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Abstract
We present a consecutive derivation of mapping equations of motion for
the one-dimensional classical hydrogenic atom in a monochromatic Ðeld of
any frequency. We analyze this map in the case of high and low relative
frequency of the Ðeld and transition from regular to chaotic behavior. We
show that the map at aphelion is suitable for investigation of transition to
chaotic behavior also in the low frequency Ðeld and even for adiabatic
ionization when the strength of the external Ðeld is comparable with the
Coulomb Ðeld. Moreover, the approximate analytical criterion (taking into
account the electronÏs energy increase by the inÑuence of the Ðeld) yields a
threshold Ðeld strength quite close to the numerical results. We reveal that
transition from adiabatic to chaotic ionization takes place when the ratio
of the Ðeld frequency to the electron Kepler frequency approximately
equals 0.1. For the dynamics and ionization in a very low frequency Ðeld
the Kepler map can be converted to a di†erential equation and solved
analytically. The threshold Ðeld of the adiabatic ionization obtained from
the map is only 1.5% lower than the exact Ðeld strength of static Ðeld
ionization.

1. Introduction

It is already the third decade when the highly excited hydro-
gen atom in a microwave Ðeld remains one of the simplest
and most proper real system for experimental and theoreti-
cal investigation of classical and quantum chaos in nonlin-
ear systems strongly driven by external driving Ðelds (see
reviews [1È5] and references herein). For theroretical
analysis of transition to stochastic behavior and ionization
processes of atoms in microwave Ðelds approximate
mapping equations of motion, rather than di†erential equa-
tions, are most convenient.

Such a two-dimensional map (for the scaled energy of the
one-dimensional atom in a monochromatic Ðeld and for the
relative phase of the Ðeld), later called Kepler map [3, 13],
has been obtained in Refs. [6, 7] after an integration of equa-
tions of motion for one period of the intrinsic motion of the
electron between two subsequent passings of the aphelion,
the largest distance from the nulceus. This map greatly
facilitates the numerical investigation of dynamics and ion-
izatuion processes and allows even an analytical estimation
of the threshold Ðeld strengths for the onset of chaos, the
di†usion coefficient of the electron in energy space and
other characteristics of the system [3È10]. Moreover, this
map is closely related to the expression of quasiclassical
dipole matrix elements for high atomic states [11, 12].

The Kepler map for relatively high frequencies of the Ðeld
(recovered in [3, 13] and sometimes represented for the
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number of absorbed photons) is relatively simple and is
widely used for analysis of classical dynamics, as well as
after the quantization È the quantum Kepler map for the
quantum dynamics [3È5, 9, 10, 13]. In the region of rela-
tively low frequency of the Ðeld this map is sufficiently more
complex, the threshold Ðeld strength for transition to
chaotic behavior and ionization is considerably higher than
that for transition to chaotic behavior in medium and high
frequency Ðelds.

Since derivation of the mapping equations of motion is
based on the classical perturbation theory and the electronÏs
energy change due to interaction with an external Ðeld
during the period of motion in the Coulomb Ðeld depends
on the initial condition, i.e., on the integration interval [6, 7,
11], complementary analysis of the applicability of the “stan-
dardÏ Kepler map is necessary.

It should be noted, that in derivation of the Kepler map
one integrates not over the period of the external electro-
magnetic Ðeld but over the period of the electron intrinsic
motion in the Coulomb Ðeld [6, 7]. This results in some
contradictions and difficulties. First, the period of integra-
tion and the obtained map depend on the energy of the elec-
tron which complicates the quantization problem of the
Kepler map [3È7, 13È17]. Second, the energy change of the
electron during the period of the classical intrinsic motion
due to interaction with the microwave Ðeld depends on the
starting conditions, i.e., on the integration interval [7, 11].
This makes it possibility to obtain another map, the Kepler
map at perihelion, derived by the integration between two
subsequent passings of the perihelion [7] or even a three-
dimensional map for the two halves of the intrinsic period
[11]. These maps stronger reveal the resonance structure of
chaotic dynamics at low frequencies [6, 7, 11, 15].

