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The electron affinity of 2s2p2 4P in boron

Charlotte Froese Fischer† and Gediminas Gaigalas‡
† Vanderbilt University, Box 1679B, Nashville, TN 37235, USA
‡ Institute of Theoretical Physics and Astronomy, Lithuanian Academy of Sciences, A Goštauto
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Abstract. SystematicMCHF procedures are applied to the study of the electron affinity of boron
relative to the 2s2p2 4P state. Several models are used. An electron affinity of 1.072(2) eV is
predicted.

1. Introduction

The ab initio calculation of electron affinities (EAs) for even small systems has been a
challenge for many atomic and molecular codes. Quantum chemical calculations strive for
‘chemical accuracy’ of 1 kcal mol−1 (40 meV). In experimental atomic physics the measured
accuracy varies by orders of magnitude for different systems [1] but accuracies to a few
meV are common. New resonant ionization, spectroscopic methods for negative ions can
yield EAs to an accuracy of 0.1–0.2 meV [2]. A recent measurement for the electron affinity
of Al [3] has reduced the uncertainty of an earlier measurement from 10 meV to only 0.3
meV. Thus considerable progress has been made in experimental techniques. With present
day high-performance computers, similar improvements in accuracy should be possible for
ab initio results.

Many calculations for electron affinities have been performed for the first row elements,
including boron. For a review of early calculations for a range of systems, see Bunge and
Bunge [4]. More recently, most calculations have relied on quantum chemical basis set
methods [5] where basis-set truncation errors are present as well as errors arising from an
unbalanced treatment of correlation in the atom and anion. Some very accurate valence
correlation results have been reported by Noroet al [6] using an extensive basis in a
multi-reference configuration interaction (MRCI) calculation. Only single and double (SD)
replacements are included and the method relies on corrections that estimate the effect of
the omitted triple and quadruple excitations. Uncertainty estimates are not usually provided.

Recently, anMCHF electron affinity of 279.5(20) meV was reported for the electron
affinity of the boron ground state [7] to be compared with a measured value of
277(10) meV [1]. Most difficult to estimate is the uncertainty in the computed result.
Only more accurate experimental data will determine the validity of the assumptions about
uncertainty. Another interesting case is the electron affinity of the excited 2s2p2 4P state.
With the binding of an extra 2p electron to form the negative ion, the lowest state is 2s2p3 5S
for which the selection rules greatly reduce the size of the expansions needed in anMCHF

calculation. This case was investigated by Bunge and Bunge [4] almost two decades ago
who reported anEA of 0.89(2) eV. In this paper we revisit this problem and report results
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from systematicMCHF calculations. Several different computational models are used which
are important in assessing the uncertainty.

2. MCHF calculations for the electron affinity

In an MCHF calculation [8], the wavefunction is expressed as a linear combination of
configuration state functions (CSFs) which are antisymmetrized products of one-electron
spin-orbitals. A set of orbitals, or active set (AS), determines the set of all possibleCSFsor
the complete active space (CAS) for an MCHF calculation. The latter grows rapidly with the
number of electrons and also the size of the active set. Thus mostMCHF expansions are
limited to a restricted active space (RAS). Several different notations have been proposed
for defining theRAS. Some are expressed in terms of single (S), double (D), triple (T)
and quadruple (Q) excitations from one or more referenceCSFs [9]. In systematicMCHF

calculations it has been found convenient to define theRAS in terms of principal quantum
numbers which, for virtual orbitals, merely define the order in which they are introduced
into the basis.CSFsmay be expressed in a canonical form by associating with eachCSF an
integer (or sequence) constructed from the one-electron principal quantum numbers assumed
to be in increasing left to right order. There may, of course, be many different spin-angular
couplings associated with a given integer. The latter may then be used to define an order
for theCSFsand by specifying the highest integer provides a simple notation for defining the
RAS, at least for few-electron systems. For example, (1 1 3 4)defines aRAS where the 1s2

core is inactive, the maximum principal quantum number is 4 but at least one outer electron
must haven 6 3. One feature of large-scale computation is that, as theAS is increased, the
important CSFs containing high-n orbitals approach theCSFs obtained fromSD excitations
of a multi-reference (MR) set. The members of this set cannot always be identified in
advance and adaptive techniques may be used [11]. In previous publications [7, 10] we
have described computational models in terms of ‘layers’ specifying the range of principal
quantum numbers for each group of electrons. In this paper, we specify instead, the range of
principal quantum numbers for each electron. Since the lowest principal quantum numbers
are determined by symmetry, parity, and the exclusion principle, only the highest need to
be specified. From the set of principal quantum numbers, all possibleCSFs are generated
with the orbital angular quantum number restricted tol 6 6 (i orbitals). Another restriction
in our codes is that orbitals withl > 3 can be at most doubly occupied, a restriction not
expected to be significant in the present study.

