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Abstract

A program RCFP will be presented for calculating standard quantities in the decomposition of many-electron matrix elements
in atomic structure theory. The list of quantities which are supported by the present program includes the coefficients of
fractional parentage, the reduced coefficients of fractional parentage, the reduced matrix elements of the uniZépasator
well as the completely reduced matrix elements of the opepafofs in jj-coupling. These quantities are now available for all
subshellsi{j) with j < 9/2 including partially filled 92-shells. Our program is based on a recently developed new approach on
the spin-angular integration which combines second quantization and quasispin methods with the theory of angular momentum
in order to obtain a more efficient evaluation of many-electron matrix elements. An underlying Fortran 90/95 module can
directly be used also in (other) atomic structure codes to accelerate the computation for open-shell atoms @nz0hs.
Elsevier Science B.V. All rights reserved.

PROGRAM SUMMARY Computer for which the program is designed and has been tested:
IBM RS 6000, PC Pentium I

Title of program:RCFP Installations: University of Kassel (Germany)

Catalogue identifierADNA Operating systemsBM AIX 4.1.2+, Linux 6.1+

Program Summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADNA  program language used in the new versidiSI standard Fortran

90/95
Program obtainable from:CPC Program Library, Queen’s Uni-

versity of Belfast, N. Ireland. Users may obtain the program
also by dow-loading a tarfileatip-rcfp.tar from our home
page at the University of Kassel (http://www.physik.uni-kassel.
de/fritzsche/programs.html)

Memory required to execute with typical data00 kB

No. of bits in a word:All real variables are parametrized byse-
lected kind parameter and, thus, can be adapted to any re-

Licensing provisionshone quired precision if supported by the compiler. Currently, kived
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parameter is set to double precision (two 32-bit words) as it is for elements and to faster computer codes [4]. Practical implementa-

other components of the RATIP package [1] tions of this new scheme will support not only large-scale compu-
tations on open-shell atoms but may even help to develop programs

Peripheral usedTerminal for input/output for calculating the angular parts of (effective) one- and two-particle
operators for many-body perturbation theory (in higher orders) in
the future.

No. of bytes in distributed program, including test data, &@953

Restrictions onto the complexity of the problem

For jj-coupled subshells states, our module provides coefficients
and matrix elements for all subshellsjf with j = 1/2, 3/2, 5/2,
7/2,and 92.

Distribution format:tar gzip file

CPC Program Library subprograms require@€atalogue number:
to be assigned; Title: REOS99; Ref. [1].

Typical running time

For large computations, the running time depends on the shell struc-
ture and the size of the wave function expansion for a given atomic
system. However, the prograptomptly responds in its interactive
mode if only single coefficients and matrix elements are to be cal-
culated.

Keywords:Atomic many-body perturbation theory, complex atom,
configuration interaction, effective Hamiltonian, energy level,
Racah algebra, reduced coefficients of fractional parentage, reduced
matrix element, relativistic, second quantization, standard unit ten-
sors, tensor operators/2-subshell

Nature of the physical problem

The calculation of atomic properties and level structures is based
on the evaluation of many-particle matrix elements of physical
operators. For symmetry-adapted functions, the matrix element
for a given tensor operatoAX of rank K can be expressed as
Z/’k coeff(j, k)(y; J; IAK Iy Ji) by using the (reduced) coeffi-
cients of fractional parentage and the reduced matrix elements of References

the (unit) standard tensof¥ or W*e%j . These reduced coefficients ~ [1] S. Fritzsche, C.F. Fischer, C.Z. Dong, Comput. Phys. Com-
and matrix elements are frequently applied to both the configuration mun. 124 (2000) 340.

interaction and multi-configuration Dirac—Fock method [2] as well  [2] I.P. Grant, H. Quiney, Adv. Atomic Molecular Phys. 23 (1987)
as to many-body perturbation theory [3]. 37.

Unusual features of the program

The interactive version of RCFP can be used as an “electronic tabu-
lation” of standard quantities for evaluating general matrix elements
for jj-coupled functions.

[3] G. Merkelis, G. Gaigalas, J. Kaniauskas, Z. Rudzikas, lzvest.
Acad. Nauk SSSR Phys. Ser. 50 (1986) 1403.

