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Abstract. SystematioucHrF procedures are applied to the study of the electron affinity of boron
relative to the 2s2p*P state. Several models are used. An electron affinity of 1.072(2) eV is
predicted.

1. Introduction

The ab initio calculation of electron affinitiesefs) for even small systems has been a
challenge for many atomic and molecular codes. Quantum chemical calculations strive for
‘chemical accuracy’ of 1 kcal mot (40 meV). In experimental atomic physics the measured
accuracy varies by orders of magnitude for different systems [1] but accuracies to a few
meV are common. New resonant ionization, spectroscopic methods for negative ions can
yield EAs to an accuracy of 0.1-0.2 meV [2]. A recent measurement for the electron affinity
of Al [3] has reduced the uncertainty of an earlier measurement from 10 meV to only 0.3
meV. Thus considerable progress has been made in experimental techniques. With present
day high-performance computers, similar improvements in accuracy should be possible for
ab initio results.

Many calculations for electron affinities have been performed for the first row elements,
including boron. For a review of early calculations for a range of systems, see Bunge and
Bunge [4]. More recently, most calculations have relied on quantum chemical basis set
methods [5] where basis-set truncation errors are present as well as errors arising from an
unbalanced treatment of correlation in the atom and anion. Some very accurate valence
correlation results have been reported by Netoal [6] using an extensive basis in a
multi-reference configuration interactiomgci) calculation. Only single and doublsr)
replacements are included and the method relies on corrections that estimate the effect of
the omitted triple and quadruple excitations. Uncertainty estimates are not usually provided.

Recently, anmcHF electron affinity of 279.5(20) meV was reported for the electron
affinity of the boron ground state [7] to be compared with a measured value of
277(10) meV [1]. Most difficult to estimate is the uncertainty in the computed result.
Only more accurate experimental data will determine the validity of the assumptions about
uncertainty. Another interesting case is the electron affinity of the excited® Z82ptate.

With the binding of an extra 2p electron to form the negative ion, the lowest state i Z52p

for which the selection rules greatly reduce the size of the expansions needed/agHan
calculation. This case was investigated by Bunge and Bunge [4] almost two decades ago
who reported area of 0.89(2) eV. In this paper we revisit this problem and report results
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from systematiovCHF calculations. Several different computational models are used which
are important in assessing the uncertainty.

2. MCHF calculations for the electron affinity

In an MCHF calculation [8], the wavefunction is expressed as a linear combination of
configuration state functionsc$rg which are antisymmetrized products of one-electron
spin-orbitals. A set of orbitals, or active sets], determines the set of all possilisFsor

the complete active spaceAs) for an MCHF calculation. The latter grows rapidly with the
number of electrons and also the size of the active set. Thus mmst expansions are
limited to a restricted active spaceAS). Several different notations have been proposed
for defining therRAS. Some are expressed in terms of single (S), double (D), triple (T)
and quadruple (Q) excitations from one or more referet®es[9]. In systematicMCHF
calculations it has been found convenient to definerRkgin terms of principal quantum
numbers which, for virtual orbitals, merely define the order in which they are introduced
into the basiscsrFsmay be expressed in a canonical form by associating with eaelan

integer (or sequence) constructed from the one-electron principal quantum numbers assumed
to be in increasing left to right order. There may, of course, be many different spin-angular
couplings associated with a given integer. The latter may then be used to define an order
for the csrsand by specifying the highest integer provides a simple notation for defining the
RAS, at least for few-electron systems. For examplel (3 4)defines arRAS where the 1%

core is inactive, the maximum principal quantum number is 4 but at least one outer electron
must haven < 3. One feature of large-scale computation is that, ag\this increased, the
important CSFs containing higha orbitals approach thesrsobtained fromsb excitations

of a multi-reference MR) set. The members of this set cannot always be identified in
advance and adaptive techniques may be used [11]. In previous publications [7, 10] we
have described computational models in terms of ‘layers’ specifying the range of principal
guantum numbers for each group of electrons. In this paper, we specify instead, the range of
principal quantum numbers for each electron. Since the lowest principal quantum numbers
are determined by symmetry, parity, and the exclusion principle, only the highest need to
be specified. From the set of principal quantum numbers, all poss#teare generated

with the orbital angular quantum number restricted £ 6 (i orbitals). Another restriction

in our codes is that orbitals with> 3 can be at most doubly occupied, a restriction not
expected to be significant in the present study.

