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Abstract

A program for computing pure angular momentum coefficients in relativistic atomic structure for any scalar one- and two-
particle operator is presented. The program, written in Fortrd@®and based on techniques of second quantization, irreducible
tensorial operators, quasispin and the theory of angular momentum, is intended to replace existing angular coefficient modules
from GRASP92. The new module uses a different decomposition of the coefficients as sums of products of pure angular
momentum coefficients, which depend only on the tensor rank of the interaction but not on its details, with effective interaction
strengths of specific interactions. This saves memory and reduces the computational cost of big calculations significantly.
0 2001 Elsevier Science B.V. All rights reserved.

PROGRAM SUMMARY Computer for which the program is designed and has been tested:
IBM RS 6000, PC Pentium I

Titie of pragram: ANCO Installations: University of Kassel (Germany)

Catalogue identifier: ADOO Operating systemstBM AIX 4.1.2+, Linux 6.1+

Program obtainable from: CPC Program Library, Queen's Uni-  program language used in the new versiohNS| standard Fortran
versity of Belfast, N. Ireland. Users may obtain the program also g9g,95

by down-loading the tar file at i p- anco. t ar from our home
page at the University of Kassel (http://www.physik.uni-kassel.de/  pMemory required to execute with typical data00 kB
fritzsche/programs.html)
No. of bits in a word: All real variables are parametrized byga-
Program Summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADOO | ect ed ki nd par anet er . Currently this is set to double pre-
cision for consistency with other components of the RATIP pack-
Licensing provisions:None age [1]

Y This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADOO
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No. of bytes in distributed program, including test data, efi6:941

Distribution format: Compressed tar file. On a UNIX (or compati-
ble) workstation, the commanchconpr ess uncompress this file
and the command ar -xvf ratip_anco.tar reconstructs
the file structure

Keywords: Atomic many-body perturbation theory, complex
atom, configuration interaction, effective Hamiltonian, energy level,

Racah algebra, reduced coefficients of fractional parentage, reduced
matrix element, relativistic, second quantization, standard unit ten-

sors, tensor operators/®-subshell

Nature of the physical problem

The matrix elements of a one-electron tensor operﬁfbof rank k
with respect to a set of configuration state functi¢ps/;) can be
written" tikj (ab) (a|A*¥|b) where the angular coefficieml% (ab)

are independent of the operatatk, i, j are CSF labels and, b
run over the relevant interacting orbital labels. Similarly, the ma-
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leads to a more efficient evaluation of (many-particle) matrix ele-
ments and to faster execution of the code [4].

Restrictions on the complexity of the problem

Tables of reduced matrix elements of the tensor operaf6ré and
w*a%;) are provided forij) with j = 1/2, 3/2,5/2,7/2, and 92.
Users wishing to extend the tables must provide the necessary data.

Typical running time
3.5 s for both examples on a 450 MHz Pentium Il processor.

Unusual features of the program

The program is designed for large-scale atomic structure calcula-
tions and its computational cost is less than that of the correspond-
ing angular modules of GRASP92. The present version of the pro-
gram generates pure angular momentum coeﬁiciqﬁ}l(ﬁb) and

v{‘j (abed), but coefficientszfj (ab) with k > 0 have not been en-
abled. An option is provided for generating coefficients compatible

with existing GRASP92.

Configurational states with any distribution of electrons in shells
with j < 9/2 are allowed. This permit user to take into account the
single, double, triple excitations form opén and f-shells for the
systematic MCDF studies of heavy and superheavy elements (Z
95).

trix elements of the Dirac-Coulomb Hamiltonian can be written in
the formy",, 19 (ab) (alHp D) + Xk Y apea V¥ (abed) XF (abed)

N ab *ij D k Zuabed Vij ’
whereHp is the one-electron Dirac Hamiltonian operator, with ten-
sor rank zero,vl(‘j (abced) are pure angular momentum coefficients

for two-electron interactions, ark¥ (abed) denotes an effective in-
teraction strength for the two-electron interaction. The effective in-
teraction strengths for Coulomb and Breit interaction have different Reaferences

selection rules and make use of subsets of the full set of coefficients [1] 5. Fritzsche, C.F. Fischer, C.Z. Dong, Comput. Phys. Com-

k
v; (abcd). ) ) ] ) mun. 124 (1999) 240.
Such matrix elements are required for the theoretical determina- [2] I.P. Grant, in: S. Wilson (Ed.), Methods of Computational

tion of atomic energy levels, orbitals and radiative transition data Chemistry, Vol. 2, Plenum Press, New York, 1988, pp. 1-71;
in relativistic atomic structure theory. The code is intended for use K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer
in configuration interaction or multiconfiguration Dirac—Fock cal- Comput. Phys. Commun. 55 (1989) 425:

culations [2], or for calculation of matrix elements of the effective F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 92
Hamiltonian in many-body perturbation theory [3]. (1996) 249.

[3] G. Merkelis, G. Gaigalas, J. Kaniauskas, Z. Rudzikas, lzvest.