Method of soluti
ethod of solution [4] G. Gaigalas, Lithuanian J. Phys. 39 (1999) 80.

A new combination of second quantization and quasispin methods
with the theory of angular momentum and irreducible tensor oper-
ators leads to a more efficient evaluation of (many-particle) matrix

LONG WRITE-UP

1. Introduction

In atomic structure theory, the efficient evaluation of many-electron matrix elements play a crucial role.
Typically, such matrix elements have to be evaluated for different one- and two-particle operators which describe
the interaction of the electrons with each other or with external particles and fields. By exploiting the techniques of
Racah’s algebra [1], the evaluation of these matrix elements may often be considerably simplified by carrying out
the integration over the spin-angular coordinates analytically. For atoms with open shells, several approaches to
this analytic integration were developed in the past. One of the most widely-used computational schemes is from
Fano [2,3] and has been implemented in a number of powerful programs [4,5] since that time.

Fano’s procedure [2] is based on the coefficients of fractional parentage (cfp). During the last decades, this
procedure was applied both oS- and j j-coupling; in the following, we will restrict ourselves g -coupling as
appropriate for relativistic calculations. By using the cfp as the basic quantities, however, Fano’s procedure does
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not exploit the full power of Racah’s algebra. Instead of using cfp, it is often more convenientto exploit unit tensors
[6,7] which are closer related to the tensorial form of physical operators. But so far, unit tensors have been applied
only for evaluating diagonal matrix elements while all non-diagonal matrix elements still have to be evaluated by
using the cfp [7,8]. A recently developed approach [9,10] now treats diagonal and non-diagonal matrix elements on
a uniform basis. This approach is based on a second quantization and uses a coupled tensorial form for the creation
and annihilation operators [11]. It also applies the theory of angular momentum to two different spaces, i.e. the
space of orbital angular momentuirand the quasispin space [12]. The basic quantities of this new approach are
the so-called reduced coefficients of fractional parentage (rcfp) and the completely reduced matrix elements of the
w k) operator.

Obviously, each computational scheme is based on a set of standard quantities to decompose the many-electron
matrix elements. These quantities are either the cfp, rcfp, the reduced matrix elements of the unir'fensor
the completely reduced matrix elemefitd+*/ , depending on the approach. Therefore, very different tabulations
of these quantities are found in the literature. For example, numerical values for the cfp are found by de Shalit
and Talmi [13] for subshells with =5/2, 7/2 and 92 while rcfp for j = 5/2 and 72 were first tabulated by
Savitius et al. [14]. Matrix elements df* are tabulated, for instance, by Slepcov et al. [15] for subshells with
j = 3/2, 5/2 and 72; often, however, it is more convenient to express these matrix elements in terms of the
completely reduced matrix elements of the operaidt«X/) even though no explicit compilation of these matrix
elements yet available. In practical applications, they are instead derived from a sum of products of rcfp and 6-
symbols.

In this paper, we will present the program RCFP for the calculation of the standard quantities both in Fano’s and
our new approach. These quantities are needed for the integration over the spin-angular variables. Our program not
only supports large-scale computations on open-shell atoms but may even help to develope codes for calculating
the angular parts of (effective) one- and two-particle operators from many-body perturbation theory (in higher
orders) in the future.

The theoretical background will be presented in Section 2. This includes a brief outline of the quasispin concept,
the definitions of the rcfp and the reduced matrix elements of the unit tegofs and7* as well as the proper
classification of subshells ifj-coupling. The program organization will be dealt with in Section 3 while, finally,

a few examples are given in Section 4.

2. Theoretical background

The theory of angular integration for symmetry-adapted functions has been reviewed in several texts and
monographs [3,7,10,16]. As mention above, this theory is usually built on a number of standard quantities like the
cfp or the reduced matrix elements of the unit teribwhich, in turn, can be applied to lay down the expressions
for more complex matrix elements. Other important quantities (which are also provided by our program) are the
rcfp and the completely reduced matrix elements of the tensor opebétofs. In the following, we shall not repeat
too many details about this angular integration on the spin-angular coordinates; instead, we just list the definition
of those quantities which can be obtained from our program along with a number of useful relations among them.
For all further details, we ask the reader to refer to the literature given above.

