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Abstract. The traditional theory of many-electron atoms and ions is based on the coefficients
of fractional parentage and matrix elements of tensorial operators, composed of unit tensors.
The calculation of spin-angular coefficients of radial integrals appearing in the expressions of
matrix elements of arbitrary physical operators of atomic quantities has two main disadvantages:
(i) the numerical codes for the calculation of spin-angular coefficients are usually very time
consuming; (ii) f-shells are often omitted from programs for matrix element calculations since
the tables for their coefficients of fractional parentage are very extensive.

The authors assume that a series of difficulties persisting in the traditional approach to
the calculation of spin-angular parts of matrix elements can be avoided by using this secondly
quantized methodology, based on angular momentum theory, on the concept of the irreducible
tensorial sets, on a generalized graphical method, on quasispin and on the reduced coefficients
of fractional parentage.

1. Introduction

Modern atomic spectroscopy studies the structure and properties of practically any atom
of the periodic table as well as of ions of any degree of ionization. Particular attention
is paid to their energy spectra. For the investigations of many-electron atoms and ions, it
is of great importance to combine experimental and theoretical methods. Nowadays the
possibilities of theoretical spectroscopy are much enlarged thanks to the widespread usage
of powerful computers. The theoretical methods utilized must be fairly universal and must
ensure reasonably accurate values of the physical quantities studied.

The many-electron atom is usually considered as a many-body problem and is described
by the wavefunction constructed from the wavefunctions of one electron, moving in the
central nuclear charge field and in the screening field of the remaining electrons. Then the
wavefunction of this electron may be represented as a product of radial and spin-angular
parts. The radial part is usually found by solving various modifications of the Hartree–
Fock equations and can be represented in a numerical or analytical form (Froese Fischer
1977) whereas the angular part is expressed in terms of spherical functions. Then the
wavefunction of the whole atom can be constructed in some standard way (Cowan 1981,
Jucys and Savukynas 1973, Nikitin and Rudzikas 1983) starting with these one-electron
functions and may later be used for the calculations of any matrix elements representing
physical quantities.

During the last two decades a number of new versions of the technique (so-called Racah
algebra) to cope with spin-angular parts of the wavefunctions and matrix elements have been
suggested (Rudzikas 1991). Among them the second quantization and quasispin techniques
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turned out to be of particular efficiency (Judd 1967, Rudzikas and Kaniauskas 1984).
The usage of graphical methods (Jucys and Bandzaitis 1977) allowed one to find general
expressions even for rather complex cases of matrix elements. All this enabled one to
formulate a fairly consistent and general non-relativistic and relativistic theory of the many-
electron atom and the processes of its interaction with electromagnetic radiation (Rudzikas
1996). The above-mentioned methods are applicable for both the variational and perturbative
approaches for various coupling schemes of spin and orbital momenta.

Practically, we have to solve the so-called eigenvalue problem

H� = E� (1)

where� is the wavefunction of the system under investigation andH is its Hamiltonian.
In various versions of perturbation theory such an equation usually serves as the starting
point for further refinements. It turned out that for a very large variety of atoms and their
ionization degrees, the so-called Hartree–Fock–Pauli Hamiltonian leads to highly accurate
energy values (Nikitin and Rudzikas 1983, Rudzikas 1996) which is why it is widely used
in many methods and computer codes.

In order to calculate the energy spectrum of an atom or ion we have to find expressions
for the matrix elements of all terms of the Hamiltonian considered. For complex electronic
configurations, having several open shells, this is a far from trivial task. For the optimization
of their expressions one has to combine the methods of the angular momentum theory,
irreducible tensorial sets, tensorial products in a coupled form, coefficients of fractional
parentage with the utilization of the graphical (diagrammatic) methods, second quantization
and accounting for the symmetry properties of the system under consideration in the
additional spaces, for example, quasispin space. This paper describes one such possibility.

Unfortunately, practical calculations show that all realistic atomic Hamiltonians do
not lead straightforwardly to an eigenvalue problem (1). Actually we have to calculate
all non-zero matrix elements of the Hamiltonian considered including those non-diagonal
with respect to electronic configurations, then to form an energy matrix, to diagonalize
it, obtaining in this way the values of the energy levels as well as the eigenfunctions (the
wavefunctions in the intermediate coupling scheme). The latter may then be used to calculate
electronic transitions as well as the other properties and processes. Such a necessity raises
special requirements for the theory.

The total matrix element of each term of the energy operator in the case of a complex
electronic configuration will consist of matrix elements, describing the interaction inside
each shell (each subshell in the relativistic case) of equivalent electrons as well as between
these shells. Going beyond the single-configuration approximation we have to be able
to take into account in the same way non-diagonal, with respect to configurations, matrix
elements. Starting at the very beginning with the second quantization and quasispin methods
we are in a position to fulfil all these requirements. Below we shall describe the approach
suggested in more detail.