Method of solution Acad. Nauk SSSR, Phys. Ser. 50 (1986) 1403.
A combination of second quantization and quasispin methods with [4] G. Gaigalas, Lithuanian J. Phys. 39 (1999) 80.

the theory of angular momentum and irreducible tensor operators

LONG WRITE-UP

1. Introduction

The improved accuracy of modern experiments challenges theorists to match or exceed experimental precision.
Models of many-electron atoms and ions require both relativistic and correlation effects to be taken into account;
this can be done, for example, by using various versions of perturbation theory, the configuration interaction
method, the multiconfiguration Hartree—Fock method [1] or the multiconfiguration Dirac—Fock method [2].

The evaluation of matrices of one- and two-electron operators for many-electron statgscanipling is
customarily done by expressing each matrix element as a sum of products of angular coefficients and radial
integrals. This strategy, based on earlier work by Fano, was adopted for the MCP program [3,4] for evaluating
angular coefficients for the Coulomb interaction and the related MCBP program [5] for evaluating angular
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coefficients for the Breit interaction. Whilst this strategy was adequate on the relatively low-powered computers
of the 1970s, it is now possible and desirable to use very large configuration sets which require a more efficient
strategy. The new program attains this objective by building up the angular coefficients for one- and two-electron
interactions from a relatively small number of common spin-angular parts in the manner of [6-8].

The theoretical background is presented in Section 2, program organization in Section 3, testing and timing
studies in Section 4 and simple test problems in Section 5.

2. Theoretical background
2.1. Dirac—Coulomb Hamiltonian

As usual, multiconfiguration self-consistent-field calculations in relativistic atomic theory are based on the
Dirac—Coulomb Hamiltonian:

N 141
Hpc=) Hp(i)+5) —. 1)
i=1 ij=1"

Hp(i) is the Dirac one-particle operator,
-~ Z

Hp = ca(i) - pi+[B() = 1]e® = =, @
1

and the second term in (1) represents the Coulomb interaction of pairs of electrons. In Edefi@}es the speed

of light; (i) andB(i) are 4x 4 Dirac matrices for theth electrony; and p; are the radial coordinate of thiéh

electron and its (3-) momentum, respectively. The first two terms of (2) comprise the Dirac kinetic energy operator.
Both configuration interaction and multiconfiguration Dirac—Hartree—Fock calculations require the matrix

elements ofﬁDc with respect to a basis of-electron configurational states labellgg J.),r = 1,2,3,....

The present program computes the pure angular coefficigriish) (only for k = 0 in the present version) and

vk (abed) in the expression

(e Jr | Hpe lys Js) = Z{tﬁl (ab)(a|Hplb)+ ) > vl (abed)x© <abcd)}, €)
ab k cd

whereX® (abcd) is the effective interaction strength of the two-electron interaction with respect to the orbitals
concerned. Here in (3), the interaction is the Coulomb potential only, where

X®@abed) = (=DMnalaja| P |ncle je)nply j | C® || nala ja)

x RE(nala janplp joncle jenala ja), (4)

but the formalism can also be used for the Breit interaction, with a different definiti&fofzbcd) and different
selection rules. Eq. (3) is a rearrangement of the formula used in GRASP92 [9, Eq. (3.10)],

(e e | Hpe lys Js) = Z{ Trs(ab)I(ab)+» Y " VP (abed) R"‘><abcd)}, (5)
ab k cd

where
I(ab) = (a|Hplb)
and
R© (abcd) = (ab’r<k/r>k+l‘cd)
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is a relativistic Slater integral over orbitalsb, ¢, d (in the usual notation). Whilst the one-electron part is the same,

Eq. (5) expands the effective interaction strength as a traditional sum of Slater integrakéf)a(nﬁcd) therefore

differs from v,(’§) (abcd). The latter can be used fanytwo-electron interaction, and it is no longer necessary to
treat Coulomb and Breit interactions on a different footing in the manner of GRASP92. Other intractions such as
the lowest-order normal mass shift and the specific mass shift [9, Egs. (3.12—3.14)] can be handled within the same
scheme. The way in which the coefficients are built up is described below.

2.2. One-particle operators

The matrix elements of a one-particle scalar operﬁ@? between configuration state functions wittopen
shells can be expressed as a sum over one-electron contributions

(W D[ F QN = D0 (WD Firinjip) [wih), (6)

niki,njKj
where
(W) | F(niki njicj) | a)
= (D225 + 1R (i, jj, AP A S (i, i) (nici | £ O |n ;)

{3(”15”1)(1 %sz||[a§7z” Xa(qu/lz](O)HJ @ Qi J;)

o LN .N; (

(150 ) (G e 01 |aglg e 001) (s 0,010 ) @;0,7))}-

All states are defined irjj-coupling. (I//bra(J)H and ||I/fket(.] )) are respectively bra and ket functions with

u open subshellsy = (2j + 1)(I — j), (niki|l f© >||nJKJ) is the one-electron reduced matrix element of the
operatorF ©, APR= (43, Jj, I, )b’aandA"et—(Jl,JJ,Jl , Jj)*€t denote the respective sets of active subshell
angular momenta. The operator,% are second quantization operators in quasispin space ofganl/2.

