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Stochastic nonlinear differential equation generating 11 noise
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Starting from the simple point process model off Ioise, we derive a stochastic nonlinear differential
equation for the signal exhibiting 1 hoise, in any desirably wide range of frequency. A stochastic differential
equation(the general Langevin equation with a multiplicative npitieat gives 1f noise is derived. The
solution of the equation exhibits the power-law distribution. The process witindise is demonstrated by the
numerical solution of the derived equation with the appropriate restriction of the diffusion of the signal in some
finite interval.
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The power spectra of a large variety of systems ranging ) 2a? _ ,
widely from astrophysics and technology to sociology and S(f) :T“"!O ?E g2miaka ), 2
psychology at low frequencies have fllbehavior, i.e., the ka

power densityS(f) is inversely proportional to the frequency

f [1-9. 1/f noise, also known as flicker noise, is intermedi-WhenaT IS the observation time and

ate between white nois¢no correlation in time, S(f) kiq-1
~1/f °] and Brownian motiorino correlation between in- ey = -

. . . Ak;q) =ty g —t= 3
crements S(f) ~ 1/f ?]. Simple procedures of integration or (ki) = b~k E n ®

differentiation of such fluctuating signals do not yield the

signal exhibiting 1f noise. Most of the 1f/ noise models are s the difference between the pulses occurrence titpgs
specialized or complicated. This makes the problem of omandt,. Here the bracketé --) denote the averaging over the
nipresent 11 noise one of the oldest puzzles in contempo-yeglizations of the process ang=t,,;—t, is the interevent

rary physics. In contrast to the Brownian motion generatedime. |n the mode[10-16, the interevent time of the signal

by the linear stochastic equation, simple systems of differensiochastically diffuses about some average value and the pro-
tial, even linear stochastic equations generating signals witBess has been described by an autoregressive iteration with a
1/f noise are not known. very small relaxation. Here we will consider the stochastic

The purpose of this paper is the derivation of a nonlineaipgint process described by the recurrent equations
stochastic differential equatiofgeneralized Langevin equa-

tion for the signal generating a signal with T/noise. The
stochastic differential equation is obtained from the point
process model of If/noise, analyzed in Ref§10-1§. Such
a method enables one to obtain various stochastic differential Tir1 = T+ 08y (5)
equations, starting from different point processes and gener-
ating stochastic signals with different slopes of the powemith the appropriate boundary conditions, restricting the dif-
density. Analysis of the concrete physical models and applifusion of 7 in the finite interval 7n, Tmad- 1N EQ.(5), &, are
cation of the derived nonlinear stochastic equation for modnormally distributed uncorrelated random variables with a
eling of the specific observable processes are beyond thgero expectation and unit variance, i.e., a white noise,&and
scope of this paper. is a standard deviation of the white noise.

We start from the point process model recently proposed The signal(1) generated according to Eqg}) and (5),
and analyzed in Ref$10-1§. The signal in the model con- depending on the parameterand the interval 7, Tmax]u

ber =+ 7, (4)

sists of pulses or series of events, exhibits 1f noise in any desirably wide range of frequency.
According to the general theofft0-14, the power spectral
I(t) = a2k o(t-ty. (1) density of such a point process fbe 7,5, and 7,,i,— 0 may

be estimated as
Here & (t) is the Dirac delta function{t,} is a set of the

occurrence times at which the particles or pulses cross the a1
: . ! L . S(f) ~——+. (6)
section of observation, aralis a contribution to the signal of 72 f

one pulse or particle. The power spectral density of the point

procesg1) may be expressed §$0-14 The spectrum obtained from the numerical solution of Egs.

(4) and (5) with reflective boundary conditions at,;, and
Tmax IS Shown in Fig. 1. We see that the considered point
*Electronic address: kaulakys@itpa.lt process gives If/noise in a wide range of frequencies.
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10* ; : . : and a zero flow obtained from E@l2) according to the
: : : standard methofll7] is of the power-law form,

C
P(x) = NE (13

whereC has to be defined from the normalization.