2. Tensorial form of the operators

According to the method of second quantization (Judd 1967, Rudzikas and Kaniauskas
1984) any one-particle operator

F =
∑
i,j

aia
+
j (i|f |j) (2)
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can be expressed in the following tensorial form:

F =
∑

ni li ,nj lj

F (i, j) =
∑

ni li ,nj lj

[κ, σ ]−1/2
(
niλi ||f (κσ)||njλj

)[
a(λi ) × ã(λj )

](κσ )�
m�

(3)

wherei ≡ nilismlimsi , λ ≡ ls, [κ, σ ] ≡ (2κ + 1) (2σ + 1) ,
(
niλi ||f (κσ)||njλj

)
is the one-

electron submatrix (reduced matrix) element of operatorF anda(λi ) is the electron creation
operator. The tensor̃a(λj ) is defined as

ã(λ)mλ
= (−1)λ−mλ a

(λ)+
−mλ

(4)

wherea(λ)+−mλ
is the electron annihilation operator. From a tensorial point of view it is better

to consider tensor̃a(λj ) as an electron annihilation operator (see section 4). The product
of tensors

[
a(λi ) × ã(λj )

](κσ )�
m�

denotes the tensorial part of operatorF . Here the rankκ of
the orbital space is coupled to the spin-space rankσ to form a tensorial product of total
spin-angular rank�. As we shall see, this expression is very effective for the calculation
of spin-angular coefficients for any one-particle operator. This expression is a general one
and the tensorial form of any one-particle physical operator may be obtained from it. For
example, the spin–orbit interaction operator has the tensorial structureκ = 1, σ = 1, � = 0
and its submatrix element is(
niλi ||f (11)

s–o ||njλj
) = −zα2

(
3
8li (li + 1) (2li + 1)

)1/2(
nili |1/r3|nj lj

)
δ
(
li , lj

)
. (5)

Any two-particle tensorial operator

G = 1
2

∑
i,j,i ′,j ′

aiaja
+
j ′ a

+
i ′ (i, j |g|i ′, j ′) (6)

can be expressed in two well known forms (Rudzikas and Kaniauskas 1984). In the first
form the operators of the second quantization follow in the normal order:

GI =
∑

ni li ,nj lj ,n
′
i l

′
i ,n

′
j l

′
j

GI(ij i
′j ′)

= − 1
2

∑
ni li ,nj lj ,n

′
i l

′
i ,n

′
j l

′
j

∑
κ12κ

′
12σ12σ

′
12

∑
p

(−1)k−p
[
κ12, κ

′
12, σ12, σ

′
12

]1/2

× (
niλinjλj ||g(κ1κ2k,σ1σ2k)||n′

iλ
′
in

′
jλ

′
j

)
×




l′i l′j κ ′
12

κ1 κ2 k

li lj κ12







s s σ ′
12

σ1 σ2 k

s s σ12




×[[
a(λi ) × a(λj )

](κ12σ12)
[
ã(λ

′
i ) × ã(λ

′
j )
](κ ′

12σ
′
12)

](kk)
p–p (7)

where
(
niλinjλj ||g(κ1κ2k,σ1σ2k)||n′

iλ
′
in

′
jλ

′
j

)
is the two-electron submatrix element of operator

G.
In another form the second quantization operators are coupled by pairs consisting of

electron creation and annihilation operators. In tensorial form:

GII =
∑

ni li ,nj lj ,n
′
i l

′
i ,n

′
j l

′
j

GII (ij i
′j ′)

= 1
2

∑
ni li ,nj lj ,n

′
i l

′
i ,n

′
j l

′
j

∑
p

(−1)k−p(niλinjλj ||g(κ1κ2k,σ1σ2k)||n′
iλ

′
in

′
jλ

′
j )
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×
{

[κ1, κ2, σ1, σ2]−1/2
[[
a(λi ) × ã(λ

′
i )
](κ1σ1)

[
a(λj ) × ã(λ

′
j )
](κ2σ2)

](kk)
p–p

−(−1)li+l
′
j

{
κ1 κ2 k

l′j li lj

} {
σ1 σ2 k

s s s

} [
a(λi ) × ã(λ

′
j )
](kk)

p–pδ(nj lj , n
′
i l

′
i )

}
.

(8)

The expression (7) consists of only one tensorial product whereas (8) has two, but the
summation in the first formula is also over intermediate ranksκ12, σ12, κ ′

12 andσ ′
12, and in

this way complicates the calculations. The advantages or disadvantages of these alternative
forms of arbitrary two-electron operator may be revealed in practical applications.

In these forms the product of the second quantization operators denotes the tensorial
part of operatorG. For instance, the tensorial structure of the electrostatic (Coulomb)
electron interaction operator is the same as that of orbit–orbit interaction,κ1 = κ2 =
k, σ1 = σ2 = 0 (Jucys and Savukynas 1973), and only the two-electron submatrix elements(
niλinjλj ||g(κ1κ2k,σ1σ2k)||n′

iλ
′
in

′
jλ

′
j

)
of these operators are different. In the case of electrostatic

interaction:(
niλinjλj ||g(kk0,000)

Coulomb ||n′
iλ

′
in

′
jλ

′
j

)
= 2[k]1/2

(
li ||C(k)||l′i

) (
lj ||C(k)||l′j

)
Rk

(
nilin

′
i l

′
i , nj ljn

′
j l

′
j

)
. (9)