The operatom;‘j-z’g1 = a,(,,/) creates electrons with angular momentum quantum numypers and its conjugate

(:11J/)2m = N,(,{,) =(=1)J— ’"fa(”Jr annihilates electrons with the same quantum numjers in a given subshell.

2.2.1. Recoupling matrix
The recoupling matriR (j;, j;, AP AkeY in (6) is particularly simple. Itis either a product of delta functions [6,
Eq. (18)]whem;k; = n jx; or acombination of delta functions ang-8oefficients [6, Eq. (22)] whem;k; # n j« ;.

2.2.2. Matrix elements of irreducible tensor operators
By applylng the Wigner—Eckart theorem in quasispin space we obtain the submatrix elements of operators of
typea 97) in the form [10]

(NaQi|ad? |V e’ Q')

-1/2 Q/ 1/2 Q -N i . Al
o2 2 v 2 | (heeslle i 0 ) ™
where we have used the conventional shorthand noté®br- 1) - - -- = [k, .. .], and the last factor is a reduced

coefficient of fractional parentage. The submatrix elements of the simplest compound tensor operator of type

lany x ayf, 1% uses
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(i @@ |[aff]) x af D1 |nj™ o/ @)
:Z[Q]1/2|: 9 q kq}[Q/’ kq Q]
P Mgl Mg2 My MQ mg Mo
x (nj aQJ||W* ) ||nj o’ Q'J), (8)
where(nj a QJ ||W*k) ||nj o’ Q' J') denotes the reduced matrix element of the tensor opeWatol) (nj, nj) =

[ x a(‘f{')](qu-f) in guasi-spin space. In terms of the fully reduced coefficients of fractional parentage
(jaQJlla || je’Q'J"), we find

(1@ [[WO [nje @'

T+ Q'+ +hg+k; 1/2 9 q k JoJ kj
a//Q//]//
x (jaQJla " |je" Q" ") (ja" Q" 1" ||a" 7|’ Q). ©
This construction has the advantage that the completely reduced matrix elements on the right-hand side of (7)
and (8) are independent of the occupation number of the shell, and so reduces requirements of storage in
comparison with earlier work. These formulae are evaluated in the modble r cf p [11].

The phase factor arises from the reordering needed to match the recoupled creation and annihilation operators
in the bra and ket vectors. We have

A =0, (10)

whenn;k; =njk;; otherwise

b—1
A=1+)"N, (11)
r=a

whereN, is the occupation number of subshell: = min{i, j}, andb = maxi, j}.

2.2.3. The one-electron submatrix element
It only remains to define the one-electron interaction matrix element

(nici | £ k)
in (6). The only operator required in this implementation is the matrix element of the Dirac operator, a tensor
operator of rank zero,
(nixi || Hp |njic;) = I(ils ji nili ji)8 (ki &), (12)
where I (n;l; j;i,nil;j;) is defined by [12, Eq. (22)]. The Dirac kinetic energy operator, denoted’ by [9,
Eq. (3.13)], can be obtained from this by setting the nuclear chérg®. The coefficientd;(ab) in (3) can now

be identified by inserting (12) in (6). Meanwhile the pure angular coeffic'ué’msb) for one-electron operators
can be identified by inserting

(nirci| £ njrj) =1
in (6).

2.3. Two-particle operators

According to [6], the matrix element of any two-particle scalar 0per€16"tk0) between configuration state
functions withu open shells, can be written
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WG O un)

- > (W) |G ik, mjicj, ke, jric i) | WR€4(T), (13)
I‘lil(i,l‘ljl(j,l‘li/l(l-/,nj/l(j/
where
(W2 |G (nini, mjic s miricir, i ) | W),
=Y (=120 iliji.njlj jj. nilisjir.njljrjjr, &)

ka2

X T(nijisnjjj.nicjirsny iy A% AY 8, DVR(ji, jjo jirs Jjr AP AL T),
I" specifies the recoupling scheme required for each matrix elemerf awthen required, specifies the coupling
scheme of the tensor operators defining each matrix element. The opgéf&t®rcouples tensor operators of rank
k for each electron to give an overall scalar operator.

From (13) we see that the matrix element of any two-particle operator can be written as a sum over all possible

sets of active shell quantum numbess;, njk;, nyk;, njk ;. The systematic analysis of [6] aims to minimize
the computation needed in this expansion. The parameter distributions are presented in Table 1. Note that for
distributions 2—-5 and 19-42 the subshell labels are ordered se th# < y < §, while for distributions 6-18 no
conditions upon the ordering are imposed. We discuss these structures in more detail below.

