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Abstract

A program RCFP will be presented for calculating standard quantities in the decomposition of many-electron matrix elements
in atomic structure theory. The list of quantities which are supported by the present program includes the coefficients of
fractional parentage, the reduced coefficients of fractional parentage, the reduced matrix elements of the unit operatorT k as
well as the completely reduced matrix elements of the operatorWkj kq in jj -coupling. These quantities are now available for all
subshells (nj ) with j 6 9/2 including partially filled 9/2-shells. Our program is based on a recently developed new approach on
the spin-angular integration which combines second quantization and quasispin methods with the theory of angular momentum
in order to obtain a more efficient evaluation of many-electron matrix elements. An underlying Fortran 90/95 module can
directly be used also in (other) atomic structure codes to accelerate the computation for open-shell atoms and ions. 2001
Elsevier Science B.V. All rights reserved.

PROGRAM SUMMARY

Title of program:RCFP

Catalogue identifier:ADNA

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADNA

Program obtainable from:CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland. Users may obtain the program
also by dow-loading a tarfileratip-rcfp.tar from our home
page at the University of Kassel (http://www.physik.uni-kassel.
de/fritzsche/programs.html)

Licensing provisions:None

Computer for which the program is designed and has been tested:
IBM RS 6000, PC Pentium II

Installations:University of Kassel (Germany)

Operating systems:IBM AIX 4.1.2+, Linux 6.1+

Program language used in the new version:ANSI standard Fortran
90/95

Memory required to execute with typical data:100 kB

No. of bits in a word:All real variables are parametrized by ase-
lected kind parameter and, thus, can be adapted to any re-
quired precision if supported by the compiler. Currently, thekind

* Corresponding author.
E-mail address:fritzsch@hrz.uni-kassel.de (S. Fritzsche).

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(00)00176-4



G. Gaigalas, S. Fritzsche / Computer Physics Communications 134 (2001) 86–96 87

parameter is set to double precision (two 32-bit words) as it is for
other components of the RATIP package [1]

Peripheral used:Terminal for input/output

No. of bytes in distributed program, including test data, etc:70 953

Distribution format:tar gzip file

CPC Program Library subprograms required:Catalogue number:
to be assigned; Title: REOS99; Ref. [1].

Keywords:Atomic many-body perturbation theory, complex atom,
configuration interaction, effective Hamiltonian, energy level,
Racah algebra, reduced coefficients of fractional parentage, reduced
matrix element, relativistic, second quantization, standard unit ten-
sors, tensor operators, 9/2-subshell

Nature of the physical problem
The calculation of atomic properties and level structures is based
on the evaluation of many-particle matrix elements of physical
operators. For symmetry-adapted functions, the matrix element
for a given tensor operatorAK of rank K can be expressed as∑
j,k coeff(j, k)〈γj Jj ‖AK‖γkJk〉 by using the (reduced) coeffi-

cients of fractional parentage and the reduced matrix elements of
the (unit) standard tensorsT k orWkqkj . These reduced coefficients
and matrix elements are frequently applied to both the configuration
interaction and multi-configuration Dirac–Fock method [2] as well
as to many-body perturbation theory [3].

Method of solution
A new combination of second quantization and quasispin methods
with the theory of angular momentum and irreducible tensor oper-
ators leads to a more efficient evaluation of (many-particle) matrix

elements and to faster computer codes [4]. Practical implementa-
tions of this new scheme will support not only large-scale compu-
tations on open-shell atoms but may even help to develop programs
for calculating the angular parts of (effective) one- and two-particle
operators for many-body perturbation theory (in higher orders) in
the future.

Restrictions onto the complexity of the problem
For jj -coupled subshells states, our module provides coefficients
and matrix elements for all subshells (nj ) with j = 1/2, 3/2, 5/2,
7/2, and 9/2.

Typical running time
For large computations, the running time depends on the shell struc-
ture and the size of the wave function expansion for a given atomic
system. However, the programpromptly responds in its interactive
mode if only single coefficients and matrix elements are to be cal-
culated.