From equation (9), using (7) and (8), we finally obtain the following two secondly
quantized expressions for the Coulomb operator:

VI = − 1
2

∑
ni linj lj n

′
i l

′
in

′
j l

′
j

∑
κ12σ12k

(−1)lj+l
′
i+k+κ12 [κ12, σ12]

1/2
(
li ||C(k)||l′i

)

× (
lj ||C(k)||l′j

)
Rk

(
nilin

′
i l

′
i , nj ljn

′
j l

′
j

) {
li l′i k

l′j lj κ12

}

×[[
a(λi ) × a(λj )

](κ12σ12) × [
ã(λ

′
i ) × ã(λ

′
j )
](κ12σ12)

](00)
(10)

VII =
∑

ni linj lj n
′
i l

′
in

′
j l

′
j

∑
k

(
li ||C(k)||l′i

) (
lj ||C(k)||l′j

)
Rk

(
nilin

′
i l

′
i , nj ljn

′
j l

′
j

)

×{
[k]−1/2

[[
a(λi ) × ã(λ

′
i )
](k0) × [

a(λj ) × ã(λ
′
j )
](k0)](00)

+(2[li ])
−1/2

[
a(λi ) × ã(λ

′
j )
](00)

δ(nj lj , n
′
i l

′
i )

}
. (11)

The tensorial expressions for orbit–orbit and other physical operators in second
quantization form may be obtained in the same manner.

It is worth mentioning that the expressions (10) and (11) embrace, already in an operator
form, the interaction terms both the diagonal ones, relative to configurations, and the non-
diagonal ones. Non-diagonal terms define the interaction between all the possible electron
distributions over the configurations considered, differing by quantum numbers for not more
than two electrons.

The merits of representing operators in one form or another (10) or (11) are mostly
determined by the technique used to find their matrix elements and the quantities in terms
of which they are expressed.

3. Generalized graphical method

In this section we shall sketch the generalized version of the graphical technique, in which
not only one- and two-particle operators are presented in tensorial form (such graphs are
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analogous to Feynman–Goldstone diagrams but they do not depend on magnetic quantum
numbers (Merkeliset al 1986a, b)), but which also allows us to represent graphically
any tensorial product of the second quantization operators and to perform graphically the
operations with the secondly quantized operators as well as with their tensorial products
(Gaigalaset al 1985, Gaigalas 1985, Gaigalas and Merkelis 1987). Such a graphical
technique is most suitable for representing any one- and two-particle operator already
presented in tensorial form and to find general expressions for their matrix elements.

Figure 1. Diagrams for one-particle operators.

In this methodology the item under the summation sign of the one-particle operator (3)
has the following graphical form:

F (i, j) = A1 = [κ, σ ]−1/2
(
niλi ||f (κσ)||njλj

)
A2A3 (12)

where the diagramsA1, A2 andA3 are presented in figure 1. As we see, the diagram of the
operator itself, namelyA1, is similar to the usual Feynman–Goldstone diagram (Lindgren
and Morrison 1982), although here the summation over magnetic quantum numbersmλ is
performed. The product of the diagramsA2, A3 represents the tensorial structure of the
operator:

A2A3 = [
a(λi ) × ã(λj )

](κσ )�
m�

=
∑
mκ,mσ

[
a(λi ) × ã(λj )

](κσ )
mκmσ

[
κ σ �

mκ mσ m�

]
(13)

whereA2 equals

A2 = [
a(λi ) × ã(λj )

](κσ )
mκmσ

(14)

whereasA3, by Jucys and Bandzaitis (1977), is equal to

A3 =
[

κ σ �

mκ mσ m�

]
. (15)
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The heavy line in diagramA3 represents the resultant momentum� whereas the plus
sign of the vertex means that the momentaκ and σ are coupled into the resultant�
in a counterclockwise direction. From the symmetry properties of the Clebsch–Gordan
coefficients the equality follows:

A3 = (−1)κ+σ−� A4 . (16)

Then we can conclude that, if we change the sign of any vertex, then the phase multiplier
of the form(−1)κ+σ−� occurs.

The electron creation operatora(λi ) has the following graphical form (figure 1,A5):

a(λi ) = A5 (17)

whereasã(λj )

ã(λj ) = A6 . (18)

Thus, it is obvious that the diagramA2 consists of the second quantization operators
a(λi ) and ã(λj ) as well as of the Clebsch–Gordan coefficients

A7 =
[

li lj κ

mli mlj mκ

]
A8 =

[
s s σ

ms ms mσ

]
(19)

which couple these operators into a tensorial product and which may be obtained from
the diagramA2 if to omit the graphical symbols of the second quantization operators.
It is necessary to bear in mind that, while writing down the algebraic expression from the
diagramA2, in the tensorial product the first element must always be the second quantization
operator, which is above the vertex ‘a’, whereas the second place must be occupied by the
operator, which is below the vertex ‘a’ in diagramA2. The scheme of their coupling into
the tensorial product is defined by the sign of the vertex.

