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We present a simple point process model of 1 / f� noise, covering different values of the exponent �. The
signal of the model consists of pulses or events. The interpulse, interevent, interarrival, recurrence, or waiting
times of the signal are described by the general Langevin equation with the multiplicative noise and stochas-
tically diffuse in some interval resulting in a power-law distribution. Our model is free from the requirement of
a wide distribution of relaxation times and from the power-law forms of the pulses. It contains only one
relaxation rate and yields 1/ f� spectra in a wide range of frequencies. We obtain explicit expressions for the
power spectra and present numerical illustrations of the model. Further we analyze the relation of the point
process model of 1 / f noise with the Bernamont-Surdin-McWhorter model, representing the signals as a sum of
the uncorrelated components. We show that the point process model is complementary to the model based on
the sum of signals with a wide-range distribution of the relaxation times. In contrast to the Gaussian distribu-
tion of the signal intensity of the sum of the uncorrelated components, the point process exhibits asymptotically
a power-law distribution of the signal intensity. The developed multiplicative point process model of 1 / f�

noise may be used for modeling and analysis of stochastic processes in different systems with the power-law
distribution of the intensity of pulsing signals.
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I. INTRODUCTION

1/ f fluctuations are widely found in nature; i.e., the power
spectra S�f� of a large variety of physical, biological, geo-
physical, traffic, financial, and other systems at low frequen-
cies f have 1/ f� �with 0.5���1.5� behavior �1–4�. Wide-
spread occurrence of signals exhibiting such a behavior
suggests that a generic mathematical explanation of 1 / f
noise might exist. The generic origins of two popular
noises—white noise �no correlation in time, S�f��1/ f0� and
Brownian noise �no correlation between increments, S�f�
�1/ f2�—are very well known and understood. It should be
noted that the Brownian motion is the integral of white noise
and that the operation of integration of the signal increases
the exponent by 2 while the inverse operation of differentia-
tion decreases it by 2. Therefore, 1 / f noise cannot be ob-
tained by the simple procedure of integration or differentia-
tion of such convenient signals. Moreover, there are no
simple, even linear stochastic differential equations generat-
ing signals with 1/ f noise. Recently we derived a stochastic
nonlinear differential equation for a signal exhibiting 1/ f
noise in any desirably wide range of frequency �5�. The
physical interpretation of this highly nonlinear equation is
not so clear and straightforward as that of the linear Lange-
vin equation, generating the Brownian motion of the signal
with 1/ f2 spectrum. Therefore, 1 / f noise is often represented
as a sum of independent Lorentzian spectra with a wide
range of relaxation times �6�. Summation or integration of
the Lorentzians with the appropriate weights may yield 1/ f
noise.

Not long ago a simple analytically solvable model of 1 / f
noise was proposed �7�, analyzed �8,9�, and generalized �10�.
The signal in the model consists of pulses or series of events
�a point process�. The interpulse times of the signal stochas-
tically diffuse about some average value. The process may be

described by an autoregressive iteration with a very small
relaxation. The proposed model reveals one of the possible
origins of 1 / f noise—i.e., random increments of the time
interval between the pulses �the Brownian motion in the time
axis�, sometimes resulting in a clustering of the signal pulses
�7,8,10�.

The power spectral density of such point process may be
expressed as

S�f� � 2Ī2�̄Pk�0�/f . �1�

Here �̄= ��k� is the expectation of the interpulse time
�k= tk+1− tk, with 	tk
 being the sequence of pulses occurrence
times or arrival times tk, whereas Pk��k� is a steady-state

distribution density of the interpulse time �k in k space and Ī
is the average intensity of the signal:

I�t� = �
k

Ak�t − tk� . �2�

The function Ak�t− tk� represents the shape of the k pulse of
the signal in the region of the pulse occurrence time tk.

It is easy to show that the fluctuations and shapes of
Ak�t− tk� for sharp pulses mainly influence the high-
frequency power spectral density. Therefore, in a low-
frequency region we can restrict our analysis to the noise
originated from the correlations between the occurrence
times tk. Then we can simplify the signal to the point process

I�t� = ā�
k

��t − tk� , �3�

with ā being an average contribution to the signal of one
pulse or one particle when it crosses the section of observa-
tion.