Unusual features of the program
The interactive version of RCFP can be used as an “electronic tabu-
lation” of standard quantities for evaluating general matrix elements
for jj -coupled functions.
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LONG WRITE-UP

1. Introduction

In atomic structure theory, the efficient evaluation of many-electron matrix elements play a crucial role.
Typically, such matrix elements have to be evaluated for different one- and two-particle operators which describe
the interaction of the electrons with each other or with external particles and fields. By exploiting the techniques of
Racah’s algebra [1], the evaluation of these matrix elements may often be considerably simplified by carrying out
the integration over the spin-angular coordinates analytically. For atoms with open shells, several approaches to
this analytic integration were developed in the past. One of the most widely-used computational schemes is from
Fano [2,3] and has been implemented in a number of powerful programs [4,5] since that time.

Fano’s procedure [2] is based on the coefficients of fractional parentage (cfp). During the last decades, this
procedure was applied both toLS- andjj -coupling; in the following, we will restrict ourselves tojj -coupling as
appropriate for relativistic calculations. By using the cfp as the basic quantities, however, Fano’s procedure does
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not exploit the full power of Racah’s algebra. Instead of using cfp, it is often more convenient to exploit unit tensors
[6,7] which are closer related to the tensorial form of physical operators. But so far, unit tensors have been applied
only for evaluating diagonal matrix elements while all non-diagonal matrix elements still have to be evaluated by
using the cfp [7,8]. A recently developed approach [9,10] now treats diagonal and non-diagonal matrix elements on
a uniform basis. This approach is based on a second quantization and uses a coupled tensorial form for the creation
and annihilation operators [11]. It also applies the theory of angular momentum to two different spaces, i.e. the
space of orbital angular momentumj and the quasispin space [12]. The basic quantities of this new approach are
the so-called reduced coefficients of fractional parentage (rcfp) and the completely reduced matrix elements of the
W(kqkj ) operator.

Obviously, each computational scheme is based on a set of standard quantities to decompose the many-electron
matrix elements. These quantities are either the cfp, rcfp, the reduced matrix elements of the unit tensorT k ,
the completely reduced matrix elementsWkqkj , depending on the approach. Therefore, very different tabulations
of these quantities are found in the literature. For example, numerical values for the cfp are found by de Shalit
and Talmi [13] for subshells withj = 5/2, 7/2 and 9/2 while rcfp for j = 5/2 and 7/2 were first tabulated by
Savǐcius et al. [14]. Matrix elements ofT k are tabulated, for instance, by Slepcov et al. [15] for subshells with
j = 3/2, 5/2 and 7/2; often, however, it is more convenient to express these matrix elements in terms of the
completely reduced matrix elements of the operatorW(kqkj ) even though no explicit compilation of these matrix
elements yet available. In practical applications, they are instead derived from a sum of products of rcfp and 6-j

symbols.
In this paper, we will present the program RCFP for the calculation of the standard quantities both in Fano’s and

our new approach. These quantities are needed for the integration over the spin-angular variables. Our program not
only supports large-scale computations on open-shell atoms but may even help to develope codes for calculating
the angular parts of (effective) one- and two-particle operators from many-body perturbation theory (in higher
orders) in the future.

The theoretical background will be presented in Section 2. This includes a brief outline of the quasispin concept,
the definitions of the rcfp and the reduced matrix elements of the unit tensorsWkqkj andT k as well as the proper
classification of subshells injj -coupling. The program organization will be dealt with in Section 3 while, finally,
a few examples are given in Section 4.

2. Theoretical background

The theory of angular integration for symmetry-adapted functions has been reviewed in several texts and
monographs [3,7,10,16]. As mention above, this theory is usually built on a number of standard quantities like the
cfp or the reduced matrix elements of the unit tensorT k which, in turn, can be applied to lay down the expressions
for more complex matrix elements. Other important quantities (which are also provided by our program) are the
rcfp and the completely reduced matrix elements of the tensor operatorsWkqkj . In the following, we shall not repeat
too many details about this angular integration on the spin-angular coordinates; instead, we just list the definition
of those quantities which can be obtained from our program along with a number of useful relations among them.
For all further details, we ask the reader to refer to the literature given above.