The first form (7) of the two-particle operatorGI(ij i
′j ′) is represented by the following

Figure 2. Diagrams for two-particle operators.
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diagram (figure 2,B1):

GI(ij i
′j ′) = B1 = − 1

2

∑
κ12κ

′
12σ12σ

′
12

∑
p

(−1)k−p [κ1, κ2, σ1, σ2]1/2

× (
niλinjλj ||g(κ1κ2k,σ1σ2k)||n′

iλ
′
in

′
jλ

′
j

) 


l′i l′j κ ′
12

κ1 κ2 k

li lj κ12




×



s s σ ′
12

σ1 σ2 k

s s σ12


B3 (20)

whereas the second (8):

GII (ij i
′j ′) = B2 + B4

= 1
2

∑
p

(−1)k−p
(
niλinjλj ||g(κ1κ2k,σ1σ2k)||n′

iλ
′
in

′
jλ

′
j

)

×
{

[κ1, κ2, σ1, σ2]−1/2B5 − (−1)li+l
′
j

{
κ1 κ2 k

l′j li lj

}

×
{
σ1 σ2 k

s s s

}
δ
(
nj lj , n

′
i l

′
i

)
B6

}
. (21)

We emphasize here that the winding line of interaction in the Feynman–Goldstone
diagram corresponds to the operators of second quantization in the normal order (figure 2,
B1), whereas the dotted interaction line indicates that the second quantization operators are
ordered as pairs of creation–annihilation operators. In the latter case first is the pair on
the left-hand side of a Feynman–Goldstone diagram (figure 2,B2). Such a notation of two
kinds for an interaction line is meaningful only for two-particle (or more) operators, since
for any one-particle operator both the winding and dotted lines correspond to the same order
of creation and annihilation operators.

From expressions (20) and (21) we see that the two-particle operator in the first form is
represented by one Feynman–Goldstone diagramB1, whereas in the second it is represented
by two diagramsB2 andB4. The diagrams, corresponding to the tensorial product, have
the following algebraic expressions:

B3 = [[
a(λi ) × a(λj )

](κ12σ12) × [
ã(λ

′
i ) × ã(λ

′
j )
](κ ′

12σ
′
12)

](kk)
p–p (22)

B5 = [[
a(λi ) × ã(λ

′
i )
](κ1σ1) × [

a(λj ) × ã(λ
′
j )
](κ2σ2)

](kk)
p–p (23)

B6 = [
a(λi ) × ã(λ

′
j )
](kk)

p–p . (24)

Thus, the method of obtaining algebraic expressions from the diagramsB3, B5 andB6

is similar to the case of diagramA2. The positions of the second quantization operators
in the diagram define their order in the tensorial product: the first place in the tensorial
product occupies the upper right second quantization operator, the second place occupies
the lower right operator, after them the upper left and lower left operators follow. The
angular momenta diagram defines their coupling scheme into a tensorial product.

Thus, obeying these rules it is possible to easily find the algebraic counterparts of the
diagrams, not forgetting that the arrangement of the operators must not contradict their
coupling order, i.e. only neighbouring second quantization operators are coupled into a
tensorial product and their disposition order corresponds to the coupling scheme. Otherwise
some graphical operations are necessary. Let us present the simplest of them below as the
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example for the case when we have to change the disposition of the second quantization
operators and the coupling scheme in the tensorial product.

Figure 3. Diagrams for graphical transformations.

Suppose, we have the following correspondence between diagrams (figure 3):

C1 −→ C2 (25)

in which the second quantization operators are in the ordera(λ3) ã(λ4) a(λ1) ã(λ2). Our goal is
to obtain the diagram corresponding to the ordera(λ1) ã(λ2) a(λ3) ã(λ4). Bearing in mind that
the second quantization operators anticommute with each other and they all act on different
electronic shells and we are not changing the order of their coupling into a tensorial product,
we arrive at

C1 −→ (−1)4C3 = C3 . (26)

Let us also discuss another situation: we have defined the disposition of the operators
and we want to couple them into a certain tensorial product. Suppose that we want to
represent graphically the following tensorial product:[[

a(λ1) × ã(λ2)
](κ1σ1) × [

a(λ3) × ã(λ4)
](κ2σ2)

](κσ )
. (27)

For this purpose we have to rearrange the generalized Clebsch–Gordan coefficient, which
is defining the scheme of coupling of the operators into the tensorial product. It is easy to
notice that this coefficient will properly define the tensorial product, if we change the sign
of the vertex ‘a’ in diagramC3. Making use of (16) we find

C1 −→ (−1)κ1+κ2−κ+σ1+σ2−σC4 . (28)

The procedures described are fairly simple, however they are sufficient for the majority
of cases. The more complete description of this generalized graphical approach may be
found in Gaigalaset al (1985), Gaigalas (1985) and Gaigalas and Merkelis (1987).

4. Quasispin formalism

A wavefunction withu shells inLS coupling may be denoted in the form

ψu (LSMLMS) ≡ |n1l
N1
1 n2l

N2
2 . . . nul

Nu

u α1L1S1α2L2S2 . . . αuLuSuALSMLMS) (29)
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whereA stands for all intermediate quantum numbers, depending on the order of coupling
of momentaαiLiSi .

