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of Rydberg atoms 

Abstract. A theoretical analysis of the collisional depolar- 
ization of Rydberg atoms is presented. Using the general 
formalism of irreducible tensors for collisional depolar- 
ization and an approximate expression of the collision 
matrix for the Rydberg-perturber scattering, simple ana- 
lytical expressions for the depolarization cross sections of 
different multipoles are obtained. It is shown that depo- 
larization cross sections may be expressed in terms of the 
universal cross section for the collisional broadening of 
Rydberg states. Explicit expressions for cross sections of 
the one-electron nP3/2 and np states are presented. 

PACS: 34.10; 34.60. 

I. Introduction 

The studies of interaction and collisions between the 
highly excited atoms and the surrounding atomic parti- 
cles started more than half a century ago [1]. Various 
theoretical investigations of collisional broadening and 
shift of the Rydberg levels, inelastic collisions between 
Rydberg atoms and neutral atomic or molecular targets 
have been made during the last decade (see [2-10] and 
references therein). Simple analytical expressions have 
been obtained for the cross sections of broadening and 
shift of Rydberg levels by elastic collisions, inelastic 
nl -~ n' l' transitions, and ionization processes. 

On the other hand, collisional depolarizations and 
m-changing collisions of Rydberg atoms are investigated 
only incompletely. We can point to the paper [11] and 
references therein. It is the purpose of this paper to pres- 
ent a consistent approach for the theoretical analysis 
of the collisional vector and tensor depolarization of the 
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Rydberg states and to obtain some analytical expres- 
sions for the polarization relaxation cross sections. Such 
depolarization cross sections can be written according 
to the broadening of Rydberg states taking into account 
the anisotropy of the Rydberg-perturber potential. 
Therefore, the experimental investigation of the depen- 
dences on the quantum numbers of the Rydberg states 
and species of the perturbers can give additional infor- 
mation about the Rydberg-neutrat interaction potentials 
and collisional processes. 

2. Collisional depolarization processes 

The general problem of collisional depolarization of ex- 
cited atoms has been treated by Dyakonov and Perel 
[123, Omont [13], and Wang and Tomlinson [14]. Col- 
lisional depolarization (relaxation of orientation and of 
alignment) of Rydberg states is one of the relaxation 
processes and can be investigated on the basis of the 
irreducible tensors of the density matrix technique [15, 
16]. If one uses a standard representation of the atomic 
states [c~JM), where J and M label the total angular 
momentum and its projection on the z-axis, and c~ den- 
otes the other indices necessary to specify the state, then 
the density matrix p can be written 

P= ~ P~j~u~,pS~M~l~J~M~)(flJ~Mpl, (1) 
~J~ M~ fl J~ M,~ 

with 

P=J=M=,p~M~ = (~J= M=I pl~J~ MI~). (2) 

The relations between irreducible p~(~J~, flJp) and ordin- 
al (2) components are [16, 17] 

k,q 

• ( 3 )  
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p~(~4,fi4)= Z ( -  1)'~-Me 
M~,M~ 

• (J~.JeA4~--Mplkq)p~j~M~,pj~Me. (4) 

The irreducible tensors formalism provides the simplest 
and the most physical expressions for the relaxation 
terms. 

Most relaxation processes can be considered to be 
isotropic, e.g. thermal collisions give a quite isotropic 
relaxation. The evolution of the system is well described 
by a master equation taking into account the random- 
ness of the interaction and all the necessary averages. 

Introducing a relaxation matrix G we can write the 
corresponding master equation for the density matrix 

(d p/d t)r¢, = -- G p, (5) 

where the relaxation matrix G describes a linear transfor- 
mation of the Liouville space L of the system. In the 
semi-classical theory of collisions with one state per- 
turbers one gets for the relaxation matrix [16] 

(~t)~on.=2~Np@ f bdb[S(b,v)pS+(b,v)-p]l,  (6) 

where/'~ is the density of perturbers, the average is over 
the velocities v and the direction of the impact parameter 
b. S is the collision matrix which relates the states after 
the collision 7'' with states before collision 7" by 

T' = S7". (7) 

In the special case of isotropic collisions and relaxation 
within a single Zeeman multiplet I~J} the relaxation ma- 
trix in the irreducible representation is diagonal, i.e., 

dp~/d t = - gk P~, (8) 

where gk are the collisional relaxation rates of the differ- 
ent multipoles of the Zeeman multiplet. They are real 
and positive except go =0 and may be expressed as 

gk = Np (v a k (v)}, (9) 

o- k =2~ ; Elk(b, v) bdb. (10) 
0 

Here a k are the depolarization cross sections of the multi- 
poles rank k and Elk are the irreducible components of 
an intermediate relaxation matrix averaged over the 
Euler angles of collision axes 

/]k= 1-- ~ (--1) 2J-N-w 
MNM'N'q 

2 
Since (1i) is rotation-invariant, the matrix elements of 
S may be expressed in any frame [16]. 

It follows from (1 I) the relationship 

~ ( 2 k +  I ) / / k = ( 2 J +  1) 2 -  ~ SMMS*~., (12) 
k MN 

which relates the summed intermediate relaxation rate 
with the diagonal matrix elements of the collison matrix 
and may be used for checking the accuracy of calcula- 
tions. 