Moreover, Nauenberg [18] has presented a so-called
canonical Kepler map which agrees with the results of Refs.
[6, 7, 11] if taken at perihelion but not with the widely used
Kepler map at aphelion. The expressions for the variables of
this canonical Kepler map are, however, sufficiently compli-
cated, not explicit and, therefore, they are not comfortable
for analytical and even numerical analysis. So, for this
reason corroboration of the standard Kepler mapÏs applica-
bility for the large range of parameters of the problem is
signiÐcant as well. Note additionally, that in derivation and
analysis of the maps in Ref. [7] some inaccuracy and mis-
prints have appeared.

All these aspects indicate the need of additional analysis
of the mapping equations of motion for a highly excited
classical hydrogenic atom in a monochromatic Ðeld. In
addition, transition from adiabatic to chaotic ionization

( Physica Scripta 1999 Physica Scripta 59



252 B. Kaulakys* and G. V ilutuss

mechanisms in a low frequency Ðeld is of great interest (see,
e.g., [19] and references therein).

In this paper we present a consistent derivation of the
mapping equations of motion for a one-dimensional clas-
sical atom in a monochromatic Ðeld of any frequency and
analyze transition from regular to chaotic behavior and ion-
ization process. From the fulÐlled analysis we conclude that
the map at aphelion and an approximate analytical criterion
of the onset of chaos are suitable also in the low frequency
region, even for adiabatic ionization, where the strength of
the external Ðeld is comparable with the Coulomb Ðeld.
Moreover, in this case the map can be transformed to a
di†erential equation and solved analytically.

2. Mapping equations of motion

The direct way of coupling the electromagnetic Ðeld to the
electron Hamiltonian is through the A Æ P interaction,
where A is the vector potential of the Ðeld and P is the
generalized momentum of the electron. The Hamiltonian of
the hydrogen atom in a linearly polarized Ðeld
F cos (ut ] Ë), with F, u and Ë being the Ðeld strength
amplitude, Ðeld frequency and phase, respectively, in atomic
units is

H \ 1
2
A

P [ F
u

sin (ut ] r)
B2 [ 1

r
. (1)

The electron energy change due to interaction with the
external Ðeld follows from the Hamiltonian equations of
motion [20]

E0 \ [r5 Æ F cos (ut ] Ë). (2)

Note, that eq. (2) is exact if is obtained from equationsr5
of motion including inÑuence of the electromagnetic Ðeld.
Using parametric equations of motion in the Coulomb Ðeld
we can calculate the change of the electronÏs energy in the
classical perturbation theory approximation [6È8, 11].

Measuring the time of the Ðeld action in the Ðeld periods
one can introduce the scale transformation [16, 18] where
the scaled Ðeld strength and the scaled energy are F

s
\

F/u4@3 and respectively. However, it is conve-E
s
\ E/u2@3,

nient [6È8, 17] to introduce the positive scaled energy e \
and the relative Ðeld strength with[2E

s
F0 \ Fn04 \ F

s
/e02 ,

being the initial e†ective principle quantum number,n0
The threshold values of the relative Ðeldn0 \ ([2E0)~1@2.

strength for the ionization onset depends weaker uponF0
the initial e†ective principle quantum number and then0
relative frequency of the Ðeld than the scaled Ðelds0 \ un03
strength F

s
.

We restrict our subsequent consideration to the one-
dimensional model, which corresponds to states very
extended along the electric Ðeld direction. Such classical
one-dimensional model was Ðrst considered in Refs. [21] for
the description of surface-state electrons, while a justiÐca-
tion of the use of one-dimensional-like states for periodically
driven hydrogen atoms appeared in [22]. Since that the
one-dimensional model is widely used in theoretical analysis
[2È11, 13È17].

For the derivation of a map describing the motion of an
electron in the superposition of the Coulomb and micro-
wave Ðelds we should integrate dynamical equations over
some characteristic period of the system. The peculiarity of

the system under consideration is that we are able to obtain
explicit expressions for the change of the electron energy
only for halves of the period and for the complete period,
T \ 2n/([2E)3@2 \ 2n/ue3@2, of the intrinsic electron
motion in the Coulomb Ðeld [6È8, 11] but not for the
period of the external Ðeld.

Integration of eq. (2) for motion between two subsequent
passages at the aphelion (where and there is no energyx5 \ 0
exchange between the Ðeld and the atom) results in the
change of the electron energy [6, 7, 11] :

*E \ [(nF/E)J
s
@(s) sin Ë.