In the literature, several definitions and phase conventions are used for defining the standard quantities for
angular integration. Here, we follow the definitions from Savičius [14] and from Kaniauskas and Rudzikas [12].
We also apply the so-calledstandard-phase systems,

A(k)†q = (−1)k−qA(k)−q (1)

throughout this paper which were originally introduced by Fano and Racah [17].



G. Gaigalas, S. Fritzsche / Computer Physics Communications 134 (2001) 86–96 89

2.1. The quasispin concept

In jj -coupling, a wave function for a subshell ofN equivalentelectrons with principal quantum numbern and
(one-electron) angular momentumj is often written as

|njNαJ ), (2)

whereJ denotes the total angular momentum andα all additional quantum numbers as needed for an unique
classification of these states. Using the quasispin concept, a further (angular) quantum numberQ, the quasispin
momentum of the subshell, can be introduced so that the wave function of this subshell (to which we briefly refer
to as asubshell state) then reads

|njNαQJ). (3)

For any given subshell, the quasispin Q is closely related to the seniority quantum numberν as used in theseniority
scheme, i.e.Q= ((2j + 1)/2− ν)/2. If compared with the seniority notation the quasispinQ to has the advantage
of its projection,MQ, being related to the occupation numberN byMQ = (N − (2j + 1)/2)/2. Therefore, when
exploring the quasispin concept for classifying the atomic subshell states (3), the Wigner–Eckart theorem can be
applied twice, both to the space of quasispin (Q-space) as well as to the total angular momentum (J -space). Hence,
any reduced matrix element inJ -space can be further reduced also inQ-space [12](

jNαQJMQ‖A(qj)mq ‖jN
′
α′Q′J ′M ′Q

) = (−1)Q−MQ

(
Q q Q′
−MQ mq M ′Q

)
× (jαQJ‖|A(qj)|‖jα′Q′J ′) (4)

to a so-calledcompletely reducedmatrix element. In Eq. (4),A(qj)mq denotes a tensor with rankq and projection
mq in theQ-space. As seen from its notation the completely reduced matrix element(jαQJ‖|A(qj)|‖jα′Q′J ′) is
independent of the occupation numberN of the particular subshell states; the occupation numberN of these states
occurs explicitly only on the left-hand side of Eq. (4) while it is incorporated intoQ on the right-hand side. Thus,
by applying the quasispin concept, the evaluation of general matrix elements will result in a much smaller number
of completely reduced matrix elements which are independent of the occupation of electronsN in this subshell but
still allows an unique decomposition.

2.2. Coefficients of fractional parentage

The electron creationa(j)mj and annihilationa(j)†−mj operators play a key role in the theory of second quantization

and atomic structure [18]. Using the quasispin concept, the operatorsa
(j)
−mj andã(j)mj = (−1)j−mj a(j)†−mj also form

components of an irreducible tensor of rankq = 1
2 in Q-space, i.e.

a
(qj)
mqmj =

a
(j)
mj for mq = 1

2,

ã
(j)
mj for mq =−1

2.
(5)

Compared with the electron creation and annihilation operators above, the operatorsa
(qj)
mqmj also act in an additional

quasispin space like a tensor component with rankq and a projectionmq = ±1
2. There is the following relation

known between the reduced matrix element of a creation operator and the cfp [19](
jNαQJ‖a(j)‖jN−1α′Q′J ′

)= (−1)N
√
N[J ](jNαQJ‖jN−1(α′Q′J ′)j

)
(6)

where[J ] ≡ (2J + 1). Eq. (6) can be used to define the relation between the cfp and its reduced counterpart in
Q-space. Introducing thez-projection,MQ, of the quasispin, this relation is given by [7]
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(
jαQJ‖|a(qj)|‖jα′Q′J ′) = (−1)N+Q−MQ

√
N[J ]

(
Q 1/2 Q′
−MQ 1/2 M ′Q

)−1

× (jNαQJ‖jN−1(α′Q′J ′)j
)
. (7)

The properties of the rcfp have been summarized by Savičius et al. [14] and Gaigalas et al. [20]. The latter reference
also discussesphase conventionswhich are frequently applied in the literature to subshell states with a the same
numberN(< j + 1/2) of electrons or holes, respectively.