Point processes arise in different fields, such as physics,
economics, cosmology, ecology, neurology, seismology, traf-
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fic flow, signaling and telecom networks, audio streams, and
the Internet �see, e.g., �3,11–14� and references therein�. The
proposed point process model �7,8,10� can been modified
and useful for the modeling and analysis of self-organized
systems �15�, atmospheric variability �16�, large flares from
�-ray repeaters in astronomy �17�, particles moving in vis-
cous fluid �18�, dynamical percolation �19�, 1 / f noise ob-
served in cortical neurons and earthquake data �20�, financial
markets �21�, cognitive experiments �4,22�, Parkinsonian
tremors �23�, and time interval production in tapping and
oscillatory motion of the hand �24�.

The analytically solvable model and its generalizations
�7–10� contain, however, some shortage of generality; i.e., it
results only in exact 1 / f �with �=1� noise and only if
Pk��k��const when �k→0. On the other hand, a numerical
analysis of the generalized model with different restrictions
for the diffusion of the interpulse time �k reveals 1 / f� spectra
with 1���1.5 �10�.

The aims of this paper are to generalize the analytical
model, seeking to define the variety of time series exhibiting
the power spectral density S�f��1/ f� with 0.5���2, and
to analyze the relation of the point process model with the
Bernamont-Surdin-McWhorter model �6�, representing the
signal as a sum of the appropriate signals with different rates
of the linear relaxation.

II. POWER SPECTRAL DENSITY OF THE POINT
PROCESS

The point process is primarily and basically defined by
the occurrence times tk. The power spectral density of the
point process �3� may be expressed as �7,8,10�

S�f� = lim
T→�
� 2

T



ti

tf 

ti

tf

I�t��I�t��ei	�t�−t��dt�dt��
= lim

T→�
� 2ā2

T
� �

k=kmin

kmax

e−i	tk�2�
= lim

T→�
� 2ā2

T
�

k=kmin

kmax

�
q=kmin−k

kmax−k

ei	
�k;q�� , �4�

where T= tf − ti�	−1 is the observation time, 	=2�f , and


�k;q� � tk+q − tk = �
i=k

k+q−1

�i �5�

is the difference between the pulses occurrence times tk+q
and tk. Here kmin and kmax are minimal and maximal values of
the index k in the interval of observation T and the brackets
�¯� denote averaging over realizations of the process.

It should be stressed that the spectrum is related to the
underlying process and not to a realization of the process
�25,26�. Therefore, averaging over realizations of the process
is essential. Without the averaging over the realizations we
obtain the squared modulus of the Fourier transform of the
data—i.e., the periodogram which is fluctuating wildly and
its variance is almost independent of T �25,26�. For calcula-
tion of the power spectrum of the actual signal without av-

eraging over the realizations one should use the well-known
procedures of the smoothing for spectral estimations
�25–28�.

Equation �4� may be rewritten as

S�f� = 2ā2
̄ + lim
T→�
� 4ā2

T
�
q=1

N

�
k=kmin

kmax−q

cos�	
�k;q��� , �6�

where N=kmax−kmin and


̄ =
1

�̄
= � lim

T→�

N + 1

T
�

is the mean number of pulses per unit time. The first term in
the right-hand side of Eq. �6� represents the shot noise,

Sshot�f� = 2ā2
̄ = 2āĪ , �7�

with Ī= ā
̄ being the average signal.
Equations �4�–�7� may be modified as

S�f� = 2ā2 �
q=−N

N �
̄ −
�q�
T
��
�q��	� �8�

and used for evaluation of the power spectral density of the
nonstationary process or for the process of finite duration, as
well. Here

�
�q��	� = �ei	
�q�� = 

−�

+�

ei	
�q��q„
�q�…d
�q� �9�

is the characteristic function of the distribution density
�q(
�q�) of 
�q�, a definition 
�q�=−
�−q�=
�k ;q� is in-
troduced, and the brackets �. . .� denote averaging over real-
izations of the process and over the time �index k� �8,10�. For
the nonstationary process or process of finite duration one
should use the real distribution �q(
�q�) with a finite inter-
val of the variation of 
�q� or calculate the power spectra
directly according to Eq. �4�.