The electron affinity of an atom is an outer-electron property. In the valence correlation
model, which we describe first, theZlsore is considered to be inactive and the atom and
negative ion (or anion) can be treated as three- and four-electron systems, respectively. Up
to the active set containing all orbitals with principal quantum numkers (called the
n = 7 AS) all possiblecsrswere included. However, deletion aBFswith coefficients less
than 10° did not affect the total energy to the digits reported. In the cas& othe lastsr
had principal quantum numbers £ 5 6 7 7). This observation was used to restrict the new
csFsfor then = 8 calculation. In the case of tH#®, orbitals withn = 8 were constrained
to be doubly occupied. The range of principal quantum numbers for this calculation is
summarized in table 1. Notice that, because two schemes were used for the argas the
for °S consists of a union of two sequences.

The calculation for a specifie consists of the subset of ttras defined in table 1.

Table 2 reports the size of theas, the individually optimized energy, and the electron
affinity. The latter may be defined as,(*P) — E,(°S) (the An = 0 electron affinity)
but another definition, motivated by the fact that more orbitals are needed to represent the
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Table 1. The range of principal quantum numbers defining the restricted active space for two
different computational models.

B(*P) B~ (°S)
Valence correlation
1788 1177771115688

With core polarization
11555 115555
U 12388 U123455U123388

Table 2. SystematicvcHF energies for restricted active space calculations with an increasing
active set of orbitals. For each calculatienspecifies the maximum quantum number; angular
quantum numbers were restricted/te 6; orbitals were separately optimized for both states.

B ‘P B~ °s EA (eV)
Expansion csF E, CSF E, An=0 An=1
Valence correlation only
n=3 11 —24.4671692 14 —245027446 0.96806
n=4 64 —24.4693446 141 -245079480 1.05045
n=>5 240 —24.4697141 866 —24.5088825 1.06583 1.07588
n==6 699 —24.4698030 3921-245091018 1.06938 1.07179
n=7 1755 —24.4698319 14131-245091677 1.07038 1.07117
n=2=8 3475 —24.4698395 18057-245091864 1.07068 1.07089
Estimated non-relativistic limit 1.0708(1)
Estimated limit with relativistic correction 1.0700(1)
Valence correlationt- core polarization
n=4 1381 —24.4878599 2667—-245248018 1.00524
n=>5 2119 —24.490686 3 8603-245293514 1.05213
n==6 4622 —24.4912595 13701-245304567 1.066105 1.08221
n=7 8486 —24.4914730 21753-245308180 1.070632 1.07644
n=28 11611 —24.4915609 23203-245309629 1.07217 1.07458
Estimated non-relativistic limit 1.0733(3)
Estimated limit with relativistic correction 1.0724(4)

negative ion, could b&,_;(*P) — E,(°S) (the An = 1 electron affinity). Table 1 shows that

the former is increasing with whereas the latter is decreasing. Both can be extrapolated
approximately; however, in this case the results are so well converged that one can also
use the average of the last two values with the uncertainty being the difference between the
average and the computed values. These are modified by a relativistic shift which from an
n = 6 calculation was found to be0.00078 eV.

But the outer correlation model will have some error associated with it arising from the
neglect of correlation with the #sore which represents the polarization of the core by the
outer electrons. Table 1 lists the range of principal quantum numbers for this model which
includes a single excitation from the core. All calculations start by including allctte
from ann = 5 valence correlation calculation, but when thé dsre is opened, the second
electron must have a principal quantum number no greater than 2; the third, no greater than
3 at which point theras begin to differ for the two cases. In all calculations, higbrbitals
need to be doubly occupied. SintR has fewer electrons, there are also fewer in the ‘core’.