2.3. Reduced matrix elements of standard operators

The unit tensorsWkqkj andT k are other standard quantities in atomic spectroscopy. Many texts on the evaluation
of matrix elements in many-particle physics frequently refer to these quantities [6,7]. The tensorWkqkj , for
example, is defined as the tensorial product of two creation operators in second quantization

W
kqkj
mqmj =

[
a(qj)× a(qj)]kqkj

mqmj
. (8)

Following Savǐcius et al. [14], the operatorsT k andWkqkj obey the relation

T km =
{−(2[k])−1/2W0k

0m if k is odd,

−(2[k])−1/2W1k
0m if k is even.

(9)

The reduced matrix elements ofT k can be represented in terms of a sum over 6-j symbols and cfp’s(
jNαJ‖T k‖jNα′J ′) = N

√
[J,J ′]

∑
α′′J ′′

(−1)J
′′+j+J+k

{
j J J ′′
J ′ j k

}
×(jNαJ‖jN−1(α′′J ′′)j)(jN−1(α′′J ′′)j‖jNα′J ′). (10)

The completely reduced matrix elements of the operatorW(kqkj ) is related to the rcfp in the following way(
njαQJ‖|Wkqkj |‖njα′Q′J ′)
= (−1)Q+J+Q′+J ′+kq+kj

√[kq, kj ] ∑
α′′Q′′J ′′

{
q q kq
Q′ Q Q′′

}{
j j kj
J ′ J J ′′

}
× (jαQJ‖|a(qj)|‖jα′′Q′′J ′′)(jα′′Q′′J ′′‖|a(qj)|‖jα′Q′J ′). (11)

Thus, a close relationship between the completely reduced matrix elements ofWkqkj and the reduced matrix
elements of the unit tensorT k is given by(

njαQJ‖|W1k |‖njα′Q′J ′) = (−1)1+Q−MQ
√

2[k]
(

Q 1 Q′
−MQ 0 M ′Q

)−1

× (jNαQJMQ‖T k‖jNα′Q′J ′M ′Q
)

if kq = 1 andk is even (12)

and (
njαQJ‖|W0k |‖njα′Q′J ′)=−√2[Q,k](jNαQJMQ‖T (k)‖jNα′Q′J ′M ′Q

)
if kq = 0 andk is odd. (13)

Since the completely reduced matrix elements(njαQJ‖|Wkqkj |‖njα′Q′J ′) of the operatorWkqkj are, again,
independent of the occupation number, they allow for a more compact representation (tabulation) in atomic
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Table 1
Allowed couplings[j ]N of N equivalentelectrons for subshells withj = 1/2, . . . ,9/2. The seniority quantum numberν, the subshell angular
momentumJ , the subshell quasispinQ and the numberNr (for subshells withj = 9/2 only) are shown

Subshell ν J 2Q Nr Subshell ν J 2Q Nr

[1/2]0 or [1/2]2 0 0 1 3 5/2 2

[1/2]1 1 1/2 0 3 7/2 2

3 9/2 2

[3/2]0 or [3/2]4 0 0 2 3 11/2 2

[3/2]1 or [3/2]3 1 3/2 1 3 13/2 2

[3/2]2 0 0 2 3 15/2 2

2 2 0 3 17/2 2

3 21/2 2

[5/2]0 or [5/2]6 0 0 3 [9/2]4 or [9/2]6 0 0 5

[5/2]1 or [5/2]5 1 5/2 2 2 2 3

[5/2]2 or [5/2]4 0 0 3 2 4 3

2 2 1 2 6 3

2 4 1 2 8 3

[5/2]3 1 5/2 2 4 0 1

3 3/2 0 4 2 1

3 9/2 0 4 3 1

4 4 1 1

[7/2]0 or [7/2]8 0 0 4 4 4 1 2

[7/2]1 or [7/2]7 1 7/2 3 4 5 1

[7/2]2 or [7/2]6 0 0 4 4 6 1 1

2 2 2 4 6 1 2

2 4 2 4 7 1

2 6 2 4 8 1

[7/2]3 or [7/2]5 1 7/2 3 4 9 1

3 3/2 1 4 10 1

3 5/2 1 4 12 1

3 9/2 1 [9/2]5 1 9/2 4

3 11/2 1 3 3/2 2

3 15/2 1 3 5/2 2

[7/2]4 0 0 4 3 7/2 2

2 2 2 3 9/2 2

2 4 2 3 11/2 2

2 6 2 3 13/2 2
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Table 1
(Continued)