When the second sum of Eq. �8� in the limit T→�, due to
the decrease of the characteristic function �
�q��	� for finite
	 and large q, approaches zero,

lim
T→�

1

T �
q=−N

N

�q��
�q��	� → 0,

we have from Eq. �8� a power spectrum in the form

S�f� = lim
T→�
� 2ā2

T
�
k,q

ei	
�k;q�� = 2Ī2�̄ �
q=−N

N

�
�q��	� . �10�

III. STOCHASTIC MULTIPLICATIVE POINT
PROCESS

According to the above analysis, the power spectrum of
the point process signal is completely described by the set of
the interpulse intervals �k= tk+1− tk. Moreover, the low-
frequency noise is defined by the statistical properties of the
signal at large time scale—i.e., by the fluctuations of the time
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difference 
�k ;q� at large q, determined by the slow dynam-
ics of the average interpulse interval �k�q�=
�k ;q� /q be-
tween the occurrence of pulses k and k+q. In such a case
quite generally the dependence of the interpulse time �k on
the occurrence number k may be described by the general
Langevin equation with the drift coefficient d��k� and a mul-
tiplicative noise b��k���k�,

d�k

dk
= d��k� + b��k���k� . �11�

Here we interpret k as a continuous variable while the white
Gaussian noise ��k� satisfies the standard condition

���k���k��� = ��k − k�� ,

with the brackets �¯� denoting averaging over the realiza-
tions of the process. Equation �11� we understand in Ito in-
terpretation.

A perturbative solution of Eq. �11� in the vicinity of �k
yields

�k+j � �k + d��k�j + b��k�

k

k+j

��l�dl , �12�


�k;q� = �
i=k

k+q−1

�i

� 

0

q

�k+jdj � �kq + d��k�
q2

2
+ b��k�


0

q

dj

k

k+j

��l�dl .

�13�

After integration by parts we have


�k;q� = �kq + d��k�
q2

2
+ b��k�


k

k+q

�k + q − l���l�dl ,

�14�

�
�k;q�� = �kq + d��k�
q2

2
. �15�

Analogously, in the same approximation we can obtain
the variance �


2 �k ;q�= �
�k ;q�2�− �
�k ;q��2 of the time dif-
ference 
�k ;q�,

�

2 �k;q� = b2��k�

q3

3
. �16�

A. Power spectral density

Substituting Eqs. �14� and �15� into Eq. �10� and replacing
the averaging over k by the averaging over the distribution of
the interpulse times �k we have the power spectrum

S�f� = 4Ī2�̄

0

�

d�kPk��k�Re 

0

�

dq exp�i	��kq + d��k�
q2

2
��

= 2Ī2 �̄

��f



0

�

Pk��k�Re�e−i�x−�/4� erfc �− ix�
�x

�k
d�k, �17�

where x=�f�k
2 /d��k�.

The replacement of the averaging over k and over realiza-
tions of the process by the averaging over the distribution of
the interpulse times �k,Pk��k�, is possible when the process is
ergodic. Ergodicity is usually a common feature of the sta-
tionary process described by the general Langevin equation
�29�. Therefore, we will consider the stationary processes of
diffusion of the interpulse time �k described by Eq. �11� and
restricted in a finite interval of the motion. Such restrictions
may be introduced as some additional conditions to the sto-
chastic equation. Similar restrictions, however, may be ful-
filled by introducing some additional terms into Eq. �11�,
corresponding to the diffusion in some “potential well,” as in
Ref. �5�.

The approach �17� is an improvement of the simplest
model of pure 1/ f noise �7,8� taking into account the second,
drift, term d��k�q2 /2 in the expression for 
�k ;q�. Note that
for d��k�→0 from Eq. �17� we recover the known result �1�.

According to Eqs. �1�, �4�, and �17� the small interpulse
times and clustering of the pulses make the greatest contri-
bution to 1/ f� noise. The power-law spectral density is very
often related to the power-law behavior of other characteris-
tics of the signal, such as the autocorrelation function, prob-
ability densities, and other statistics, and with the fractality
of the signals, in general �3,30–35�. Therefore, we investi-
gate the power-law dependences of the drift coefficient and
of the distribution density on the time �k in some interval of
the small interpulse times—i.e.,

d��k� = ��k
�, Pk��k� = C�k

�, �min � �k � �max, �18�

where the coefficient � represents the rate of the signal’s
nonlinear relaxation and C has to be defined from the nor-
malization.