The electron affinity of an atom is an outer-electron property. In the valence correlation
model, which we describe first, the 1s2 core is considered to be inactive and the atom and
negative ion (or anion) can be treated as three- and four-electron systems, respectively. Up
to the active set containing all orbitals with principal quantum numbers6 7 (called the
n = 7 AS) all possibleCSFswere included. However, deletion ofCSFswith coefficients less
than 10−6 did not affect the total energy to the digits reported. In the case of5S, the lastCSF

had principal quantum numbers (1 1 5 6 7 7).This observation was used to restrict the new
CSFsfor the n = 8 calculation. In the case of the4P, orbitals withn = 8 were constrained
to be doubly occupied. The range of principal quantum numbers for this calculation is
summarized in table 1. Notice that, because two schemes were used for the anion theRAS

for 5S consists of a union of two sequences.
The calculation for a specificn consists of the subset of theRAS defined in table 1.

Table 2 reports the size of theRAS, the individually optimized energy, and the electron
affinity. The latter may be defined asEn(

4P) − En(
5S) (the 1n = 0 electron affinity)

but another definition, motivated by the fact that more orbitals are needed to represent the
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Table 1. The range of principal quantum numbers defining the restricted active space for two
different computational models.

B(4P) B−(5S)

Valence correlation
1 1 7 8 8 1 1 7 7 7 7∪ 1 1 5 6 8 8
With core polarization
1 1 5 5 5 1 1 5 5 5 5

∪ 1 2 3 8 8 ∪ 1 2 3 4 5 5∪ 1 2 3 3 8 8

Table 2. SystematicMCHF energies for restricted active space calculations with an increasing
active set of orbitals. For each calculation,n specifies the maximum quantum number; angular
quantum numbers were restricted tol 6 6; orbitals were separately optimized for both states.

B 4P B− 5S EA (eV)

Expansion CSF En CSF En 1n = 0 1n = 1

Valence correlation only
n = 3 11 −24.467 169 2 14 −24.502 744 6 0.968 06
n = 4 64 −24.469 344 6 141 −24.507 948 0 1.050 45
n = 5 240 −24.469 714 1 866 −24.508 882 5 1.065 83 1.075 88
n = 6 699 −24.469 803 0 3 921−24.509 101 8 1.069 38 1.071 79
n = 7 1 755 −24.469 831 9 14 131−24.509 167 7 1.070 38 1.071 17
n = 8 3 475 −24.469 839 5 18 057−24.509 186 4 1.070 68 1.070 89
Estimated non-relativistic limit 1.0708(1)
Estimated limit with relativistic correction 1.0700(1)
Valence correlation+ core polarization
n = 4 1 381 −24.487 859 9 2 667−24.524 801 8 1.005 24
n = 5 2 119 −24.490 686 3 8 603−24.529 351 4 1.052 13
n = 6 4 622 −24.491 259 5 13 701−24.530 456 7 1.066 105 1.082 21
n = 7 8 486 −24.491 473 0 21 753−24.530 818 0 1.070 632 1.076 44
n = 8 11 611 −24.491 560 9 23 203−24.530 962 9 1.072 17 1.074 58
Estimated non-relativistic limit 1.0733(3)
Estimated limit with relativistic correction 1.0724(4)

negative ion, could beEn−1(
4P)−En(

5S) (the1n = 1 electron affinity). Table 1 shows that
the former is increasing withn whereas the latter is decreasing. Both can be extrapolated
approximately; however, in this case the results are so well converged that one can also
use the average of the last two values with the uncertainty being the difference between the
average and the computed values. These are modified by a relativistic shift which from an
n = 6 calculation was found to be−0.000 78 eV.

But the outer correlation model will have some error associated with it arising from the
neglect of correlation with the 1s2 core which represents the polarization of the core by the
outer electrons. Table 1 lists the range of principal quantum numbers for this model which
includes a single excitation from the core. All calculations start by including all theCAS

from ann = 5 valence correlation calculation, but when the 1s2 core is opened, the second
electron must have a principal quantum number no greater than 2; the third, no greater than
3 at which point theRAS begin to differ for the two cases. In all calculations, high-n orbitals
need to be doubly occupied. Since4P has fewer electrons, there are also fewer in the ‘core’.
At the n = 5 level, the four-electron ‘core’ is (1 2 3 4) whereas forn > 6 it has been
restricted further to (1 2 3 3). Notice also that this valence+ core-polarization calculation
has restricted valence correlation appreciably more than the first model calculation. The
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1n = 0 and1n = 1 electron affinities can each be extrapolated approximately. A fairly
reliable technique is to use the ratio (r) of the last two changes. Then, if1 is the last
change, assuming the remaining corrections form a geometric series, the remainder can be
shown to ber1/(1 − r). In this case the average of the two electron affinities is slowly
decreasing and this may also be used in determining the limit and its uncertainty. These
extrapolated values too need to be corrected for a relativistic shift of−0.000 935 eV.