2.3.1. Recoupling matrix

The recoupling coefficients defined in [3-5] did not reduce the recoupling coefficients to their simplest forms
but relied on the analysis module of the NJSYM package (later NJGRAF) to perform the reduction mechanically.
The analysis [6] leads to simpler forms denotedRyy;, j;, ji'. jj’» AP AKet ™y In the case of one interacting
shell R(ji, jj, jirs jj» Abra pket 1y reduces to delta functions [6, Eq. (18)]. For two, three and four interacting
shells, the recoupling coefficients are given by [6, Egs. (22), (23) and (24)], repladingy j, J, respectively.
The recoupling parameters for each distribution can be found in Table 1.

2.3.2. Matrix elements of irreducible tensor operators

The expressiond’ (n; ji,njjj,niji,njjj, Ab@ Aket = )y are matrix elements of standard subshell cre-
ation/annihilation operators

a=ay), (14)
W= (et < alf ] )
aW = [ar(r;]q{_) X [af,,qqé) X ar(nqqé)](ku)](b), (16)
Wa = [[aﬁfq{) X a,(,iiqé)](klz) X a,(r?qé)](kZ), a7
WW = [[a’(nqq/l') « a’(nqqé)](k) « [aﬁfqé) « a,(nqqﬁ)](k)](o). (18)

The creation and annihilation operators in (14)—(18) refer to a single subshell. The evaluation of the submatrix
elements of operators of type(14) and the simplest compound tensor operator of Wp€l5) was explained in
Section 2.1.2. For types (16)—(18), we use the formula

(0" @ QI IV S (nj) x VED ) ©nj o Q')
=(_1)J+]/+k[k]l/2 Z {ﬁ:l; ]}2 .]k//}’
a//Q//J//
x (I”leC(QJHU(kl) (I”l])Hi’l]NH o Q//J//) (an” a//Q//J// |V(k2) (I”l])HI’l]N/ OZ/Q,J/), (19)
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Table 1
Scheme of the definitions for matrix elements of any two-particle operator. The operatérsa W and Wa defined in (14)—(18) act on the
indicated subshells

No. i Jj i’ j/ r = o B y ) %

1. o o o o — Jask ww - - - -

—_ ja w _ —_ — —_

2. o B o B k Jas Jp w w - - 0

3. B o B o k Jas Jp w w - - 0

4, o B B o4 k12 Jas jp w w - - 0

5. B o o B k12 Ja» JB w w - - 0

6. a a B B k12 Jas jp w w - - Ja +Jjp t+k12

7. B o o o i Jar k12 aW a - - k+kqio

8. o B o o Jg Jar k12 aW a - - k

9. B B B o Jou Jjps k12 a Wa - - k+ k12

10. B B o B Ja Jjps k12 a Wa - - k

11. B y o y Jos Jg k - a a w - 1+ja+jg—k
12. y B y o Jos gk - a a w - 1+ ja+jp—k
3. v B a y Jas jgrk12 - a a w - 1+ ja+jg—ki2
4.1 B y Y a Jas jgrk12 - a a w - 1+ ja+jg—ki2
5. v y o B Jas jgs k12 - a a w - Ja +Jy + k12

16. Y Y B o ja»jﬁ»k12 - a a w - Ja +Jy

17| « B y y Jas jgrk12 - a a w - Ja +Jjp +k12

18. | B o Y 12 Jas jpr k12 - a a w - ig+iy

19| « B y s Jos JBs Jy s Js - a a a a Ja +Jjp +k12
20.| B o y s Jas Jgs Jy s Js - a a a a jp +Jy tki2
21. | « B s y Jo Jgs Jy Js - a a a a g+ Jy

22.| B @ 8 Y Jas i Jys s - a a a a Jg+ .y

23. | v 3 o B Jas Jgs Jy s Js - a a a a Ja + Jjs +k12
24. | vy 3 B o Jas Jgs Jy s Js - a a a a Ja + Jjs +k12

25. 3 Y a B ja»jﬁ»jyyjé - a a a a Joa + Js

26. 3 y B o Jas Jgs Jys Js - a a a a Ja +Js

27. o y B 8 Jos JBs Jy s Js - a a a a 0

28. o y ) B Jos JBs Jy s Js - a a a a 0

29. | vy a s B Jas Jgs Jy s Js - a a a a 0

30. | v o B s Jos JBs Jy s Js - a a a a 0

31. B 3 a Y ja»jﬁ»jyyjé - a a a a jot+jﬁ+jy +Js
32. 3 B Y o Jas Jgs Jys Js - a a a a Je+jg+jy +is
33. B 3 Y o ja»jﬁ»jyyjé - a a a a jot+jﬁ+jy +Js
34. 3 B o Y Jas Jgs Jys Js - a a a a Ja+ip+Jy s
3. | « 3 B y Jas Jgs Jy s Js - a a a a 1+jy+Jjs—k
36. ) o y B Jos JBs Jy s Js - a a a a 1+ jy +js—k
37. | « 3 y B Jas Jgs Jy s Js - a a a a 1+ jy +Js — k12
38. 3 o B y Jas Jgs Jy s Js - a a a a 1+ jy +Js — k12
39. B y o 8 Jos JBs Jy s Js - a a a a 1+ja+jg—k
40. | vy B 8 o Jas Jgs Jy s Js - a a a a 1+ ja+jp—k
41. | B y 8 a Jos JBs Jy s Js - a a a a 1+ ja+jg—ki2
42. | y B a s Jos Js Jy s Js - a a a a 1+ ja+jg—kio
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where U*D (nj), V&2 (nj) are either of type (14) or type (15). The occupation numhéris defined by
second quantization operators occurrind/ifft) (nj) and V%2 (nj). The module abs_r cf p [11] performs the
evaluation of these formulae.