The power-law distribution of the interpulse, interevent,
interarrival, recurrence, or waiting time is observable in dif-
ferent systems from physics, astronomy, and seismology to
the Internet, financial markets, and neural spikes �see, e.g.,
�3,14,15,36� and references therein�.

One of the most direct applications of the model de-
scribed by Eq. �18�, perhaps, is for the modeling of computer
network traffic �14� with the spreading of the packets of the
requested files in the Internet traffic and exhibiting the
power-law distribution of the interpacket time. Modeling of
these processes is under way.

Because of the divergence of the power-law distribution
and requirement of the stationarity of the process, stochastic
diffusion may be realized over a certain range of the variable
�k only. Therefore, we restrict the diffusion of �k to the in-
terval ��min,�max� with the appropriate boundary conditions.
Then the steady-state solution of the stationary Fokker-
Planck equation with a zero flow corresponding to Eq. �11� is
�29�
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Pk��k� =
C

b2��k�
exp�2


�min

�k d���
b2���

d�� . �19�

For the particular power-law coefficients d��k� and b��k�
�see, e.g., Eq. �26�� we can obtain the power-law stationary
distribution density �18�.

Then Eqs. �17� and �18� yield the power spectra with
different slopes �—i.e.,

S�f� =
2Ī2

���2 − ��f
� f0

f
��/�2−��

I��xmin,xmax� , �20�

I��xmin,xmax� = Re 

xmin

xmax

e−i�x−�/4� erfc��− ix�x�dx . �21�

Here �=� / �2−��− 1
2 , xmin= f / f2, xmax= f / f1,

f0 =
�

�
�C�̄��2−��/�, f1 =

�

��max
2−� , f2 =

�

��min
2−� . �22�

Note that f0 is indefinite when �→0; however, f0
�/�2−�� is

definite and converges to C�̄ in this limit.
We note the special cases of the power spectral density

�20�.
�i� f1� f � f2, −1���1/2,

S�f� =
��1 + ��Ī2

���2 − ��cos���/2 + 1/4���f
� f0

f
��+1/2

, �23�

i.e., S�f��1/ f1+�/�2−�� and S�f��1/ f for �=0, in accordance
with Eq. �1�.

�ii� f � f1, ��−1,

S�f� =
Ī2

�1 + � − �/2�
� f0

f1
��/�2−��� 2

�f1f
, �24�

i.e., for very low frequencies S�f��1/�f .
�iii� f � f2, ��1/2,

S�f� =
Ī2

���2 − � − ��
� f0

f2
��/�2−�� f2

f2 , �25�

i.e., for high frequencies S�f��1/ f2.
For very high frequencies f ��max

−1 , however, we cannot
replace the summation in Eq. �10� by the integration. Then

from Eq. �6� or �10� one gets the shot noise S�f�=2āĪ, Eq.
�7�.

Equations �20� and �23�–�25� reveal that the proposed
model of the stochastic multiplicative point process may re-
sult in power-law spectra over several decades of low fre-
quencies with the slope � between 0.5 and 2.

The simplest and well-known process generating the
power-law probability distribution function for �k is a multi-
plicative stochastic process with b��k�=��k

� and �=2�−1,
written as �37�

�k+1 = �k + ��k
2�−1 + ��k

��k. �26�

Here � represents the relaxation of the signal, while �k fluc-
tuates due to the perturbation by normally distributed uncor-

related random variables �k with a zero expectation and unit
variance and � is a standard deviation of the white noise.
According to Eq. �19� the steady-state solution of the station-
ary Fokker-Planck equation with a zero flow, corresponding
to Eq. �26�, gives the power-law probability density function
for �k in k space,

Pk��k� =
1 + �

�max
1+� − �min

1+��k
�, � =

2�

�2 − 2� . �27�

The power spectrum for the intermediate f , f1� f � f2, ac-
cording to Eq. �23� is

S�f� =
�2 + ���� − 1�ā2��� − 1/2�
�����max

2+� − �min
2+��sin���/2�

� �

�
��−1 1

f� , �28�

where

� = 1 +
�

3 − 2�
,

1

2
� � � 2. �29�

For �=1 we have a completely multiplicative point process
when the stochastic change of the interpulse time is propor-
tional to itself. Multiplicativity is an essential feature of the
financial time series, economics, some natural, and physical
processes �38�.