As we shall see later on, it is very convenient for the calculations of matrix elements
to use quasispin formalism. Thena(λ)mλ

and ã(λ)mλ
are components of the tensora(qλ)mqmλ

, having
in additional quasispin space the rankq = 1

2 and projectionsmq = ± 1
2, i.e. a(qλ)1

2mλ
= a(ls)mlms

anda(qλ)− 1
2mλ

= ã(ls)mlms
.

In the quasispin representation, for a wavefunction of the shell of equivalent electrons
|nlNαLS) a labelQ (quasispin momentum of the shell) is introduced, which is related
to the seniority quantum numberν, namely,Q = (2l + 1 − ν) /2, and its projection,
MQ = (N − 2l − 1) /2. Hereα denotes all additional quantum numbers needed for the
one-to-one classification of the energy levels. Then, we can rewrite the wavefunction (29)
as

ψu (LSMLMS) ≡ |n1l1n2l2 . . . nuluα1L1S1Q1MQ1α2L2S2Q2MQ2 . . .

×αuLuSuQuMQu
ALSMLMS) . (30)

Making use of the Wigner–Eckart theorem in quasispin space of a shelllN ,(
l αQLSMQ||T (qls)

mq
||l α′Q′L′S ′M ′

Q

) = (−1)2q [Q]−1/2

×
[

Q′ q Q

M ′
Q mq MQ

] (
l αQLS|||T (qls)|||l α′Q′L′S ′) (31)

it is possible to define the notions of a completely reduced matrix element
(l αQLS|||T (qls)|||l α′Q′L′S ′) and subcoefficient of fractional parentage (reduced
coefficient of fractional parentage)(l αQLS|||a(qls)|||l α′Q′L′S ′). In equation (31)T (qls)

mq

is any tensor with rankq and its projectionmq in quasispin space and on the right-hand

side of this equation only the Clebsch–Gordan coefficient
[

Q′ q Q

M ′
Q mq MQ

]
depends on the

numberN of equivalent electrons.
According to Rudzikas and Kaniauskas (1984) we have the following relation

between the coefficients of fractional parentage and completely reduced matrix elements
(l αQLS|||a(qls)|||l α′Q′L′S ′) of the operator of second quantizationa(qls):(
lN αQLS||lN−1

(
α′Q′L′S ′)l) = (−1)N−1 (N [Q,L, S])−1/2

×
[

Q′ 1
2 Q

M ′
Q

1
2 MQ

]
(l αQLS|||a(qls)|||l α′Q′L′S ′) . (32)

Tables of numerical values of(l αQLS|||a(qls)|||l αQ′L′S ′) are presented in Rudzikas
and Kaniauskas (1984) whenl = 0,1,2. For the tensorial product of two one-electron
operators, the submatrix element equals(
nlN αQLS||[a(qλ)mq1

× a(qλ)mq2

](k1k2)||nlN ′
α′Q′L′S ′)

=
∑
ε,mε

[Q]−1/2

[
q q ε

mq1 mq2 mε

] [
Q′ ε Q

M ′
Q mε MQ

]

×(
nl αQLS|||W(εk1k2)|||nl α′Q′L′S ′) . (33)

On the right-hand side of equations (32) and (33) only the Clebsch–Gordan coefficient[
Q′ ε Q

M ′
Q mε MQ

]
depends on the numberN of equivalent electrons.(

nl αQLS|||W(εk1k2)|||nl α′Q′L′S ′) denotes a reduced (in quasispin space) submatrix
element (completely reduced matrix element) of the triple tensorW(εk1k2) (nl, nl) = [

a(qls)×
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a(qls)
](εk1k2). It is related to the completely reduced coefficients (subcoefficients) of fractional

parentage in the following way:(
nl αQLS|||W(εk1k2)|||nl α′Q′L′S ′)

= (−1)Q+L+S+Q′+L′+S ′+ε+k1+k2 [ε, k1, k2]1/2

×
∑

α′′Q′′L′′S ′′

(
l αQLS|||a(qls)|||l α′′Q′′L′′S ′′)

× (
l α′′Q′′L′′S ′′|||a(qls)|||l α′Q′L′S ′)

×
{

q q ε

Q′ Q Q′′

} {
l l k1

L′ L L′′

} {
s s k2

S ′ S S ′′

}
. (34)

So, by applying the quasispin method for calculating the matrix elements of any operator,
we can use the reduced coefficients of fractional parentage or the tensors (for example,
W(εk1k2) (nl, nl)), which are independent of the occupation number of the shell for a given
ν. The main advantage of this approach is that the standard data tables in such a case
will be much smaller in comparison with tables of the usual coefficients and, therefore,
many summations will be less time consuming. Also one can see that in such an approach
the submatrix elements of standard tensors and subcoefficients of fractional parentage can
actually be treated in a uniform way as they are all completely reduced matrix elements
of the second quantization operators. Hence, the methodology of calculation of matrix
elements will be much more universal in comparison with the traditional one.

5. Matrix elements in the case of two open shells of equivalent electrons

The aim of this section is to illustrate the usage of the above-mentioned methodology to
obtain the expressions for matrix elements of a two-particle operator, when the wavefunction
(30) has two open shellsn1l

N1
1 andn2l

N2
2 . Then it may be written as

ψ2 (LSMLMS) ≡ |n1l1n2l2α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS) . (35)

To find the numerical value of the physical quantity of a two-electron operator one ought
to have the expressions for its matrix elements within each shell of equivalent electrons and
between each pair of shells, including non-diagonal, with respect to configurations, matrix
elements.