2.3.3. Phase factora

These arise from the reordering necessary to match the recoupled creation and annihilation operators in bra and
ket vectors contributing to the matrix element. For each of the cases considered in Table 1 we find

Casesl-6:

A=0. (20)
Cases/—18:
j—1
A=1+)"N, (21)
r=i

whereN, is the occupation number of subshellf « < 8, theni =«, j = 8, and ifa > 8, theni =8, j =«.
Casesl9-42:

p-1 5—1
A= "Ne+ > Ni (22)
k=« k=y
2.3.4. The coefficien®’(n;1; j;, njljjj,nilyji,npljji, &)
The effective interaction strength of ordeof a two-electron operator, is denoted by
(nili jinjl;jj|lg®0 [nirtis jim )
in [7] and by

XKl jiynjlyjj,onili il jir)

in [12]. The coefficients?’ (n;1; ji, n;l;j;, nirly jir,njlj jr, E) for the different cases tabulated in Table 1) have
different multiplicative factors defined as follows:
Casel: Single subshelleaa)

@;]g (Nala jo, nala o, Nala jos Nala Jo, &)
1 . . . .
= 5 (k] 1/2(nala]anala]a ”g(kk) ||nala]anala]a)8(k12a k) (23)
and

@;11; (Nala jos Nala jo, Nala jo, Nala ju, E)
= (=D [al 3 (nola jonale jo| 8 | nala janale ju)8 k12, 0). (24)

Cases?, 3, 11, 12, 27, 29, 31, 32, 35, 36, 39, 40: Subshell assignn@ais, BaBa, Byay, yBya, aypBs,
yadB, Boay, Bya, adBy, Sayp, Byad, yBéa

@’(n,-l,-j,-, njljjj, n,-rli/j,-r, nj/lj/jj/, E)
1 o . .
= (DY SR 2 (il i | ¢ il jim 11 )8 (Kaz, ). (25)

Cases, 15-26: Subshell assignmeatgss, yyafB, yyBa, aByy, Bayy, aBys, Bady, aBdy, Bays, ysap,
SyBua, yépa, dyap
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O'(n;l; ji, niljjj,nplyjir,nply i, &)

1 2 ] j'/ k . . . .

:(_1)““«)5[]“2]1/ {]], jlj klz}(”ilili”jljljHg(kk)||”i’li/1i’”j’lj/1j/)- (26)

Casedt, 5,7, 8,9, 10, 13, 14, 28, 30, 33, 34, 37, 38, 41, 42: Subshell arrangesp@atsfacf, faaw, afac,
BBBa, BBaB, yBay, Byya, aydp, yaBs, Bdya, sBay, adyp, SaBy, Byda, yBad

@’(n,-l,-j,-, njljjj, I’l,‘/li/ji/, nj/lj/jj/, E)

1 w2 | ji Ji k . . kk . .
= (=D lk2l / {]; j.l,'/ ki (nili jinjl; ji || "0 | nirtis jim e j7). (27)
The phase factorg in expressions (25)—(27) are defined in colugof Table 1. This construction exploits the
common tensorial structure of any scalar two-electron operators as the Coulomb, Breit and Gaunt interactions [12]
and exploits this similarity to simplify the calculation of spin-angular coefficients. The relativigtapupling
expressions for the effective interaction strength of the Coulomb interaction [12, Eq. (86)] is

(nili jin 1 ji || " | nirtis jim i1 )
= (=D nili ji | CP||nirtis jir)n 1 i | €O m ol iy )R (il im i jimarkis jirm ol o). (28)

We can now identify the coefficientk’r"s (abcd) of (3) by substituting the results above in (13). The same
construction can be used for the Gaunt interaction (the leading part of the magnetic Breit interaction) [12, Eq. (91)]
and for the full transverse Breit interaction [12, Eq. (101)], although the selection rules and the effective interaction
strengths corresponding to (27) are, of course, different. The pure angular coefﬁi'{fjemb&d) for two-electron
operators are the same for all these operators sincg thebcd) can be identified by inserting

(nili jinjl; j; | §*® | nirti jim 0 j) =1
in (13).