3. Depo lar iza t ion  cross  sect ions 

Thus, the main problem in the theory of collisional relax- 
ation of the excited states is the calculation of the col- 
lision S matrix for the Rydberg-perturber scattering. A 
theoretical analysis of the Rydberg-neutral collision pro- 
cess taking into account the anisotropy of the Fermi 
potential [18] and rotation of the diatomic axis [19] 
results to approximate expressions for the S matrix of 
t nl} and ]n j}  one electron states. In the convenient col- 
lision frame of reference with the z-axis directed opposite 
to the collision velocity v and y-axis opposite to the 
impact parameter b (see [10]) the most significant matrix 
elements of the collision matrix are S . . . .  Sin,-m and 
S,v,m ~. Therefore, if in some frame of reference the S 
matrix may be written as 

SM, M = 5M, M SMM ~- 5--M',M S-M,M, (13) 

then, according to (i 1) 

E1 k = 1 -- ~ --N SMM S*N 
MNq 

, ;)2 
- ( - 1 )  k2 2 - M  IS-M'M[2' 

M > 0  

(14) 

In the following we mainly restrict our consideration 
to the collisional depolarization of nP3/2 and np states. 

3.1 Depolarization of nP3/2 states 

In the paper [10] the approximate expressions for the 
matrix elements of the S matrix for the Rydberg-neutral 
scattering described by the superposition of the polariza- 
tion potentials and the Fermi potential have been de- 
rived. For the scattering in nP3/2 states the non-zero 
matrix elements of the approximate S matrix may be 
written as 

S t  ]2 ,1 /2  = S _  1/2, -- i / 2  = e x p  (-- i ~ 1/2), 
$3/2,3/2 = S_ 3/2, - 3/2 = exp ( - i t/3/a), (15) 

where t/l/2 =½~le, I/3/2 =~r/e and 

~e(b)= -L/(2vn*3]/b) (16) 

is the semiclassical phase-shift due to the isotropic part 
or the Fermi potential, with n* and L being the effective 
principal quantum number of the Rydberg state and the 
electron-perturber scattering length, respectively [3]. 

From (10), (t4)-(16) we have the depolarization cross 
sections of the different multipoles (rank k) 

f r O = 0 ,  (71 = 0 "  3 =~a;(L), 4 , c~2 = ~re(L), (17) 
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Fig. 1. Dependence of the normalised universal cross section a'. 
=(r'e(L)/4~n .4 on the relative effective principal quantum number  
nr=n*/n* according to (18) 

where a'e(L)=a'(O, L) is the broadening cross section of 
the Rydberg state with the effective principal quantum 
number n* due to the Fermi potential, without taking 
into account the polarization attraction of the perturber 
with the core of the Rydberg atom, i.e. with c~= 0 (see 
[10]). a'e(L) may be calculated according to (26) from 
the paper [3], i.e. 

[ 4rcn .4 n* < n* : (ILl/4v) 1/4, 
~; (L)=~  8~n1.8 / n~ .8  " 

[ ~ - [ 1 - 2 ~ g  ), n*>n~;. 
(18) 

A representative plot of normalized cross section against 
the relative effective principal quantum number is shown 
in Fig. 1. 

3.2 Depolarization of np states 

For np states the approximate non-zero matrix elements 
of the S matrix may be written as [10] 

Soo = e x p ( - i q 0 ,  $11 =S_ 1._ i =½[exp(-i t /+)  + 1], 

S _  1 , 1  = S 1 ,  - 1 : 1 [exp(-- i t /+)-  1], (19) 

where tl~=~c~/4vb 3 is the scattering phase-shift due to 
the polarization attraction between the perturber and 
the core of the Rydberg atom while t/+ =3t/e. Analysis 

of (i0), (14), and (19) shows that the influence of the 
phase t/c is negligible and as a result we have 

~0=0, ~1=~-o;(3/J, ~2=~;(3L). (20) 

Here a'e(3L) is the broadening cross section calculated 
according to (18) with replacing L by 3L. We see that 
the depolarization of np states is more effective, than 
of nP3/2 states. 

The depolarization cross sections of otlaer states may 
be calculated in the similar way. The main problem, how- 
ever, is the evaluation of the collision S matrix for the 
Rydberg states. 

It should be noted that the relaxation rates of the 
hyperfine Zeeman multiplets may be expressed in terms 
of the relaxation rates for the electronic multipoles (8)- 
(10) (see, e.g. [16]). 

4. Conclusions 

Theoretical analysis of the collisional process between 
a Rydberg atom and a neutral atomic particle taking 
into account the anisotropy of the Rydberg-perturber 
potential results in simple analytical expressions for the 
cross sections of collisional polarization relaxation of 
the Rydberg states due to the Fermi potential. In addi- 
tion, the dependences of the collisional depolarization 
cross sections on the effective principal quantum number 
of the Rydberg state and on the electron-perturber scat- 
tering length may be expressed in terms of the universal 
cross section (18). However, the strength of the cross 
section's dependence on the scattering length varies with 
the electronic states (compare, e.g. (18) with (20)). 

While the broadening of optical lines is essentially 
determined by the isotropic part of the potential, the 
depolarization is entirely caused by its anisotropic part. 
So, both types of observations are required to get infor- 
mation about the whole potential. Comparison of the 
theoretical cross sections with experimental results 
would give additional information about the Rydberg- 
neutral interaction potentials and collisional processes. 
On the other hand, the broadening of the Rydberg levels 
is caused by the superposition of the polarization poten- 
tial and the perturber-Rydberg-electron short range in- 
teraction. In addition, the broadening of the high Ryd- 
berg levels is determined by the interaction of the per- 
turber with the core of the Rydberg atom [10], while 
the depolarization is essentially caused by the interaction 
of the perturber with the Rydberg electron. Therefore, 
the experimental investigations of dependences of the 
collisional depolarization of the Rydberg atoms on the 
spectral terms, fine structure, effective principal quantum 
number, and species of the perturbing particles are desir- 
able. 

The calculations of the cross sections for the collision- 
al polarization relaxation of the Rydberg states in the 
free electron model is not a straightforward generaliza- 
tion of the method [7, 9] but a task for the future. 

The support of the Alexander-von-Humboldt-Stiftung is appreciat- 
ed with thanks. 
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