Here s \ e~3@2 \ u/([2E)3@2 \ u/X is the relative fre-
quency of the Ðeld, i.e., the ratio of the Ðeld frequency u to
the Kepler orbital frequency ) \ ([2E)3@2, and is theJ

s
@(z)

derivative of the Anger function with respect to the argu-
ment z. The derivative of the Anger function

J
s
@(s) \ 1

n
P
0

n
sin [s(x [ sin x)] sin x dx

is a very simple analytical function which can be approx-
imated quite well by some combination [7] of expansion in
powers of s

J
s@
(s) \ 1 ] (5/24)s2

2n(1 [ s2)
sin n s, s O 1

and of the asympotic form

J
s
@(s) \ b

s2@3 [ a
5s4@3 [ sin ns

4ns2 , s ? 1

where

a \ 21@3
32@3!(2/3)

^ 0.4473

and

b \ 22@3
31@3!(1/3)

^ 0.41085.

Introducing the scaled energy e \ [2E/u2@3 and the rela-
tive Ðeld strength we haveF0 \ F/4E02

*e \ [nF0 e02 h(e) sin Ë (3)

where ande0 \ [2E0/u2@3

h(e) \ 4
e

J
s
@(s). (4)

The change of the Ðeld phase Ë after the electron motion
period in the Coulomb Ðeld is

*Ë \ 2nuT \ 2n/e3@2. (5)

DeÐning the scaled energy and the phase before, ande
j
, Ë

j
,

after, passages of the electron of one intrinsice
j`1, Ë

j`1,
motion period we can introduce [23, 24] a generating func-
tion of the map determined asG(e

j`1, Ë
j
)

e
j
\ LG/LË

j
, Ë

j`1 \ LG/Le
j`1. (6)

In agreement with eqs (3) and (5) the generating function is
(see also [3] for analogy)

G(e
j`1, Ë

j
) \ e

j`1Ë
j
[ 4ne

j`1~1@2 [ nF0 e02 h(e
j`1) cos Ë

j
(7)
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and according to eq. (6) it generates the mapGe
j`1 \ e

j
[ nF0 e02 h(e

j`1) sin Ë
j
,

Ë
j`1 \ Ë

j
] 2n/e

j`13@2 [ nF0 e02 g(e
j`1) cos Ë

j
. (8)

Here

g(e) \ dh(e)
de

. (9)

Note that the map (8) can be derived also without intro-
duction of the generating function [6È8, 11] but using the
requirement of the area-preserving of the map (8) deÐned as

L(e
j`1, Ë

j`1)
L(e

j
, Ë

j
)

\ 1. (10)

It should also be noted that the map (14)È(19) in Ref. [7]
is with the positive signs of terms in the right-hand site of
eq. (8) containing the Ðeld amplitudes i.e., it is derivedF0 ,
for the reverse orientation of the atom with respect to the
Ðeld orientation. Also note that a function was inad-sin Ë

k
vertently omitted from the r.h.s. of eq. (15) in [7].

The map (8) is the general mapping form of the classical
equations of motion for the one-dimensional hydrogen
atom in a microwave Ðeld derived in the classical pertur-
bation theory approximation. Some analytical and numeri-
cal analysis of this map has already been done in Refs. [3,
6È8]. Here we analyze di†erent special cases of the map (8).

3. High frequency limit

For relatively high frequencies of the Ðeld, s ? 1 (s P 2),
theoretical analysis of the classical dynamics of the one-
dimensional hydrogen atom in a microwave Ðeld is rela-
tively simple. That is why the energy changes of the electron,

and do not depend on the initial(Ej`1 [ E
j
) (e

j`1 [ e
j
),

energy and relative frequency s ? 1. Indeed, using thee
j

asymptotic form of the derivative of the Anger function,
we have and,J

s
@(s) \ b/s2@3, h(e

j`1) \ 4b \ const., g(e
j`1) \ 0

consequently, the following mapGe
j`1 \ e

j
[ 4nbF0 e02 sin Ë

j
,

Ë
j`1 \ Ë

j
] 2n/e

j`13@2 . (11)

Note, that scaled classical dynamics according to maps (8)
and (11) depends only on single combination of the Ðeld
parameters, i.e., on the scaled Ðeld strength F

s
\ F0 e02 \

F/u4@3 (see also [16, 17]).
By the standard [23, 24] linearization procedure, e

j
\ e0

in the vicinity of the integer relative frequency] *e
j
,

(resonance), with m integer, the map (11) cans0 \ e0~3@2 \ m
be transformed to the standard (Chirikov) map

I
j`1 \ I

j
] K sin Ë

j
,

Ë
j`1 \ Ë

j
] I

j`1 . (12)

Here andI
j
\ [3n*e

j
/e05@2 K \ 12n2bF0/Je0 .