Subshell ν J 2Q Nr Subshell ν J 2Q Nr

4 2 0 3 15/2 2

4 4 0 3 17/2 2

4 5 0 3 21/2 2

4 8 0 5 1/2 0

5 5/2 0

[9/2]0 or [9/2]10 0 0 5 5 7/2 0

[9/2]1 or [9/2]9 1 9/2 4 5 9/2 0

[9/2]2 or [9/2]8 0 0 5 5 11/2 0

2 2 3 5 13/2 0

2 4 3 5 15/2 0

2 6 3 5 17/2 0

2 8 3 5 19/2 0

[9/2]3 or [9/2]7 1 9/2 4 5 25/2 0

3 3/2 2

structure calculations. This fact becomes important, in particular, when calculating atoms with opend- and/or
f -shells. So far, no detailed analysis or tabulation of these completely reduced matrix elements injj -coupling has
been published in the literature or has been implemented in any atomic structure code.

2.4. Classification of subshells injj -coupling

A unique classification of the atomic states and, hence, the subshell states is required for all structure
computations. For subshells withj = 1/2,3/2,5/2, and 7/2, two quantum numbersQ andJ (respectivelyν
andJ in the seniority notation) are sufficient to classify the subshell states for all allowed occupation numbers
N unambiguously. For these subshells, no additional quantum numbersα are then needed to be specified in (3).
By contrast, some additional number(s) are required for classifying the subshell states forj > 9/2 (cf. de Shalit
and Talmi [13] or Grant [3]). Forj = 9/2, there are two doublets (pairs of subshell states) withν = 4, J = 4 and
ν = 4, J = 6 in the [9/2]4 and [9/2]6 configurations which require an additional “number” in order to classify
these states uniquely. To distinguish the individual subshell states of these two pairs, we use the numberNr = 1
or Nr = 2 beside of the standard quantum numbersQ andJ , respectively,ν andJ . Table 1 lists all (jj -coupled)
subshell states forj = 1/2, 3/2, 5/2, 7/2 and 9/2, starting for eachj with the lowest occupation number.

3. Program organization

3.1. Overview to program

The program RCFP supports the computation of the cfp, the rcfp, the (completely) reduced matrix elements of
the operatorWkqkj as well as the matrix elements of the unit tensorT k . It can be applied interactively, for instance,
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for calculating a few individual coefficients or matrix elements in some theoretical derivation but also, byusingthe
underlying modulerabs_rcfp , in any relativistic atomic structure calculations in order to evaluate all required
(many-electron) matrix elements automatically. RCFP is written in Fortran 90/95 and is designed as additional
component of the RATIP package [21] as will be explained in Section 3.3. By exploiting the advantages of the new
Fortran 90/95 standard, we defined several derived data types which facilitate the work and which shall enable us
to incorporate this module in our present developments on large-scale computations for open-shell atoms and ions.
The definition of the various derived structures can be found in the header of the modulerabs_rcfp but will not
be explained here.

As seen from Section 2, the most basic quantities for evaluating matrix elements among different subshell states
are the rcfp and the completely reduced matrix elements ofWkqkj . These quantities are more general than the
cfp or the reduced matrix elements of the unit tensorT k as they do not depend on the occupation number in the
corresponding shells. Thus, the rcfp and the completely reduced matrix elements can be tabulated much easier for
subshells withj 6 7/2 or evenj = 9/2 and are also applied in the present program. This is in contrast to most
earlier atomic structure codes which are built on the cfp. Forj 6 7/2, the rcfp have been taken from Rudzikas [7]
while the corresponding tables forj = 9/2 have been created by us using Eq. (7) and the tabulations by de Shalit
and Talmi [13] for the cfp. Similarly, a tabulation of the completely reduced matrix elements ofWkqkj have been
obtained from the reduced matrix elements ofT k [15] and from the two relations (12) and (13) for the subshells
with j 6 7/2. Up to the present, the modulerabs_rcfp does not contain a full tabulation of the completely
reduced matrix elements ofWkqkj for j = 9/2 even though such an implementation might help considerably in
the future in order to accelerate structure calculations on atoms having openg9/2 and/orh9/2 subshells. At present,
these coefficients are calculated from Eq. (11) each time they are needed. Also, the values of the cfp and the reduced
matrix elements ofT k are calculated from Eqs. (7) or (12) and (13), respectively.