While calculating the diagonal matrix elements between functions (35), the quantum
numbersniλi, n′

iλ
′
i , njλj , n

′
jλ

′
j in two alternative expressions (7), (8) acquire the following

values:
(i) niλi = n′

iλ
′
i = njλj = n′

jλ
′
j = n1l1s. (All the operators of the second quantization

act upon the first shell.)
(ii) niλi = n′

iλ
′
i = njλj = n′

jλ
′
j = n2l2s. (All the operators of the second quantization

act upon the second shell.)
(iii) niλi = n′

iλ
′
i = n1l1s, njλj = n′

jλ
′
j = n2l2s.

(iv) njλj = n′
jλ

′
j = n1l1s, niλi = n′

iλ
′
i = n2l2s.

(v) niλi = n′
jλ

′
j = n1l1s, n

′
iλ

′
i = njλj = n2l2s.

(vi) n′
iλ

′
i = njλj = n1l1s, niλi = n′

jλ
′
j = n2l2s.

In the first case the matrix elements of the operator in the first (using (7)) and the second
(using (8)) forms are equal, respectively,(
n1l

N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |GI(1111)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S

)
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= − 1
2

∑
κ12κ

′
12σ12σ

′
12

∑
p

(−1)k−p [κ1, κ2, σ1, σ2]1/2

× (
n1λ1n1λ1||g(κ1κ2k,σ1σ2k)||n1λ1n1λ1

)
×




l1 l1 κ ′
12

κ1 κ2 k

l1 l1 κ12







s s σ ′
12

σ1 σ2 k

s s σ12




×(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×[[
a(λ1) × a(λ1)

](κ12σ12) × [
ã(λ1) × ã(λ1)

](κ ′
12σ

′
12)](kk)

p–p

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S) (36)

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |GII (1111)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

= 1
2

∑
p

(−1)k−p
(
n1λ1n1λ1||g(κ1κ2k,σ1σ2k)||n1λ1n1λ1

)

×
{

[κ1, κ2, σ1, σ2]−1/2

×(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×[ [
a(λ1) × ã(λ1)

](κ1σ1) × [
a(λ1) × ã(λ1)

](κ2σ2) ](kk)
p–p

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

−
{
κ1 κ2 k

l1 l1 l1

} {
σ1 σ2 k

s s s

}
×(n1l

N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

× [
a(λ1) × ã(λ1)

](kk)
p–p

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

}
. (37)

Schematically these expressions may be written down as

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |G(1111)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

=
∑

κ12,σ12,κ
′
12σ

′
12

.
(
κ12, σ12, κ

′
12, σ

′
12, n1, λ1

)
×(n1l

N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×A(kk)
p–p(κ12, σ12, κ

′
12, σ

′
12, n1, λ1)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S) (38)

where .(κ12, σ12, κ
′
12, σ

′
12, n1, λ1) is proportional to the radial part of an operator and

A(kk)
p–p(κ12, σ12, κ

′
12, σ

′
12, n1, λ1) to the spin-angular part of it. In the first form

A(kk)
p–p(κ12, σ12, κ

′
12, σ

′
12, n1, λ1)

= [ [
a(λ1) × a(λ1)

](κ12σ12) × [
ã(λ1) × ã(λ1)

](κ ′
12σ

′
12) ](kk)

p–p (39)
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whereas in the second form (κ12 = κ1, σ12 = σ1, κ
′
12 = κ2, σ

′
12 = σ2)

A(kk)
p–p (κ1, σ1, κ2, σ2, n1, λ1) =

{
[κ1, κ2, σ1, σ2]−1/2

×[ [
a(λ1) × ã(λ1)

](κ1σ1) × [
a(λ1) × ã(λ1)

](κ2σ2) ](kk)
p–p

−
{
κ1 κ2 k

l1 l1 l1

} {
σ1 σ2 k

s s s

} [
a(λ1) × ã(λ1)

](kk)
p–p

}
. (40)

So, in order to calculate the spin-angular parts of matrix elements of operators (7), (8),
we have to obtain first the matrix elements of operatorsA(kk)

p–p(κ12, σ12, κ
′
12, σ

′
12, n1, λ1). By

using the Wigner–Eckart theorem, we find

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×A(kk)
p–p(κ12, σ12, κ

′
12, σ

′
12, n1, λ1)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

= [L, S]−1/2

[
L′ k L

ML′ p ML

] [
S ′ k S

MS ′ −p MS

]
×(n1l

N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×A(kk)(κ12, σ12, κ
′
12, σ

′
12, n1, λ1)

×||n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′) . (41)

Then we proceed with analysing the submatrix elements. As the operator
A(kk)(κ12, σ12, κ

′
12, σ

′
12, n1, λ1) acts here upon the first shell only, then, using the expression

(4.7) from Jucys and Savukynas (1973), namely,

(α1j1α2j2j ||A(k)