From the condition of the onset of classical chaos for the
standard map, [1, 23È25], we can, there-K P K

c
^ 0.9816

fore, estimate the threshold Ðeld strength for chaotization of
dynamics and ionization of the atom in the high frequency
Ðeld

F0c \ Kc/(12n2bs01@3) ^ 0.02s0~1@3. (13)

Sometimes one writes the map (11) for a variable
N \ [1/2n2u, which change gives the number of

absorbed photons [3, 13],

N
j`1 \ N

j
] 2n(F/u5@3) sin Ë

j
,

Ë
j`1 \ Ë

j
] 2nu([2uN

j`1)~3@2. (14)

We see that for such variables the dynamics of the system
depends on two parameters : on the ratio (in refs.F

q
\ F/u5@3

[16, 17] was called the quantum scaled ÐeldF
q
\ F/u5@3

strength) and on the Ðeld frequency u. Map (14) is, therefore,
not the most convenient one for analysis of the classical
dynamics.

In general there are, however, no essential difficulties in
the theoretical analysis of classical nonlinear dynamics of
the highly excited hydrogen atom in the microwave Ðeld of
relative frequency when the Ðeld strength iss0 \ un03 P 0.5
lower or comparable with the threshold Ðeld strength for
the onset of classical chaos, i.e., if the microwave Ðeld is
considerably weaker than the characteristic Coulomb Ðeld.
In such a case, the energy change of the electron during the
period of intrinsic motion is relatively small and application
of the classical perturbation theory for derivation of the
Kepler map (8) is sufficiently correct. Further analysis of
transition to chaotic behavior and of the ionization process
can be based on the map (8) and for results ins0 ^ 0.3 [ 1.5
the ““impressive agreementÏÏ [5] between measured ioniza-
tion curves and those obtained from the map (8) [5È10].
Even analytical estimation of the threshold Ðeld strengths
based on this map is rather proper [6È8].

Considerably more complicated is the analysis of tran-
sition to stochastic motion and of ionization process in the
region of low relative frequencies, [6È8, 11].s0 O 0.3,

4. Low frequency limit

For the low relative frequencies of the microwave Ðeld,
s > 1, the map (8) can be simpliÐed as well. Using expansion
of the function in powers of s, for s > 1 weJ

s
@(s) J

s
@(s) ^ s/2,

have according to eqs (4) and (9)

h(e
j`1) \ 2/e

j`15@2 ,

g(e
j`1) \ [5/e

j`17@2 . (15)

Consequently map (8) transforms to the formGe
j`1 \ e

j
[ 2nF0(e02/e

j`15@2 ) sin Ë
j
,

Ë
j`1 \ Ë

j
] 2n/e

j`13@2 ] 5nF0(e02/ej`17@2 ) cos Ë
j
.

(16)

This map is slightly more complicated than map (11) for
high frequencies, however, it can easily be analyzed numeri-
cally as well as analytically. Note Ðrst of all, that the energy
change of the electron during the period of intrinsic motion
(after one step of iteration), is considerablyo e

j`1 [ ej o,
smaller than the binding energy of the electron if thee

j
^ e0

Ðeld strength is lower or comparable with the threshold Ðeld
strength, i.e., or2nF0(e02/ej`15@2 ) ^ 2nF0 e0~1@2 > e0 , 2nF0s0 >

if and This indicates that the map1 F0 O F0st ^ 0.13 s0 > 1.
(16) is probably suitable for description of dynamics even in
the low frequency region where the Ðeld is relatively strong.

In Figs 1 and 2 the results of the numerical analysis of
maps (8) and (16) in the low frequency, s O 1, area are pre-
sented. We see that the threshold ionization Ðeld calculated
from the maps approaches the static Ðeld ionization thresh-
old when This supports the presumptionF0st ^ 0.13 s0 ] 0.
that the map (8) is valid even in the low frequency limit
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Fig. 1. Trajectories of the map (8) for di†erent initial conditions, e0 , h0 ,
and di†erent relative Ðeld strength The pictures in the left-hand sideF0 .
correspond to the regular quasiperiodic motion while those in the right-
hand side represent ionization process for a little stronger Ðeld. At e0 ^ 4.3,
i.e., a transition from the adiabatic to the chaotic ionizations0 ^ 0.11
mechanism takes place.

where the strength of the driving Ðeld is of the order of the
Coulomb Ðeld.