Another case of interest is with �=1/2, when the Lange-
vin equation in the actual time takes the form

d�

dt
= �

1

�
+ ���t� , �30�

i.e., the Brownian motion of the interpulse time with the
linear relaxation of the signal I� ā /�.

Figures 1 and 2 represent the spectral densities �4� with
different slopes � of the signals generated numerically ac-
cording to Eqs. �3� and �26� for the different parameters of
the model. We see that the simple iterative equation �26� with
the multiplicative noise produces signals with the power

FIG. 1. Power spectral density �4� vs frequency of the signal
generated by Eqs. �3� and �26�. Numerical simulations are averaged
over ten realizations of N=106 pulse sequences with the parameters
ā=1, �=1/2, and �=0.02 and different relaxations of the signal �.
We restrict the diffusion of the interpulse time to the interval �min

=10−6, �max=1 with the reflective boundary condition at �min and
transition to the white noise, �k+1=�max+��k, for �k��max. The
straight lines represent the analytical results according to Eq. �28�.
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spectral density of different slopes, depending on the param-
eters of the model. The agreement of the numerical results
with the approximate theory is quite good.

It should be noted that the low-frequency noise is insen-
sitive to the small additional fluctuations of the particular
occurrence times tk. Therefore, we can interpret that Eqs.
�11�, �26�, and �30� describe the slow diffusive motion of the
average interpulse time, superimposed by some additional
randomness.

On the other hand, numerical investigations have shown
that the proposed model is stable with respect to variation of
the dynamics of the interpulse time �k. The substitution of
the reflecting boundaries for �k by an appropriate confining
potential as in Ref. �5� does not change the result.

B. Distribution density of the signal intensity

The origin for appearance of 1 / f fluctuations in the point
process model described by Eqs. �2�–�30� is related to the
slow, Brownian fluctuations of the interpulse time �k as a
function of the pulse number k, when the average interpulse
time �k�q� is a slowly fluctuating function of the arguments k
and q. In such a case the transition from the occurrence num-
ber k to the actual time t according to the relation dt=�kdk
yields the probability distribution density Pt��k� of �k in the
actual time t,

Pt��k� = Pk��k��k/�̄ . �31�

The signal averaged over the time interval �k according to
Eq. �3� is I= ā /�k. Therefore, the distribution density of the
intensity of the point process �3� averaged over the time in-
terval �k is

P�I� =
āĪ

I3 Pk� ā

I
� . �32�

If Pk��k��const when �k→0 �the condition for the exhi-
bition for the pure 1/ f noise in the point process model�, the
distribution density of the signal is

P�I� � I−3. �33�

For the generalized multiplicative processes �3�, �11�, and
�18� we have from Eqs. �27� and �32� the distribution density
of the signal intensity,

P�I� =
� − 1

�max
�−1 − �min

�−1

ā�−1

I� , � = 3 + � . �34�

The power-law distribution of the signals is observable in
a large variety of systems ranging from earthquakes to the
financial time series �3,12,21,30–35,37,39�.

One of the simplest models generating the Brownian fluc-
tuations of the interpulse time �k is an autoregressive model
�7,8,10� with random increments and linear relaxation of the
interpulse time—i.e., the model described by the iterative
equation

�k+1 = �k − ���k − �̄� + ��k. �35�

Here �̄ is the average interpulse time, � is the rate of the
linear relaxation, 	�k
 denotes the sequence of uncorrelated
normally distributed random variables with zero expectation
and a unit variance, and � is the standard deviation of this
white noise. The model �3�, �10�, and �35� then results in the
power spectral density �8�

S�f� = Ī2�H

f
, �H =

2
��

Ke−K2
, K =

�̄��

�
. �36�

The distribution density of the intensity of the signal accord-
ing to Eqs. �19� and �32� then is

P�I� =
KĪ2

��I3
exp�−

�ā2

�2 �1

Ī
−

1

I �2� . �37�

Restricting the diffusion of the interpulse time �k by the
reflective boundary condition at �min�0 and for �min→0 we
have the truncated distribution density of the signal intensity,

Pr�I� =
2KĪ2

���1 + erf�K��
exp�− K2�1 −

Ī

I
�2� 1

I3 , I � 0.