3. Program organization
3.1. Overview of the program

The program ANCO constructs the pure angular coeﬁicié{msb) for one-electron operators and w{g(abcd)
coefficients contributing to matrix elements of the Dirac—Coulomb—Breit Hamiltonian. The coeffi¢igi®)
and VX (abcd) used in GRASP92 and earlier version of the system are available as an option. The new format
generates what we have called “pure” angular momentum coefficients which can be used unchanged with any
one-particle tensor operator of rank 0, and any two-particle interaction. The Coulomb and Breit interactions use
different subsets of the complete setv(j;‘(abcd) coefficients, which are selected automatically when multiplying
by the relevant effective interaction strengths to complete the matrix element calculation. The MCP and MCBP
modules of GRASP92 calculated the full matrix elements for each of these subsets, so that the new formulation
reduces the computational overheads and the memory requirements, which renders ANCO more suitable for large
scale problems.

There are two new modulegsabs_r ecoupl i ng andr abs_anco for extracting spin-angular coefficients
relating to formula (13). The moduteabs_r ecoupl i ng evaluates recoupling coefficients i, j;, AP AkeY)
andR(ji, j;, ji, jj, AP A¥®Y I) as described in [6], moduteabs_r cf p [11] evaluates th& (n; ji, n;j j;, nit jir,
njjj, Abra pket =y whilstr abs_anco evaluates all the contributions to (13) for both scalar one- and two-
particle operators.

The program ANCO can be run in two modes. The interactive mode is intended for testing the program and
for performing short calculations involving a small number of configurations. Normally the madaitess anco
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andr abs_r ecoupl i ng will be interfaced to GRASP92 or to some other program with compatible data structure
to perform multiconfiguration or configuration—interaction relativistic calculations. The program can handle any
combination of open subshells with< 9/2, but subshells witlj > 9/2 are only allowed if they contain not more
than two electrons.

ANCO is written in Fortran 9095 and is designed as an addition to the RATIP package [13]. The new Fortran
90/95 standard enables us to define new derived data types which will enable us to incorporate this module in
our continuing development of large-scale computations for open-shell atoms and ions. The full definition of the
various derived structures can be found in the module headealo$ anco. Here we need only those types
which concern the program output.

All information about pure spin-angular coefficients of scalar one- and two-particle operaigad) and
vfs(abcd) coefficients) of the Hamiltonian matrix or of some part of it is summarized in the derived data
anco_pair_list.

type(anco_csf_pair), dinension(:), pointer :: anco_pair_Ilist

which is defined by

type :: anco_csf_pair
i nt eger Lr, s
i nt eger :: no_t_coeff, no_v_coeff
type(anco_t_coeff), dinmension(:), pointer :: t_coeff
type(anco_v_coeff), dinmension(:), pointer :: v_coeff

end type anco_csf _pair

The integers ands respectively index the bra- and the ket-configuration state functions (CSF) for the current
matrix element. The variablao_t coeff is the number of pure spin-angular coefficients of one-particle
operators that can be constructed for the pais, and the variableo_v_coef f gives corresponding data for
two-particle matrix elements. The arrapnco_v_coef f contains pure spin-angular coefficients for two-particle
scalar operators. It is defined by

type :: anco_v_coeff
i nt eger ook
type( nkappa) - a, b, c, d
real (ki nd=dp) Y

end type anco_v_coeff
wherek is the rankk of the effective interaction strength, b, c¢, d pointto the relevant subshelig/; j;,
njljjj, nily jir, njly jjr, and the pure spin-angular coefficient itself is givewinrhe arrayanco_t _coef f is
defined in the same way.

Memory for the arrayanco_pai r _| i st is allocated dynamically using the

al l ocate( anco_pair_list(1:nunber_of pair_list_max))
instruction, and can be deallocated subsequently.

3.2. Interactive calculations

A typical interactive dialog for calculating spin-angular coefficients is shown in Fig. 1.

Enter a file nane for the anco.sumfile:
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ANCO Cal cul ation of angul ar coefficients for symretry-adapted CSF functions
fromthe GRASP92 structure program (Fortran 90 version)
(C) Copyright by G Gedimnas and ot hers, Kassel (2000).

Enter a file nane for the anco.sum file:
test.sum

Enter the name of the configuration symretry list file:
argon-sd.inp

Loadi ng configuration symretry list file ...

There are 16 relativistic subshells;

there are 761 relativistic CSFs;

| oad conpl ete.

Generate only non-trivial angular coefficients which include
(at | east one) open shells ?

yGenerate one-el ectron angul ar coefficients for scalar interactions ?
g Generate CGRASP92-1ike T coefficients for scalar interactions ?
yGenerate two-el ectron angul ar coefficients for scalar interactions ?
g Generate CGRASP92-1i ke V*k coefficients for scalar interactions ?
yEnter a file nane for the anco.vnu file:

test.vnu

Fig. 1. The typical interactive dialog for calculation spin-angular coefficients.

After this prompt, the user should insert the output file name to which the main output data will be written. This
must be followed by the name of the input file listing CSF in the GRASP92 format. The next question

Cenerate only not trivial angular coefficients which include (at |east one)
open shells ?