4.1. Adiabatic ionization
For low frequencies, 2ns \ 2n/e3@2 > 1, according to the
second equation of map (16) the change of the angle Ë after
one step of iteration is small. As it was noticed above, the
energy change is also relatively small. Therefore, we can
transform the di†erence equations (16) to di†erential equa-

Fig. 2. Relative threshold Ðeld strength for the onset of ionization from
numerical analysis of the maps (8) and (16) and according to the approx-
imate criterion (24)È(25).

tions of the form

de
dj

\ [2ne02 F0
e5@2 sin Ë,

dË
dj

\ 2n
e3@2 ] 5ne02 F0

e7@2 cos Ë. (17)

Dividing the second equation of the system (17) by the Ðrst
one we obtain one di†erential equation

d (cos Ë)
de

\ e
e02 F0

] 5 cos Ë
2e

. (18)

The analytical solution of eq. (18) with the initial condition
when ise \ e0 Ë \ Ë0

cos Ë \ z5 cos Ë0 [ 2z4(1 [ z)/F0 , z \ Je/e0 . (19)

Equation (16) describes the motion of the system in e and
Ë variables, i.e., represents the functional interpendence
between two dynamical variables.

Let us analyze eqs (18) and (19) in more detail. For rela-
tively low values of i.e., for the r.h.s.F0 , F0 \ 25z4 \ 25(e/e0)2,
of eq. (18) is positive for all phases Ë. Therefore, cos Ë and e
decrease and increase simultaneously and, according to eq.
(16), there is a motion in the whole interval [0, 2n] of the
angle Ë. For however, increase of the angle ËF0 [ 25z4,
in the interval 0 [ n goes to decrease of Ë at Ë ^ n. This
results in fast decrease of e and to ionization (see also Fig.
1). It is easy to understand from analysis of eq. (19) that the
minimal value of for such a motion (resulting inF0
ionization) corresponds to and Ë \ n. This value ofË0 \ 0

is very close to the maximal value of resulting fromF0 F0
motion in the whole interval [0, 2n] of Ë, i.e., the maximum
of the expression

F0 \ 2z(1 [ z)/(1 ] z5). (20)

This maximum is at where is a solution of thez \ z0, z0
equation z5 ] 5z [ 4 \ 0, being The criticalz0 ^ 0.75193.
value of the relative Ðeld strength, therefore, is F0c \

which is only 1.5% lower than the adiabatic2z04/5 \ 0.1279
ionization threshold [7, 21].F0st \ 210/(3n)4 \ 0.1298
According to our numerical analysis, if O0.05 the elec-s0
tron remains bounded and the dynamics is regular for F0 O
0.13 while ionization takes place for (see alsoF0 P 0.131
Fig. 1 and 2). These results are very close as well to analyti-
cal conclusions. Note, that some decrease of the threshold
Ðeld strength values with decreasing was observed forF0c s0

Dynamics and classical ionization at such fre-s0 O 0.1.
quencies are, however, essentially adiabatic.

4.2. Chaotic ionization
For higher relative frequencies, ionization is due tos0 P 0.1,
chaotic dynamics of the highly excited electron of the
hydrogenic atom in a microwave Ðeld. There are di†erent
criterions for estimation of the parameters when the
dynamics of the nonlinear system becomes chaotic. For
analysis of transition to chaotic behavior of the motion
described by maps (8), (11) and (16) the most proper, to our
mind, is the criterion related with the randomization of the
phases [24]

K \ max
K dË

j`1
dË

j
[ 1

K
P 1. (21)

Physica Scripta 59 ( Physica Scripta 1999



Kepler Map 255

Here max means the maximum with respect to the phase Ë
j

and variation of the phase with respect to the phaseË
j`1 Ë

j
means the full variation including dependence of onË

j`1 Ë
j

through the variable in eqs (8), (11) and (16).e
j`1

Applying criterion (21) to the general map (8) we obtain
the threshold Ðeld strength

F0c \ e7@2
12n2e02 J

s
@(s)

. (22)