In the literature, several definitions and phase conventions are used for defining the standard quantities for
angular integration. Here, we follow the definitions from $aws [14] and from Kaniauskas and Rudzikas [12].

We also apply the so-callestandard-phase systems

(Kt _ k—q 4 (k)
AP = (—pfaa®) (1)

throughout this paper which were originally introduced by Fano and Racah [17].
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2.1. The quasispin concept

In jj-coupling, a wave function for a subshell 8fequivalentelectrons with principal quantum numbeand
(one-electron) angular momentuhis often written as

njNead), )

where J denotes the total angular momentum andll additional quantum numbers as needed for an unique
classification of these states. Using the quasispin concept, a further (angular) quantum @uitilgequasispin
momentum of the subshell, can be introduced so that the wave function of this subshell (to which we briefly refer
to as asubshell statethen reads

njNeaQJ). )

For any given subshell, the quasispin Q is closely related to the seniority quantum nuashgsed in theeniority
schemei.e. Q = ((2j + 1)/2—v)/2. If compared with the seniority notation the quasis@ito has the advantage

of its projection, M, being related to the occupation numbeiby Mo = (N — (2 +1)/2)/2. Therefore, when
exploring the quasispin concept for classifying the atomic subshell states (3), the Wigner—Eckart theorem can be
applied twice, both to the space of quasispgiigpace) as well as to the total angular momentiirsgace). Hence,

any reduced matrix element ih-space can be further reduced als@space [12]

(]N(XQJM ”A(qj)lle,a/Q/J/M/ ) — (_1)Q—MQ Q q Q/
Q1l4mgy 0 Mgy my M/Q

x (jaQJII|A“D||jo’ Q') 4

to a so-calleccompletely reducedhatrix element. In Eq. (4)A§,’fq’) denotes a tensor with rankand projection

my in the Q-space. As seen from its notation the completely reduced matrix eleyeat/ || |AUD||| jo' Q' T is
independent of the occupation numBéof the particular subshell states; the occupation numbef these states
occurs explicitly only on the left-hand side of Eq. (4) while it is incorporated @ton the right-hand side. Thus,

by applying the quasispin concept, the evaluation of general matrix elements will result in a much smaller number
of completely reduced matrix elements which are independent of the occupation of el@¢irotigs subshell but

still allows an unique decomposition.

2.2. Coefficients of fractional parentage

()

The electron creation,;; and annihilations /)t

~m, operators play a key role in the theory of second quantization
and atomic structure [18]. Using the quasispin concept, the opewf_t’dgsand&,ﬁ,"j) = (—1)j‘”’.fa(_j,,),t also form

components of an irreducible tensor of rank % in O-space, i.e.

() 1

@ | formg = 3, 5

Amgmi =1 ~j) 1 ®)
dm; formg =—3.

Compared with the electron creation and annihilation operators above, the ope,%ﬁgralso act in an additional

quasispin space like a tensor component with rargnd a projectiomn, = :i:%. There is the following relation
known between the reduced matrix element of a creation operator and the cfp [19]

(Ve @ llaP) N e 0'0) = (=DN NIV QI 1]V ' 0' ) ) (6)

where[J] = (2J + 1). Eq. (6) can be used to define the relation between the cfp and its reduced counterpart in
Q-space. Introducing the-projection,M, of the quasispin, this relation is given by [7]
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; @ io/ O T — (_1\N+0-Mg Qo 12 ¢
(jaQJlla"“"|lje’ Q'1') = (=1) \/N[J](_MQ 12 M),

x (NaQd iV’ Q') )). @)

The properties of the rcfp have been summarized byc8avet al. [14] and Gaigalas et al. [20]. The latter reference
also discusseghase conventionshich are frequently applied in the literature to subshell states with a the same
numberN (< j 4+ 1/2) of electrons or holes, respectively.

