing the scaled time

ts =
s 2

a3 t, s11d

we obtain from Eq.(10) an equation

dx

dts
= x4 + x5/2jstsd. s12d

The steady-state solution of the stationary Fokker-Planck
equation with the appropriate reflective boundary conditions

and a zero flow obtained from Eq.(12) according to the
standard method[17] is of the power-law form,

Psxd =
C

x3 , s13d

whereC has to be defined from the normalization.
The power-law distribution of the signals is the phenom-

enon observable in a large variety of processes, from earth-
quakes to the financial time series[7,8,18,19]. Therefore, our
model of 1/f noise is complementary to the models based on
the superposition of signals with a wide-range distribution of
the relaxation times resulting in the Gaussian process[20].

Because of the divergence of the power-law distribution
and the requirement of the stationarity of the process, the
stochastic equation(12) should be analyzed together with the
appropriate restrictions of the diffusion in some finite inter-
val xmin/x/xmax. Such restrictions may be introduced as
some additional conditions to the iterative solution of the
stochastic differential equation. Similar restrictions, however,
may be fulfilled by introducing some additional terms into
Eq. (12), corresponding to the restriction of the diffusion in
some “potential well.” According to the general theory[17],
the exponentially restricted diffusion with the distribution
density

Psxd ,
1

x3expH− Sxmin

x
Dn

− S x

xmax
DnJ s14d

generates the stochastic differential equation

dx

dts
=

n

2
S xmin

n

xn−4 −
xn+4

xmax
n D + x4 + x5/2jstsd. s15d

Heren is some parameter.
Equations(12) and (15) are the main result of this paper.

Since the point process(4) and(5) gives the signal with 1/f
noise, the signal obtained from Eqs.(12) and (15) also
should give 1/f noise in some frequency interval. When
xmax→`, from Eq. (6) we can estimate the power spectral
density as

Ssfd , xmin
2 1

f
. s16d

Such a conclusion is confirmed by the numerical solution of
Eq. (15).

We solve Eqs.(12) and(15) using the method of discreti-
zation. When the variable step of integration isDts=hi, the
differential equation(15) transforms to the difference equa-
tion

xi+1 = xi +
n

2
S xmin

n

xi
n−4 −

xi
n+4

xmax
n Dhi + xi

4hi + xi
5/2Îhi«i . s17d

We can solve Eq.(17) numerically with the constant step,
hi =const, whenti+1= ti +h. However, one of the most effec-
tive methods of solutions of Eq.(17) is when the change of
the variablexi in one step is proportional to the value of the
variable. We take the integration stepshi from the equation
xi

5/2Îhi =kxi, with k!1 being a small parameter. As a result,
we have the system of equations

FIG. 1. Power spectral density of the point process, described by
Eqs. (4) and (5). Parameters used ares=0.01, tmin=10−5, and
tmax=1. The dashed line represents the spectral density, calculated
according to the equationSsfd=1/ f.
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xi+1 = xi + k2xiF1 +
n

2
Sxmin

n

xi
n −

xi
n

xmax
n DG + kxi«i ,

ti+1 = ti +
k2

xi
3 . s18d

The distribution densityPsxd of the variablex, obtained us-
ing Eq. (18), is shown in Fig. 2. We see that our method of
solution gives good agreement with the power-law distribu-
tion (13) in the intervalxmin&x&xmax.

The power spectral densitySsfd calculated according to
Eqs. (18) is shown in Fig. 3. Figure 3 shows that Eq.(15)
indeed gives a signal exhibiting 1/f noise in a wide fre-
quency interval.

In summary, we derived a stochastic differential equation
for the signal exhibiting 1/f noise in any desirably wide
range of frequency. The distribution density of the signal is
of the inverse cubic power law. The numerical analysis of the
obtained equation shows that the signal indeed exhibits 1/f
noise and power-law distribution.

The research described in this publication was supported
in part by the Lithuanian State and Studies Foundation.
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FIG. 2. Distribution densityPsxd obtained from the numerical
solution of Eq. (18). The dashed line represents the distribution
density calculated from Eq.(14). Parameters used arexmin=1,
xmax=103, n=1, andk=0.1.

FIG. 3. Power spectral density of the signal, obtained from
Eq. (18). The dashed line represents the spectral density, cal-
culated according to equationSsfd=1/s2pfd. The parameters
used are the same as in Fig. 2.
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