1 ||α1j1α2j2j) = δ
(
α2j2, α

′
2j

′
2

)
(−1)j1+j2+j ′+k

×[j, j ′]1/2(α1j1||A(k)

1 ||α1j1)

{
j1 j j2

j ′ j ′
1 k

}
(42)

we obtain

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×A(kk)
(
κ12, σ12, κ

′
12, σ

′
12, n1, λ1

)
×||n1l

N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′)

= (−1)L1+S1+L2+S2+L′+S ′+2k [L, S,L′, S ′]1/2

×
{
L1 L L2

L′ L′
1 k

} {
S1 S S2

S ′ S ′
1 k

}
×(n1l

N1
1 α1Q1L1S1||A(kk)(κ12, σ12, κ

′
12, σ

′
12, n1, λ1)

×||n1l
N1
1 α′

1Q
′
1L

′
1S

′
1) . (43)

Then there remains only to obtain the formulae for the following submatrix elements:

(nlN αQLS||[a(λ) × ã(λ)
](kk)||nlN α′Q′L′S ′) (44)

(nlN αQLS||[[a(λ) × ã(λ)
](κ1σ1) × [

a(λ) × ã(λ)
](κ2σ2)

](kk)||nlN α′Q′L′S ′) (45)

(nlN αQLS||[[a(λ) × a(λ)
](κ12σ12) × [

ã(λ) × ã(λ)
](κ ′

12σ
′
12)

](kk)
×||nlN α′Q′L′S ′) . (46)
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Using the expressions (33) and (34), we straightforwardly find the value of a submatrix
element (44). The values of submatrix elements (45), (46) follow directly from the
expression (2.28) of Jucys and Savukynas (1973),

(αj || [A(k1) × B(k2)
](k) ||α′j ′) = (−1)j+j

′+k [k]1/2

×
∑
α′′j ′′

(αj ||A(k1)||α′′j ′′)(α′′j ′′||B(k2)||α′j ′)
{
k1 k2 k

j ′ j j ′′

}
. (47)

So we have

(nlN αQLS||[[a(qλ)mq1
× a(qλ)mq2

](κ1σ1) × [
a(qλ)mq3

× a(qλ)mq4

](κ2σ2)
](kk)

×||nlN ′
α′Q′L′S ′) = (−1)L+S+L′+S ′+2k[k]

×
∑

α′′Q′′L′′S ′′

{
κ1 κ2 k

L′ L L′′

} {
σ1 σ2 k

S ′ S S ′′

}

×(nlN αQLS||[a(qλ)mq1
× a(qλ)mq2

](κ1σ1)||nlN ′′
α′′Q′′L′′S ′′)

×(nlN ′′
α′′Q′′L′′S ′′||[a(qλ)mq3

× a(qλ)mq4

](κ2σ2)||nlN ′
α′Q′L′S ′) . (48)

Schematically we can express the matrix element in the second case, when the operators
of second quantization act upon the second shell, as follows:

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |G(2222)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

=
∑

κ12,σ12,κ
′
12σ

′
12

.(κ12, σ12, κ
′
12, σ

′
12, n2, λ2)

×(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×A(kk)
p–p(κ12, σ12, κ

′
12, σ

′
12, n2, λ2)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S) (49)

and find its value by using the Wigner–Eckart theorem, expressions (4.9), (2.28) from Jucys
and Savukynas (1973) as well as (33) and (34).

Differently from the first and the second cases, in the third (niλi = n′
iλ

′
i = n1l1s, njλj =

n′
jλ

′
j = n2l2s) and the fourth (niλi = n′

iλ
′
i = n2l2s, njλj = n′

jλ
′
j = n1l1s) cases the first

tensorial form (7) is not convenient for calculating the matrix elements. This is related to the
fact that the spin-angular parts of matrix elements do not have the shape of any expression
below:

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×A(kk)(κ12, σ12, κ
′
12, σ

′
12, n1, λ1)

×||n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′) (50)

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×A(kk)(κ12, σ12, κ
′
12, σ

′
12, n2, λ2)

×||n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′) (51)

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×[
A(κ12σ12) (n1λ1)× B(κ

′
12σ

′
12) (n2λ2)

](kk)
×||n1l

N ′
1

1 n2l
N ′

2
2 α′

1L
′
1S

′
1Q

′
1M

′
Q1
α′

2L
′
2S

′
2Q

′
2M

′
Q2
L′S ′) (52)
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(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×[
A(κ12σ12) (n2λ2)× B(κ

′
12σ

′
12) (n1λ1)

](kk)
×||n1l

N ′
1

1 n2l
N ′

2
2 α′

1L
′
1S

′
1Q

′
1M

′
Q1
α′

2L
′
2S

′
2Q

′
2M

′
Q2
L′S ′) . (53)

HereA(κ12σ12) (nλ) andB(κ
′
12σ

′
12) (nλ) represent any tensorial operator.

Only these shapes (50)–(53), in the case of two open shells, guarantee the effective use
of Racah algebra. This includes the determination of zero matrix elements from triangular
conditions (for example in (52)δ(L1, L

′
1, κ12), δ(S1, S

′
1, σ12), δ(L2, L

′
2, κ

′
12), δ(S2, S

′
2, σ

′
12))

without explicit calculation, the use of tables of standard quantities, and the use of quasispin
(see section 4) at last.