Finally, a calculation was performed that treats both systems as a whole. Now the
configuration space needs to be constricted even more and aMR-SD pair-correlation scheme
was employed similar to the one used by Noroet al [6] for outer correlation. Basically,
SD replacements are applied to the most important components of the wavefunction and
coupled as pair-correlation functions of the referenceCSF. These are listed in table 3 for
the two states. Table 4 reports the number ofCSFsand the energies from increasing active
sets. The latter increase rapidly with the size of the active set.

Table 3. The multi-reference configuration states for a full correlationMR-SD study that includes
core–core correction.

4P 2s2p2, 2s3p2, 2s3d2, 2p23d, 2p3s3p
5S 2s2p3, 2s2p3p2, 2s2p3d2, 2p23s3p, 2p23p3d

Table 4. SystematicMCHF results for multi-referenceSD pair-correlation excitations.

B 4P B− 5S EA (eV)

Expansion CSF En CSF En 1n = 0 1n = 1

n = 4 681 −24.510 810 4 757 −24.546 749 4
n = 5 1 590 −24.517 483 1 1 953−24.554 478 4
n = 6 2 987 −24.5197691 3 876−24.558 030 2
n = 7 4 971 −24.520 8036 6 674−24.559 651 8
n = 8 7 549 −24.521 280 8 10 356−24.560 343 6 1.062 95 1.075 90
n = 9 10 721 −24.521 504 7 14 922−24.560 664 2 1.065 58 1.071 68
n = 10 14 487 −24.521 618 6 20 372−24.560 826 8 1.066 93 1.070 03
ExtrapolatedMR-CI limit 1.068 48
With Davidson correction 1.072 94
Estimated limit with relativistic correction 1.071 76

For largen, the weight of the reference set converges to 0.9974 and 0.9948, respectively,
for 4P and5S. This small difference of 0.26% requires a small correction. In arriving at
accurate electron affinities for boron using theMR-SD scheme, Noroet al applied a Davidson
correction [13] to estimate omitted correlation. Though a number of different schemes have
been proposed (see [14] for a discussion), we use the same correction used by Noroet al,
namely

1E =
[

1 −
∑

i

c2
i

]
(Eref − EMCHF)

where the sum is over the reference configuration states, andEref is the energy of the
interaction matrix restricted to the reference configuations.

Table 4 also reports the corrected energies. The electron affinity is increased by
0.004 46 eV by this correction and, as in earlier models, decreased when relativistic
corrections are included. In the full-correlation model the relativistic shift increased in
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magnitude to−0.001 1821 eV. Table 5 compares various relativistic shift calculations. For
MCHF calculations this effect depends on the wavefunction approximation, increasing as
more inner-shell correlation is included. However, the latter is in good agreement with the
difference of a Hartree–Fock and fully relativisticGRASP[15] calculation.

Table 5. Estimates of relativistic corrections (in eV) from various approximations where(r)

refers to the inclusion of relativistic shift corrections andGRASPis a fully relativistic variational
calculation. TheHF electron affinity is 0.5252 eV.

Approx. Rel. corr.

HF(r) − HF −0.000 951
GRASP− HF −0.001 111

MCHF(r) − MCHF (n = 6)

Core-pol. −0.000 935
Full corr. −0.001 182

In the study of Ca− [12] core polarization was found to reduce the electron affinity
substantially, but it increased the electron affinity for the boron ground state and we see a
similar effect here. Our final estimate of the electron affinity is 1.072 (2) eV. The second
model is expected to be the more reliable since the full correlation calculation for a six-
electron system is a much more difficult calculation requiring fairly large corrections. Even
so, the final answer is close to that of the valence correlation with core-polarization model.
The uncertainty of 2 meV is based on the difference in theEA for the first two models. This
result differs significantly from the value of 0.89(2) eV determined by Bunge and Bunge [4].
Their 1978 calculations were restricted to relatively small orbital sets, the highest angular
momentum orbital being a singlef orbital.
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