�38�

In the asymptotic I� Ī and I�2K2Ī from Eq. �38� we
have

Pr�I� � �H
r Ī2

I3 �
1

I3 , �39�

i.e., the power-law distribution density of the signal. Here

�H
r =

�H

1 + erf�K�
. �40�

The restriction of motion of �k by the reflective boundary
condition at �k=0 reduces the effective �average� value of
Pk�0�= 1

2 �Pk��k→ +0�+ Pk��k→−0�� in Eq. �1� and, conse-
quently, the power spectral density approximately 2 times in
comparison with the theoretical result �36� obtained without
the restriction, because Pk��k→−0�=0 for the restricted mo-
tion. More exactly, in such a case the power spectral density
may be expressed by Eq. �36� with �H

r instead of �H—i.e.,

FIG. 2. The same as in Fig. 1 but for �=1, �=0.05, and differ-
ent parameters �.
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Sr�f� = Ī2�H
r

f
. �41�

C. Correlation function of the point process

The correlation function C�s� of the point process �3� may
be expressed as

C�s� =� ā2

T
�
k,q

��tk+q − tk − s��
= Īā�

q



−�

+�

�q„
�q�…�„
�q� − s…d
�q�

= Īā�
q

�q�s� , �42�

where the brackets �¯� denote averaging over the realiza-
tions of the process and over time �index k� as well. Such
averaging coincides with averaging over the distribution of
the time difference 
�q�, �q(
�q�).

From Eq. �42� for the approximation


�k;q� � tk+q − tk = �
l=k+1

k+q

�l � ��q�q, q � 0, �43�

we have an expression for the correlation function in the
simplest approximation �10�,

C�s� � Īā�
q



�min

�max

Pk��k����kq − s�d�k

= Īā��s� + Īā �
q�0

Pk� s

q
� 1

�q�
. �44�

Replacing the summation in Eq. �44� by the integration we
have an approximate expression for the correlation function
of the point processes �3� and �11� or �35�,

C�s� � Īā

0

�

Pk� s

q
�dq

q
, s � 0, C�− s� = C�s� . �45�

IV. SIGNAL AS A SUM OF UNCORRELATED
COMPONENTS

As was already mentioned above, 1 / f noise is often mod-
eled as the sum of the Lorentzian spectra with the appropri-
ate weights of a wide-range distribution of the relaxation
times �rel. It should be noted that summation of the spectra is
allowed only if the processes with different relaxation times
are isolated one from another �6,40�. For the construction of
the signal I�t� with 1/ f noise spectrum from the stochastic
equations with a wide-range distribution of the relaxation
times �and rates �l=1/�l

rel� one should express the signal as a
sum of N uncorrelated components �9�,

I�t� = �
l=1

N

Il�t� , �46�

where every component Il satisfies the stochastic differential
equation

İl = − �l�Il − Īl� + �l�l�t� . �47�

Here Īl is the average value of the signal component Il, �l�t�
is the �-correlated white noise, ��l�t��l��t���=�l,l���t− t��, and
�l is the intensity �standard deviation� of the white noise.

The distribution density P�Il� of the component Il is
Gaussian,

P�Il� =��l

�

1

�l
exp�−

�l

�l
2 �Il − Īl�2� . �48�

The distribution density P�I� of the signal I�t�, Eq. �46�,
expressed as a sum of uncorrelated Gaussian components, is
Gaussian as well,

P�I� =
1

�2��
exp�−

�I − Ī�2

2�2 � , �49�

with the average value Ī and the variance �2 expressed as

Ī = �
l

Īl, �2 = �
l

�l
2

2�l
. �50�

Therefore, the Bernamont-Surdin-McWhorter model
based on the sum of signals with a wide range distribution of
the relaxation times always results in a Gaussian distribution
of the signal intensity. However, not all signals exhibiting
1/ f noise are Gaussian �2�. Some of them are non-Gaussian,
exhibiting a power-law distribution or even fractal �3,30–35�.

Equations �46� and �47� result in an expression for the
correlation function of the signal �46�,

C�s� = �
l

�l
2

2�l
e−�ls, s � 0. �51�

The correlation function �51� yields the power spectrum

S�f� = �
l

2�l
2

�l
2 + 	2 , 	 = 2�f . �52�

Introducing the distribution of the relaxation rates, g���,
we can replace the summation in Eqs. �46� and �50�–�52� by
the integration and express the power spectrum of the signal
�46� as

S�f� = 

�min

�max 2�2���g���
�2 + 	2 d� =

1

�f



ymin

ymax �2�	y�g�	y�
1 + y2 dy .