3.2. Interactive work

The program RCFP is typically applied in its interactive mode. In this mode, it replies immediately to the input
as typed in by the user. In the next section, we display several short dialogs for calculating individual coefficients
and matrix elements. From the main menu of the RCFP component (see Fig. 1), we need first to select the type
of the quantity which is to be computed. For example, by entering1 on the screen the user can calculate any cfp
in jj -coupling for subshells withj 6 9/2. Similarly, a2 supports the computation of rcfp, and so on. Finally, aq
will terminate the program.

The input of the required quantum numbers needed for the computation of any quantity is facilitated by the
program. It is only necessary to type those quantum numbers which cannot be derived automatically and which
distinguish the individual coefficients and matrix elements. For calculating a cfp or a reduced matrix elements of
T k, for instance, the orbital quantum numberj , the subshell occupation numberN , the seniority quantum number
ν, and the subshell total angular momentumJ is needed in order to specify the bra-function uniquely. Only if
additional quantum numbers are indeed required for a unique classification of the subshell states, the program will
ask for the quantum numberNr. A number of examples will illustrated the usage of RCFP below in Section 4.

3.3. Distribution and installation of the program

RCFP has been developed as (a new) component of the RATIP package [21]. To facilitate the combination
with this package, RCFP will be distributed as an archive file of the directoryratip_rcfp . From this archive,
first of all the file structure is reconstructed by the commandtar -xvf ratip_rcfp.tar on a UNIX
workstation or any compatible environment. The directoryratip_rcfp then contains the Fortran 90/95 module
rabs_rcfp.f , the (main) programxrcfp.f as well as the makefilemake-rcfp . It also includes a number
of examples in the subdirectorytest-rcfp and a shortRead.me which explains further details about the
installation. Since the same file structure is preserved in both cases, the combination of RCFP with RATIP is simply
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RCFP: Calculation of coefficients of fractional parentage (cfp) and various
reduced matrix elements in jj-coupling (Fortran 90 version)
(C) Copyright by G. Gaigalas and S. Fritzsche, Kassel (1999).

Select one issue from the list for calculating:

1: coefficients of fractional parentage,
2: reduced coefficients of fractional parentage,
3: completely reduced matrix elements of the operator W^{k_q k_j},
4: reduced matrix elements of unit operator T^{(k)},
b: return back to this menue,
q: quit.

Fig. 1. The main menue of RCFP.

achieved by running the commandcp -r ratip_rcfp/. ratip/. Inside of the RATIP root directory, then
make -f make-rcfp will generate the executablexrcf , similarly as for the other two componentsxcesd99
[22] andxreos99 [21] of the RATIP package. Like before, the name of the (Fortran 90/95) compiler and special
compiler flags can be overwritten in the header of the makefile. Although RCFP makesuseof four other modules
which are part already of RATIP, no further adaptation of the program is needed. At present, the RCFP program has
been installed and tested under the operating systems Linux and AIX but, owing to the compliance of the Fortran
90/95 standard, no difficulties should arise on any other platform.

The subdirectorytest-rcfp lists a number of examples which demonstrate the usage of the program. To each
item in the main menu in Fig. 1, a short file displays the full dialog to compute one or several individual coefficients
or (completely reduced) matrix elements. The fileshow-cfp-dialog , for instance, reports the calculation of
several cfp for subshells withj = 9/2 including an example for which the (additional) quantum numberNr need
to be specified.