The responsg or Y will cause the program to calculate coefficients for peel shells only; the repoasél the
program calculate will yield data for all shells (open and closed).
The question

Cenerate one-el ectron angul ar coefficients for scalar interactions ?
This requires answaer or Nif one-electron coefficients are not needed. If the user respondy, then the prompt
Cenerate GRASP92-1ike T coefficients for scalar interactions ?

appears. The respongeor Y causes GRASP92-lik&,; (ab) coefficients to be generated, whereas the alternative
n or Nyields?2 (ab) coefficients.

A similar dialog follows for two-electron angular coefficients. A number of examples illustrate the usage of
ANCO in this mode in Section 4 below.

The prompt

Enter a file nanme for the anco.vnu file:

permits the user to specify where the spin-angular coefficients should be stored.
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The module ANCO needs one input filesl containing the CSF list output by GRASP92 [9], which is
generated by the program GENCSL.

The program creates two output files. The fileum contains the summary of the problem. The other file
. vnu contains the angular momentum coefficients and their characteristics. Its fornfat(tas) and Vr"s (abcd)
coefficients is the same as that of fgenncp. dbg generated by the moduggenntp of GRASP92 [9]. The
format fOI’trOs (ab) andvfs (abcd) is very similar but without the sorting process which is used in GRASP92.

3.3. Distribution and installation of the program

As a new component of the RATIP package [13] similar to the module RCFP [11] ANCO will be distributed
as at ar archive file of the directoryat i p_anco. On a UNIX (or compatible) workstation, the commarak
-xvf ratip_anco.tar reconstructs the file structure. The directoat i p_anco then contains the Fortran
90/95 modulesr abs_anco. f andrabs_recoupl i ng. f, the programxanco. f (the main program for
interactive work) as well as the makefilmke- anco. It also includes a number of examples in the subdirectory
t est-anco and a shoriRead. me which explains further details about the installation. Since the same file
structure is preserved in both cases, the combination of ANCO with RATIP is simply achieved by running the
commandcp -r ratip_anco/. ratip/. inside the RATIP root directory; themake -f make-anco
will generate the executab¥anco, together with the other two componemntsesd99 [14] andxr eos99 [13]
of the RATIP package. The name of the (Fortrari®®) compiler and special compiler flags can be overwritten in
the header of the makefile as necessary. Although ANCO uses six other modules which are part already of RATIP,
no further adaptation of the program is needed. At present, the ANCO program has been installed and tested under
the Linux and AIX operating systems but, owing to the compliance of the Fortrg®6§tandard, no difficulties
should arise on any other platform.

The subdirectory est - anco lists a number of examples which demonstrate the usage of the program.

4. Timing and verification of ANCO

Tests and timing studies using the Dirac—Coulomb Hamiltonian only were performed fos4Bie®3s state
of Ar | with the common closed shellss32522p® for different values of final orbital momentuth. The wave
function expansions used were:
(1) 3SD: Single and double excitations from?3p® to the active sef3s, 3p, 3d} contains 14 configuration
state functions (CSF) faf = 0 and 34 CSF (the maximum) far= 2.
(2) 3SDT: Single, double and triple excitations fron®3p® to the active set3s, 3p, 3d}. The maximum
number of CSF is 145 faf = 2.
(3) 4SD: Single and double excitations fron?3p8 to the active se3s, 3p, 3d, 4s, 4p, 4d, 4 f}. The maximum
number of CSF is 465 faf = 2.
(4) 4SDT: Single, double and triple excitations frost3p® to the active set3s, 3p, 3d, 4s, 4p, 4d, 4f}.
(5) 5SD; Single and double excitations fror?3p° to the active set3s, 3p, 3d, 4s, 4p, 4d, 41, 5s, 5p, 5d, 5,
5¢}.
We first considered simple cases with a small number of CSF (3SD, 3SDT, 4SO with, 1, 2, 3, 4, 5, 6,
7, 8, 9). Although ANCO generates the full set of “pure” coefficients for both one- and two-particle operators,
the calculation runs from 1.4-2.3 times faster than an equivalent calculatioRABP92 because of the lower
computational overheads. Table 2 demonstrates similar enhanced performance for the much larger 4SDT and 5SD
eamples, showing the improvement expected for large-scale calculations.
From the results presented in the Table 2 we conclude that the new program is not much faster in simple cases, but
does better in more complicated cases. The factANGO calculates approximately twice the number of angular
coefficients a&SRASP92 reduces the effective cost per coefficient by a further factor of two.
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1?1:):ﬁ9200mparison foGRASP92 andANCOcodes. Times are given in hours, minutes, seconds

ASF Number of Running time of Speed

expan. CSF TX (ab) or VK (abed) vk (abed) GRASP92 ANCO -up

1k (ab)