2.3. Reduced matrix elements of standard operators

The unit tensorsV*<ki andT* are other standard quantities in atomic spectroscopy. Many texts on the evaluation
of matrix elements in many-particle physics frequently refer to these quantities [6,7]. The Whdor for
example, is defined as the tensorial product of two creation operators in second quantization

kgk; ; D1kaks
A [a(fu) « a(éIJ)] akj (8)

mgm;*
Following Sav€ius et al. [14], the operatof&‘ and W+*i obey the relation
ok —kp~Y2w i kis odd, ©)
"o — k) ~Y2wE if kis even.
The reduced matrix elements Bf can be represented in terms of a sum ovgrdymbols and cfp’s
. . "y i J J”
(JNO{J”Tk”JNO{/J/) - N /[J, J/]Z(_l)] +j+J+k ]/ ]
7 Tk
o
x (N 1V T DGR TN ). (10)
The completely reduced matrix elements of the operatdr*/) is related to the rcfp in the following way

(njaQJI|Wrkil|njo’ Q')
T+ 0+ +ky+k; qg q k JoJ kj
a//Q//]//
x (ja@Jla“P))ja" Q" ") (jo" Q" T la“||| je' Q' T'). (11)

Thus, a close relationship between the completely reduced matrix elemeWt& 6f and the reduced matrix
elements of the unit tensa@t* is given by

-1
; 1k i O T = (—1)1t2—Mo 0 1 Q/
(njaQJNIWHlnja’ Q' J') = (1) \/2[k]<_MQ 0 M,
x (jNaQIM|T | jNe' Q"1 M)
if k, =1 andk is even (12)
and

(nja QW Injo’ Q' V') = —/2[0. kK1(jN e QI Mo |IT® | jN o' Q"' M)
if k, = 0 andk is odd. (13)

Since the completely reduced matrix eleme@tga QJ|||Wre i|||nja’ Q'J') of the operatorw*s*i are, again,
independent of the occupation number, they allow for a more compact representation (tabulation) in atomic
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Table 1
Allowed couplings[ ;1" of N equivalentelectrons for subshells with=1/2, ..., 9/2. The seniority quantum numberthe subshell angular
momentum/, the subshell quasispi@ and the numbeNr (for subshells withj = 9/2 only) are shown

Subshell v J 20 Nr Subshell v J 20 Nr
[1/21° or [1/2)? 0 0 1 3 52 2
[1/21 1 1/2 0 3 72 2
3 9/2 2
[3/219 or [3/2]* 0 0 2 3 192 2
[3/21% or [3/2)3 1 3/2 1 3 132 2
[3/2]% 0 0 2 3 152 2
2 2 0 3 172 2
3 21/2 2
[5/219 or [5/2]® 0 0 3 [9/2]% or [9/2]8 0 0 5
[5/2]1 or [5/2]° 1 5/2 2 2 2 3
[5/2]2 or [5/2]* 0 0 3 2 4 3
2 1 2 6 3
2 4 1 2 8 3
[5/213 1 5/2 2 4 0 1
3 3/2 0 4 2 1
3 9/2 0 4 3 1
4 4 1 1
[7/219 or[7/2)8 0 0 4 4 4 1 2
(7/21 or[7/2)7 1 7/2 3 4 5 1
[7/21% or [7/2)® 0 0 4 4 6 1 1
2 2 2 4 6 1 2
2 4 2 4 7 1
2 6 2 4 8 1
[7/23 or [7/2)° 1 7/2 3 4 9 1
3 3/2 1 4 10 1
3 5/2 1 4 12 1
3 9/2 1 [9/2]° 1 9/2 4
3 11/2 1 3 32 2
3 15/2 1 3 52 2
(7/214 0 0 4 3 72 2
2 2 2 3 92 2
2 4 2 3 112 2
2 6 2 3 132 2
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Table 1
(Continued)
Subshell v J 20 Nr Subshell v J 20 Nr
4 2 0 3 152 2
4 4 0 3 172 2
4 5 0 3 212 2
4 8 0 5 12 0
5 5/2 0
[9/219 or [9/2]10 0 0 5 5 72 0
[9/21* or [9/2]° 1 9/2 4 5 92 0
[9/2]2 or [9/2)® 0 0 5 5 192 0
2 2 3 5 132 0
2 4 3 5 152 0
2 6 3 5 172 0
2 8 3 5 192 0
[9/213 or [9/2)7 1 9/2 4 5 252 0
3 3/2 2

structure calculations. This fact becomes important, in particular, when calculating atoms witld-oped/or
f-shells. So far, no detailed analysis or tabulation of these completely reduced matrix elem¢rtsimpling has
been published in the literature or has been implemented in any atomic structure code.