Meanwhile the second form (8) allows one to exploit the Racah algebra to its full extent,
as the matrix elements for the third case

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |GII (1212)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

= 1
2

∑
p

(−1)k−p [κ1, κ2, σ1, σ2]−1/2

× (
n1λ1n2λ2||g(κ1κ2k,σ1σ2k)||n1λ1n2λ2

)
×(n1l

N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×[ [
a(λ1) × ã(λ1)

](κ1σ1) × [
a(λ2) × ã(λ2)

](κ2σ2) ](kk)
p–p

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S) (54)

and the fourth case

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |GII (2121)

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S)

= 1
2

∑
p

(−1)k−p [κ1, κ2, σ1, σ2]−1/2

× (
n2λ2n1λ1||g(κ1κ2k,σ1σ2k)||n2λ2n1λ1

)
×(n1l

N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LSMLMS |

×[ [
a(λ2) × ã(λ2)

](κ1σ1) × [
a(λ1) × ã(λ1)

](κ2σ2) ](kk)
p–p

×|n1l
N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′M ′
LM

′
S) (55)

are schematically written down in the following as (52) and (53), by using expression (4.3)
from Jucys and Savukynas (1973),

(α1j1α2j2j ||
[
A
(k1)

1 × A
(k2)

2

](k)||α′
1j

′
1α

′
2j

′
2j

′) = [
j, j ′, k

]1/2

×(α1j1||A(k1)

1 ||α′
1j

′
1)(α2j2||A(k2)

2 ||α′
2j

′
2)




j1 j2 j

j ′
1 j ′

2 j ′

k1 k2 k


 (56)

and in the fourth case, after reversing the order of shells and altering the coupling of their
momenta for bra and ket functions we obtain

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×[ [
a(λ1) × ã(λ1)

](κ1σ1) × [
a(λ2) × ã(λ2)

](κ2σ2) ](kk)
×||n1l

N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′)
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= [k]
[
L, S,L′, S ′]1/2




L1 L2 L

L′
1 L′

2 L′

κ1 κ2 k







S1 S2 S

S ′
1 S ′

2 S ′

σ1 σ2 k




×(n1l
N1
1 α1Q1L1S1||

[
a(λ1) × ã(λ1)

](κ1σ1) ||n1l
N1
1 α′

1Q
′
1L

′
1S

′
1)

×(n2l
N2
2 α2Q2L2S2||

[
a(λ2) × ã(λ2)

](κ2σ2) ||n2l
N2
2 α′

2Q
′
2L

′
2S

′
2) (57)

(n1l
N1
1 n2l

N2
2 α1L1S1Q1MQ1α2L2S2Q2MQ2LS||

×[ [
a(λ2) × ã(λ2)

](κ1σ1) × [
a(λ1) × ã(λ1)

](κ2σ2) ](kk)
×||n1l

N1
1 n2l

N2
2 α′

1L
′
1S

′
1Q

′
1MQ1α

′
2L

′
2S

′
2Q

′
2MQ2L

′S ′)

= [k]
[
L, S,L′, S ′]1/2




L2 L1 L

L′
2 L′

1 L′

κ1 κ2 k







S2 S1 S

S ′
2 S ′

1 S ′

σ1 σ2 k




×(n2l
N2
2 α2Q2L2S2||

[
a(λ2) × ã(λ2)

](κ1σ1) ||n2l
N2
2 α′

2Q
′
2L

′
2S

′
2)

×(n1l
N1
1 α1Q1L1S1||

[
a(λ1) × ã(λ1)

](κ2σ2) ||n1l
N1
1 α′

1Q
′
1L

′
1S

′
1) . (58)

From this we conclude that in the third and fourth cases the usage of the tensorial
expressions of only a two-particle operator (8) allows us to successfully exploit all the
advantages of Racah algebra and quasispin formalism in calculating the spin-angular parts
of any two-particle operator matrix element. This, in our opinion, not only simplifies the
calculations considerably, by allowing the use of the tables of irreducible tensors that are
independent of shell occupation numbers, but also allows one to establish the zero matrix
elements without performing explicit calculations.

Meanwhile the situation is different when the last two cases are considered, or the
matrix elements between more complex configurations are to be established. This is related
to the fact that using first (7) or second (8) tensorial forms the spin-angular part of matrix
elements for these cases do not have the shape of any expression (50)–(53).

In the next paper we shall present a methodology that allows one to use the Racah
algebra and quasispin formalism efficiently in a general case, too.

6. Conclusion

Preliminary usage of the generalized graphical method, irreducible tensorial form of the
second quantization operators as well as of a quasispin technique, while calculating the spin-
angular parts of matrix elements of the energy operator, has demonstrated high efficiency in
obtaining in a uniform way the general expressions for the operators of physical quantities
as well as for their matrix elements, covering both diagonal and non-diagonal cases with
respect to quantum numbers of electronic configurations. Therefore it is fairly promising
to formulate this methodology in a complete and consistent way for an arbitrary number of
electronic shells with its successive implementation in the universal computer codes.
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