�53�

Here �min and �max are minimal and maximal values of the
relaxation rate, respectively.

A. Signals with the pure 1/ f power spectrum

Equation �53� yields the pure 1/ f power spectrum only in
the case when �2�	y�g�	y�=A=const. In such a case the
correlation function �51� may be expressed as

C�s� =
A

2



�min

�max

e−�sd�

�
=

A

2



�min
rel

�max
rel

e−s/�reld�rel

�rel , �54�

while the power spectrum �53� yields
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S�f� =
A

�f
�arctan��max

	
� − arctan��min

	
�� �

A

2f
,

�min � 	 � �max. �55�

For the signal expressed not as a sum �46� but as an av-
erage of N uncorrelated components,

Ia�t� =
1

N
�
l=1

N

Il�t� , �56�

all characteristics �48�–�55� are similar, except that the aver-

age value Īa of the averaged signal �56� is N times smaller
than that according to Eq. �50�, while the expressions for the
correlation function C�s�, Eqs. �51� and �54�, for the power
spectrum S�f�, Eqs. �52�, �53�, and �55�, and for the variance
�a

2, Eq. �50�, should be divided by N2—i.e.,

Īa =
1

N
�

l

Īl, �a
2 =

1

N2�
l

�l
2

2�l
, �57�

Sa�f� �
A

2N2f
, �58�

Ca�s� =
1

2N2

�min

�max e−�s

�
�2���g���d� . �59�

When replacing the summation in Eqs. �46�, �50�–�53�,
and �56�–�59� by the integration, the distribution density of
the relaxation rates, g���, should be normalized to the num-
ber of uncorrelated components N,



�min

�max

g���d� = N . �60�

We see the similarity of expressions �45� and �59� for the
correlation function of the point process model and that of
the sum of signals with different relaxation rates, respec-
tively. In general, however, different distributions Pk��k� of
the interpulse time �k when Pk�0��0—e.g., exponential,
Gaussian, and continuous distributions—with the slowly
fluctuating interpulse time �k may result in 1 / f noise. There-

FIG. 3. Power spectra: �a� numerically calculated for the average signal �56� from N=10 components �47� with Ī=20, �l
2��l�g��l�

=const, and uniform distribution of lg �l with �l values in the interval 10−4–100—i.e., with g��l���l
−1, �l

2��l���l, and �1��1�=0.1 �open
circles� in comparison with theoretical results �58� �straight line�; �b� for the point process �3�, �4�, and �35�, with ā=1, �̄=1, �=0.01, and
�=0.0001 averaged over 10 realizations of 105 pulse sequences �open circles� in comparison with the theoretical results according to Eq.
�41� �straight line�. �c� and �d� Numerically calculated distribution densities of the corresponding signals �open circles� in comparison with
the theoretical results �49�, �57�, and �38� �solid lines�, respectively.

POINT PROCESS MODEL OF 1/ f NOISE VS A… PHYSICAL REVIEW E 71, 051105 �2005�

051105-7



fore, the point process model is, in some sense, more general
than the model based on the sum of the Lorentzian spectra.

In Fig. 3 examples of the pure 1/ f power spectra for the
average �56� of signals �47� generated for different relaxation
rates �l and with the corresponding intensities of the white
noise �l

2 and those of the autoregressive point process �3�,
�4�, and �35�, are presented together with the distribution
densities of the corresponding signals. We see the similarity
of the spectra but very different distributions of the intensity
of the signals: the signal of the sum of the Lorentzians is
Gaussian while that of the point process is approximately of
power law type, asymptotically P�I�� I−3.