The power-law distribution of the signals is the phenom-
enon observable in a large variety of processes, from earth-
quakes to the financial time serig§8,18,19. Therefore, our
model of 1 f noise is complementary to the models based on
the superposition of signals with a wide-range distribution of
the relaxation times resulting in the Gaussian pro¢26k

Because of the divergence of the power-law distribution

0 and the requirement of the stationarity of the process, the
stochastic equatiofl2) should be analyzed together with the
appropriate restrictions of the diffusion in some finite inter-

FIG. 1. Power spectral density of the point process, described byal Xq,i, <X Xmaxe SUch restrictions may be introduced as
Egs. (4) and (5). Parameters used a@=0.01, ,,=10°, and  some additional conditions to the iterative solution of the
Tmax= 1. The dashed line represents the spectral density, calculatestochastic differential equation. Similar restrictions, however,
according to the equatio&(f)=1/f. may be fulfilled by introducing some additional terms into
Eq. (12), corresponding to the restriction of the diffusion in
It is the purpose of this paper to derive a stochastic dif-some “potential well.” According to the general thegfyr],
ferential equation for the signal, the solution of which exhib-the exponentially restricted diffusion with the distribution
its 1/f noise. For this purpose, we rewrite §&) as a dif- density
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S(f)

10! |
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10!
10

ferential Ito stochastic equation interpreting as a 1 o \n w \n
continuous variable, i.e., P(x) ~ —exp) - (ﬂ> - ( ) (14)

d7' X Xmax

k

K a§(k). (7)  generates the stochastic differential equation

Here (k) is a Gaussian white noise satisfying the standard dx = Q(% - ﬂ) + x4+ 5121y (15)
iti dt, 2\x"* X1 '
condition t max
(E&K)EK))=6(k=Kk"). (8) Heren is some parameter.

Equationg(12) and(15) are the main result of this paper.
Since the point procegd) and(5) gives the signal with 1f/
noise, the signal obtained from Eqg€l2) and (15) also
should give 1f noise in some frequency interval. When

Then we rewrite Eq(7) using the occurrence time. Transi-
tion from the occurrence numbérto the actual time ac-
cording to the relatiomt=7dk yields the equation

dr o Xmax— @, from Eg. (6) we can estimate the power spectral
- . ) density as
NT
The signal averaged over the time intervabhccording to S(f) ~ X2 1 (16)

Eq. (1) is x=a/ 7. The standard17] transformation of the mng

variable fromr to x=a/7 in Eq. (9) results in the stochastic Such a conclusion is confirmed by the numerical solution of

differential Ito equation Eq. (15)
dx o? T e We solve Eqs(12) and(15) using the method of discreti-
dt = ?X‘l‘* aT/zx &(v). (100 zation. When the variable step of integrationAig=h;, the

differential equation15) transforms to the difference equa-
Equation(10) can be rewritten in a form that does not con- tion

tain any parameters. Introducing the scaled time n ned
N{ X X —
a? Xi+1 = X +_<%— :1 )h, +Xi4hi +X;5/2\”hi8i. (17

tg= ;t, (11 2 X max

] ) We can solve Eq(17) numerically with the constant step,

we obtain from Eq(10) an equation h,=const, whert;,;=t;+h. However, one of the most effec-

dx oo tive methods of solutions of E@17) is when the change of

d_ts =x*+ X2ty (12 the variablex; in one step is proportional to the value of the

varia_ble. We take the integration stelpsfrom the equation
The steady-state solution of the stationary Fokker—PIanckf’z\fhi:Kxi, with k<1 being a small parameter. As a result,
equation with the appropriate reflective boundary conditionsve have the system of equations
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o ) ‘ . FIG. 3. Power spectral density of the signal, obtained from

solution of Eq.(18). The dashed line represents the distribution cyjated according to equatif)=1/(2=f). The parameters
density calculated from Eq(14). Parameters used apg,,=1, used are the same as in Fig. 2.
Xmax=10%, n=1, andx=0.1.
The power spectral density(f) calculated according to
[ n/ x" N Egs. (18) is shown in Fig. 3. Figure 3 shows that Hd5)
Xi+l:Xi+K2Xi 1+_( ):| + KkXgj,

> min _ 2 indeed gives a signal exhibiting f./oise in a wide fre-

quency interval.
In summary, we derived a stochastic differential equation
2 for the signal exhibiting 1f noise in any desirably wide
t=t+—. (18 range of frequency. The distribution density of the signal is
X of the inverse cubic power law. The numerical analysis of the
obtained equation shows that the signal indeed exhibits 1/
noise and power-law distribution.
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n

X max

X

The distribution densityP(x) of the variablex, obtained us-
ing EqQ.(18), is shown in Fig. 2. We see that our method of

solution gives good agreement with the power-law distribu- The research described in this publication was supported

tion (13) in the intervalXmin = X= Xmax in part by the Lithuanian State and Studies Foundation.
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