Apart from the application ofrabs_rcfp in the RCFP program, this module can be used also in other programs
which, in the future, will provide the angular coefficients for general matrix elements of one- and two-particle
operators forjj -coupled functions.

4. Examples

To illustrate the use of RCFP in its interactive mode, we show three examples concerning the calculation of rcfp
and matrix elements. We will just display the input (which has to be typed in by the user) along with the given reply
by the program. In order to support also an occasional usage of the program, the notation of the various coefficients
and matrix elements is kept as close as possible with their printed form (cf. Section 2). Moreover, all information
which can automatically be deduced by the program is simply provided by typingEnter at input time. For an
improper selection of quantum numbers or any incomplete information, a short message is printed explaining the
failure before all previous (correct) input is repeated. This saves the user from re-enter all of the previously typed
input just because of one single (mistyped) quantum number. In the following examples, we display the user’s input
in boldface mode while the response of the program is shown in normal text mode.

Our first examples displays the computation of the cfp([7/2]4, ν = 2, J = 2{|[7/2]3, ν = 3, J = 3/2, ν = 1,
j = 7/2); from the main menue in Fig. 1, we therefore select the first item

1
Calculate a cfp (j^N nu J {| j^{N-1} nu’ J’, j) :
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(7/2ˆ4 2 2 Enter

7/2ˆ4 2 2 {| 7/2 ˆ3 3 3/2, Enter

(7/2ˆ4 2 2 {| 7/2 ˆ3 3 3/2, 1 7/2 ) = 2.53546276E-01

Continue

Next, let us calculate the rcfp(9/2, ν = 5, J = 1/2|||a(qj)|||9/2, ν = 4, J = 5) for which we select item 2 from
the main menue

2
Calculate a reduced cfp (j nu J ||| a^{(1/2 j)} ||| j nu’ J’) :

(9/2 5 1/2 Enter

(9/2 5 1/2 ||| aˆ {(1/2 j)}||| 9/2 4 5, Enter

Input must either start with symbol ’(’ or end with symbol ’)’; reenter ...
(9/2 5 1/2 ||| aˆ {(1/2 j)} ||| 9/2 4 5) Enter

(9/2 5 1/2 ||| aˆ {(1/2 j)} ||| 9/2 4 5) = 3.22490310E+00

Continue

In our third example, finally, we ask for the value of one of the completely reduced matrix element of theW(10)

operator, i.e.(j = 9/2, ν = 4, J = 6, Nr = 2‖|W(10)|‖j = 9/2, ν = 4, J = 6, Nr = 2). As mentioned in Section 2,
an additional quantum numberNr is required for a unique specification of the subshells states withj = 9/2. Here,
we start by selecting item 3 from the main menue.

3
Calculate a completely reduced matrix element
(j nu J ||| W^{k_q k_j} ||| j nu’ J’) :

(9/2 4 6 Enter

Enter the additional state identifier Nr = 1 or 2.
(9/2 4 6 Nr= 2 Enter

(9/2 4 6 Nr= 2 ||| Wˆ { 1 0 Enter

(9/2 4 6 Nr= 2 ||| Wˆ {1 0 } ||| 9/24 6 ) Enter

(9/2 4 6 Nr= 2 ||| Wˆ { 1 0 } ||| 9/2 Nr= 2 ) Enter

(9/2 4 6 Nr= 2 ||| Wˆ { 1 0 } ||| 9/2 Nr= 2) = -3.94968353E+00

Continue

A very similar dialog occurs for the computation of any other coefficient or reduced matrix element. In
conclusion, RCFP has been developed as a new component of the RATIP package which enables the user to
calculate standard quantities in the evaluation of many-electron matrix elements explicitly. In the future, the
underlying Fortran 90/95 modulerabs_rcfp will be exploited also to calculate the Hamiltonian matrix and
further properties of free atoms fromjj -coupled configuration state functions. The definition of the rcfp and the
completely reduced matrix elements and further improvements (see Gaigalas et al. [9]) will allow for faster and
more convenient computations than it is presently supported by standard atomic structure programs. A module for
calculating the angular coefficients forjj -coupled functions with respect to any (given) scalar two-particle operator
is currently under development.
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