B. Signals with the power spectral density of different
slopes �

Using the sum of different Lorentzian signals we can gen-
erate not only a signal with the pure 1/ f spectrum but the
signal with any predefined slope � of 1/ f� power spectral
density, as well. Indeed, let us investigate the case when

�2���g��� = A��, �61�

where A and � are some parameters. Substitution of Eq. �61�
into Eq. �53� yields the power spectral density

S�f� =
A

�f



�min/	

�max/	 �	y��

1 + y2dy

=
A

	1−����max

	
��+1

��− ��max

	
�2

,1,
� + 1

2
�

− ��min

	
��+1

��− ��min

	
�2

,1,
� + 1

2
�� , �62�

where ��z ,s ,a� is a Lerch’s phi transcendent. In the limit
when �min→0 and �max→� we can approximate the power
spectral density �62� as

S�f� �
�2���A

2 cos���/2�
1

f1−� ; �63�

i.e., we have the generalization of the result �55�.
For the average signal �56� we have

Sa�f� �
�2���A

2N2 cos���/2�
1

f1−� . �64�

In order to obtain an arbitrary � of the 1/ f� power spec-
tral density we should choose in Eq. �61� �=1−�.

FIG. 4. Power spectra: �a� numerically calculated for signal �47�, �56�, and �61� from ten components with Ī=20, A=100, and
�=−0.25 �open circles� and �=0.25 �open squares�, in comparison with theoretical results �64� �straight line�; �b� for the point process �3�,
�4�, and �26� with the parameters ā=1, �=0.5, �=0.02, and �=0.0001 �open squares� and �=0.0003 �open circles� averaged over 10
realizations of 106 pulse sequences in comparison with the theoretical results �28� �straight lines�. �c� and �d� Numerically calculated
distribution densities of the corresponding signals in comparison with the theoretical results �65�, �66�, and �34�, respectively �solid lines�.
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The distribution density Pa�Ia� of the average signal Ia�t�
is Gaussian

Pa�Ia� =
1

�2��a

e−�I − Īa�2/2�a
2
, �65�

with the variance �a
2 expressed as

�a
2 =

1

2N2

�min

�max �2���g���
�

d� =
A��max

� − �min
� �

2N2�
. �66�

The correlation function in such a case according to Eq.
�59� is

Ca�s� =
A

2N2

�min

�max

e−�s��−1d�

=
A

2N2s� ����,�mins� − ���,�maxs�� , �67�

where ��a ,z� is the incomplete gamma function.
Figure 4 demonstrates the possibility to generate stochas-

tic signals exhibiting similar 1 / f� power spectral densities
with different slopes � by summation of signals with differ-
ent relaxation rates and according to the multiplicative point
process model. The distribution densities of the correspond-
ing signals are, however, completely different.

V. CONCLUSIONS

The generalized multiplicative point processes �3�, �11�,
�18�, and �26�, may generate time series exhibiting the power
spectral density S�f��1/ f� with 0.5���2, Eqs. �17�, �23�,
and �28�—i.e., with the slope observable in a large variety of
systems. Such a spectral density is caused by the stochastic
diffusion of the interpulse time, resulting in a power-law dis-
tribution. The power-law distribution of the interpulse, inter-
event, interarrival, recurrence, or waiting times is observed
in different systems from physics, astronomy, and seismol-

ogy to the Internet, financial markets, neural spikes, and hu-
man cognition.

Furthermore, the power-law distribution of the interpulse
time results in a power-law distribution of the stochastic sig-
nal, P�I�� I−�, with 2���4—i.e., the phenomenon observ-
able in a large variety of processes, from earthquakes to the
financial time series—as well. The proposed model relates
and connects the power-law autocorrelation and spectral den-
sity with the power-law distribution of the signal intensity
into a consistent theoretical approach. The generated time
series of the model are fractal since they exhibit jointly the
power-law probability distribution and the power-law auto-
correlation of the signal.

In addition, we have analyzed the relation of the point
process model with the Bernamont-Surdin-McWhorter
model of 1 / f noise, representing the signal as a sum of the
appropriate signals with different rates of the linear relax-
ation. From the performed analysis we can conclude that the
multiplicative point process model of 1 / f noise when the
signal consisting of pulses with a stochastic motion of the
interpulse time is more general and complementary to the
model based on the sum of signals with a wide-range distri-
bution of the relaxation times. In contrast to the Gaussian
distribution of the intensity of sum of the uncorrelated com-
ponents, the point process model generating 1/ f noise exhib-
its power-law distribution of the intensity of the signal.
Moreover, it is free from the requirement of a wide-range
distribution of the relaxation times. Obviously, the multipli-
cative point process model of 1 / f� noise may be used for
modeling and analysis of stochastic processes in different
systems exhibiting pulsing signals.
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