If eq. (22) yields the resulte ^ e0
F0c \ (12n2sJ

s
@(s))~1 (23)

which for s ? 1 coincides with eq. (13).
For more precise evaluation of the critical Ðeld strengths

we should take into account the change (increase) of the
electron energy due to the inÑuence of the electromagnetic
Ðeld. For higher relative frequency s or lower scaled energy

the threshold ionization Ðeld is lower. Therefore, if thee
j

scaled energy decreases as a result of relatively regulare
j

dynamics in a not very strong microwave Ðeld, then the
lower Ðeld strength is sufficient for transition to chaotic
dynamics. For high frequencies such change of the energy is
relatively small. Nevertheless it reveals some resonance
structure in the Ðeld-atom interaction. In the low frequency
limit the energy change is more essential. Now consider it in
detail.

As it was shown above, maximal decrease of the scaled
energy is for the angle and it can be evaluated frome

j
Ë
j
^ n

eq. (20). Taking this into account we have from eq. (16)
according to criterion (21) the expression for the threshold
relative Ðeld strength :

F0c \ e5
6n2e02

\ zc10
6n2s02

(24)

where is the solution of eq. (20) with Equationzc F0 \ F0c .
(20) can be solved approximately expanding in powerszc10
of The result of such an expansion isF0c .

zc10 ^ 1 [ 10F0c ] 30(F0c )2 [ 73.6(F0c )3 (25)

where the last term in the r.h.s. of eq. (25) is from the
requirement of the exact maximal value zc \ z0 \ 0.75193
for the static threshold Ðeld strength F0c \ 0.1279.

For evaluation of the threshold Ðeld for transition to
chaotic behavior in the low frequency Ðeld we should thus
solve the system of equations (24) and (25). For 0.09 Os0 O
0.5 expressions (24) and (25) give an ionization threshold
Ðeld very close to the numerical results (see Fig. 2). For fre-
quencies lower than ionization is adiabatic,s0 ^ 0.09
because for so low frequencies the adiabatic ionization
threshold Ðeld, is lower than the phaseF0c \ 2z04/5 \ 0.1279,
randomization Ðeld evaluated according to eqs (24) and (25).
The adiabatic ionization, therefore, occurs in such a case
earlier than the chaotization of the dynamics. Note, that the
numerical results reveal transition from adiabatic to chaotic
ionization at relative frequency (scaled energys0 ^ 0.1

as well.e0 ^ 4.3)
At higher frequencies ionization is due to chaotic

dynamics while transition to chaotic behavior can be evalu-
ated from the approximate criterion (21) taking into account
the electronÏs energy change by the inÑuence of the electro-
magnetic Ðeld. For frequencies higher than wes0 ^ 0.5

should use a more exact expression than for theJ
s
@(s) ^ s/2

derivative of the Anger function, i.e., eq. (22).

5. Concluding remarks

From the analysis given in this study we can conclude that
the map at aphelion (8) is suitable for investigation of
regular and stochastic classical dynamics, transition to
chaotic behavior and ionization of Rydberg atoms in high,
medium and low frequency Ðelds, even for adiabatic ioniza-
tion when the strength of the external Ðeld is comparable
with the averaged Coulomb Ðeld. For such a purpose it is
unnecessary to use the map at perihelion, the map for two
halves of the intrinsic period or the canonical Kepler map
[7, 11, 18]. Moreover, the approximate criterion (21) for
transition to chaotic behavior yields a threshold Ðeld
strength very close to the numerical results if we take into
account increase of the electron energy by inÑuence of the
electromagnetic Ðeld. Transition from adiabatic to chaotic
ionization of the classical hydrogenic atom in a mono-
chromatic Ðeld takes place at a relative Ðeld frequency
s0 ^ 0.1.

Furthermore, the Kepler map and some generalizations of
it (for two- and multi-frequency [9, 10, 26] or some other
Ðelds, e.g., circular polarized microwave Ðeld, for three-
dimensional atoms and other modiÐcations) are and may be
more widely used for analysis of di†erent e†ects of classical
and quantum chaos in driven nonlinear systems [19, 27, 28].
Note also the attempts to derive and use similar maps in
astronomy for analysis of chaotic dynamics of comets and
other astronomical bodies [29]. It turns out, however, that
in such a case, generalization of the Kepler map for non-
harmonic perturbations and for motion in three-
dimensional space, is necessary.
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