4SDT(J =0) 2149 3606 756 023 1530086 00:08:11 00:03:01 2.7
4SDT(J =1) 5786 14017 4070156 8188130 00:59:01 00:15:19 3.9
A4SDT(J =2) 8016 21356 7018885 14077044 01:42:47 00:26:28 3.9
4SDT(J =3) 8378 21342 7634136 15290955 01:53:55 00:30:37 3.7
4SDT(J =4) 7284 15971 6111074 12260139 01:33:17 00:23:01 4.1
4SDT(J =5) 5349 9435 3810165 7656 054 00:50:27 00:14:18 3.6
4SDT(J =6) 3370 4556 1836 602 3706544 00:21:52 00:06:40 3.3
4SDT(J =7) 1788 1789 693761 1412443 00:07:26 00:02:29 3.0
5SD(J =0) 468 621 75192 150455 00:00:32 00:00:17 1.9
5SD(J =1) 1134 2324 395450 792 560 00:03:10 00:01:29 2.1
5SD(J =2) 1609 3704 697 651 1395839 00:06:27 00:02:44 2.4
5SD(J =3) 1584 3441 721907 1444095 00:06:43 00:02:59 2.3
5SD(J =4) 1361 2500 558223 1117681 00:05:15 00:02:17 2.3
5SD(J =5) 920 1361 314909 632 306 00:02:30 00:01:22 1.8
5SD(J =6) 559 644 141328 284102 00:01:02 00:00:36 1.7
5SD(J =7) 259 226 44137 89398 00:00:15 00:00:12 1.3

Although the program is completely new, we have verified that the results presented agree completely with those
obtained from GRASP92. We have also verified that the Breit interaction is treated correctly, although no data are
presented here.

5. Examples

To illustrate the use of ANCO in its interactive mode, we studied Ar Il. The progranmtp of GRASP92 [9]
is used first to generate the CSF filegon- sd. i np before running the prograranco.

The first example does a GRASP92-style calculation. After checking all triangular conditid(@JQSmb(aﬂya)
(see expression (88) in [12]), it multiplies each pure-two particle coefficient by the fX@gﬁomb(a,Bya) and
prints all non zerd@"s (abcd) coefficients. With correspondiris (ab) coefficients, this generates a total of 11 279
coefficients. The second example, with the same input, calculates a total of 433911 pure non-trivial spin-angular
coefficients at one go, as is more convenient for large-scale calculations. However, only 11279 coefficients from
this set are required in the first example.

The Test Run Output displays theumfiles and the first 10 lines ofvnu files for both examples.
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TEST RUN OUTPUT

>>t ype exanpl el. sum
ANCO run at 15:50:39 on Feb 14 2000

There are 17 electrons in the cloud
in 761 relativistic CSFs
based on 16 relativistic subshells.
Total nunmber of pair is: 289941

Generate only not trivial angular coefficients
there are 716 G asp92-like T coefficients
there are 112078 G asp92-1like Vk coefficients
the total nunmber of coefficients is 112794

>> type exanpl el.vnu (first 10 lines of exanplel.vnu file)
ANCO

761 16 4

VAL 2)]_[ 1, 1] ( 3p, 3p; 3p, 3p) = -1.200000000000E- 01
VAL )] 1, 1] ( 3p, 3d-; 3d-, 3p) = 6.666666666667E-02
VAT ( 3)] I 1, 1 ( 3p, 3d-; 3d-, 3p ) = -2.571428571429E-01
VAL 1)] 2, 1] ( 3p, 3d; 3d-, 3p ) = -1.632993161855E-01
VAL 2)] 3, 1] ( 3p, 4s; 3p, 3d-) = 2.529822128135E-01
VAL 1) 3, 1 ( 3p, 4s ; 3d-, 3p ) = -2.108185106779E-01
™[ 6, 1] ( 4d-, 3d-) = 1. 000000000000E+00

VAL 0)] I 6, 1] ( 1s , 4d-; 1s , 3d-) = 2.000000000000E+00
........................... Exanple 2..... .. ... ..

>>t ype exanpl e2. sum
ANCO run at 16:35:02 on Feb 14 2000

There are 17 electrons in the cloud
in 761 relativistic CSFs
based on 16 relativistic subshells.
Total number of pair is: 289941

Generate only not trivial angular coefficients

there are 716 pure one-particle angular coefficients
there are 433195 pure two-particle angular coefficients
the total nunber of coefficients is 433911

>> type exanpl e2.vnu (first 10 lines of exanple2.vnu file)

ANCO
761 16 4
pure two-particle

[( _l 5. 000000000000E- 02
pure two-particle [( 2)]_[

[( [

[( [

-1. 500000000000E- 01
5. 000000000000E- 02
3. 000000000000E- 01

1 (3p, 3p; 3p ., 3p)
1] (3p, 3p; 3p, 3p)
1 (3p, 3p; 3p ., 3p)
1] ( 3p, 3d-; 3p, 3d-)

pure two-particle
pure two-particle

[N TR N
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-2.000000000000E- 01
-2.500000000000E- 01
- 2.500000000000E- 01
-1. 500000000000E- 01

pure two-particle 3)]_

[( [ 1] ( 3p, 3d-; 3p, 3d-)
pure two-particle [( 0)]_[

[( [

[( [

1 ( 3p, 3d-; 3d-, 3p)
1] ( 3p, 3d-; 3d-, 3p)
1] ( 3p, 3d-; 3d-, 3p)

pure two-particle nl_
pure two-particle 2)]_

N N