At the n = 5 level, the four-electron ‘core’ is1(2 3 4) whereas fomm > 6 it has been
restricted further toX 2 3 3). Notice also that this valenee core-polarization calculation
has restricted valence correlation appreciably more than the first model calculation. The



1172 C Froese Fischer and G Gaigalas

An = 0 andAn = 1 electron affinities can each be extrapolated approximately. A fairly
reliable technique is to use the ratio) (of the last two changes. Then, &£ is the last
change, assuming the remaining corrections form a geometric series, the remainder can be
shown to berA/(1 —r). In this case the average of the two electron affinities is slowly
decreasing and this may also be used in determining the limit and its uncertainty. These
extrapolated values too need to be corrected for a relativistic shif0d®00 935 eV.

Finally, a calculation was performed that treats both systems as a whole. Now the
configuration space needs to be constricted even more ardsa pair-correlation scheme
was employed similar to the one used by Neatoal [6] for outer correlation. Basically,
SD replacements are applied to the most important components of the wavefunction and
coupled as pair-correlation functions of the referepse These are listed in table 3 for
the two states. Table 4 reports the numbecsfsand the energies from increasing active
sets. The latter increase rapidly with the size of the active set.

Table 3. The multi-reference configuration states for a full correlatimasp study that includes
core—core correction.

4P 2528, 2s3¢, 2s3d, 2p*3d, 2p3s3p
5S  2s2f, 2s2p3B, 2s2p3d, 2p%3s3p 2p?3p3d

Table 4. SystematiaucHr results for multi-referencep pair-correlation excitations.

B 4P B~ 5S EA (eV)
Expansion csF E, CSF E, An=0 An=1
n=4 681 —24.5108104 757 —24.5467494
n=>5 1590 —24.5174831 1953-24.5544784
n==6 2987 —245197691 3876—-24.5580302
n=7 4971 —24.5208036 6674—-245596518
n=2=8 7549 —245212808 10356-—24.5603436 1.06295 1.07590
n=29 10721 —245215047 14922-245606642 1.06558 1.07168
n=10 14487 —24.5216186 20372-245608268 1.06693 1.07003
Extrapolatedvr-ci limit 1.06848
With Davidson correction 07294
Estimated limit with relativistic correction Q7176

For largen, the weight of the reference set converges to 0.9974 and 0.9948, respectively,
for 4P and®S. This small difference of 0.26% requires a small correction. In arriving at
accurate electron affinities for boron using the-sb scheme, Nor@t al applied a Davidson
correction [13] to estimate omitted correlation. Though a number of different schemes have
been proposed (see [14] for a discussion), we use the same correction used Bt Blpro
namely

AE = [1 - Zc,?} (Eret — Enchr)

where the sum is over the reference configuration states,Eands the energy of the
interaction matrix restricted to the reference configuations.

Table 4 also reports the corrected energies. The electron affinity is increased by
0.00446 eV by this correction and, as in earlier models, decreased when relativistic
corrections are included. In the full-correlation model the relativistic shift increased in
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magnitude to—0.001 1821 eV. Table 5 compares various relativistic shift calculations. For
MCHF calculations this effect depends on the wavefunction approximation, increasing as
more inner-shell correlation is included. However, the latter is in good agreement with the
difference of a Hartree—Fock and fully relativisttRAsP[15] calculation.

Table 5. Estimates of relativistic corrections (in eV) from various approximations wkere
refers to the inclusion of relativistic shift corrections asmispis a fully relativistic variational
calculation. Thedr electron affinity is 0.5252 eV.

Approx. Rel. corr.

HF() — HF —0.000951
GRASP— HF —0.001111

MCHF(r) — MCHF (n = 6)
Core-pol. —0.000935
Full corr. —0.001182

In the study of Ca [12] core polarization was found to reduce the electron affinity
substantially, but it increased the electron affinity for the boron ground state and we see a
similar effect here. Our final estimate of the electron affinity is 1.072 (2) eV. The second
model is expected to be the more reliable since the full correlation calculation for a six-
electron system is a much more difficult calculation requiring fairly large corrections. Even
so, the final answer is close to that of the valence correlation with core-polarization model.
The uncertainty of 2 meV is based on the difference inghdor the first two models. This
result differs significantly from the value of 0.89(2) eV determined by Bunge and Bunge [4].
Their 1978 calculations were restricted to relatively small orbital sets, the highest angular
momentum orbital being a singlg orbital.
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