2.4. Classification of subshells jiy-coupling

A unique classification of the atomic states and, hence, the subshell states is required for all structure
computations. For subshells with=1/2,3/2,5/2, and 7/2, two quantum number® and J (respectivelyv
and J in the seniority notation) are sufficient to classify the subshell states for all allowed occupation numbers
N unambiguously. For these subshells, no additional quantum numbames then needed to be specified in (3).
By contrast, some additional number(s) are required for classifying the subshell states &2 (cf. de Shalit
and Talmi [13] or Grant [3]). Foi = 9/2, there are two doublets (pairs of subshell states) with4, J = 4 and
v =4,J =6 in the[9/2]* and[9/2]® configurations which require an additional “number” in order to classify
these states uniquely. To distinguish the individual subshell states of these two pairs, we use theNtumber
or Nr = 2 beside of the standard quantum numb@rand J, respectivelyy andJ. Table 1 lists all {j-coupled)
subshell states foj = 1/2, 3/2, 5/2, 7/2 and 92, starting for each with the lowest occupation number.

3. Program organization

3.1. Overview to program

The program RCFP supports the computation of the cfp, the rcfp, the (completely) reduced matrix elements of
the operatoi*«%i as well as the matrix elements of the unit tenbr It can be applied interactively, for instance,
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for calculating a few individual coefficients or matrix elements in some theoretical derivation but alssingthe
underlying moduleabs_rcfp , in any relativistic atomic structure calculations in order to evaluate all required
(many-electron) matrix elements automatically. RCFP is written in Fortran 90/95 and is designed as additional
component of the RATIP package [21] as will be explained in Section 3.3. By exploiting the advantages of the new
Fortran 90/95 standard, we defined several derived data types which facilitate the work and which shall enable us
to incorporate this module in our present developments on large-scale computations for open-shell atoms and ions.
The definition of the various derived structures can be found in the header of the matokilecfp  but will not
be explained here.

As seen from Section 2, the most basic quantities for evaluating matrix elements among different subshell states
are the rcfp and the completely reduced matrix element®of/. These quantities are more general than the
cfp or the reduced matrix elements of the unit teriEbras they do not depend on the occupation number in the
corresponding shells. Thus, the rcfp and the completely reduced matrix elements can be tabulated much easier for
subshells withj < 7/2 or evenj = 9/2 and are also applied in the present program. This is in contrast to most
earlier atomic structure codes which are built on the cfp.fgr7/2, the rcfp have been taken from Rudzikas [7]
while the corresponding tables fgr= 9/2 have been created by us using Eq. (7) and the tabulations by de Shalit
and Talmi [13] for the cfp. Similarly, a tabulation of the completely reduced matrix elemen¥é«f have been
obtained from the reduced matrix elementéf[15] and from the two relations (12) and (13) for the subshells
with j < 7/2. Up to the present, the modulabs_rcfp  does not contain a full tabulation of the completely
reduced matrix elements &¥%«%i for j = 9/2 even though such an implementation might help considerably in
the future in order to accelerate structure calculations on atoms havinggpemd/orhg,, subshells. At present,
these coefficients are calculated from Eq. (11) each time they are needed. Also, the values of the cfp and the reduced
matrix elements of ¥ are calculated from Egs. (7) or (12) and (13), respectively.

3.2. Interactive work

The program RCFP is typically applied in its interactive mode. In this mode, it replies immediately to the input
as typed in by the user. In the next section, we display several short dialogs for calculating individual coefficients
and matrix elements. From the main menu of the RCFP component (see Fig. 1), we need first to select the type
of the quantity which is to be computed. For example, by entetiog the screen the user can calculate any cfp
in jj-coupling for subshells with < 9/2. Similarly, a2 supports the computation of rcfp, and so on. Finallg, a
will terminate the program.

The input of the required quantum numbers needed for the computation of any quantity is facilitated by the
program. It is only necessary to type those quantum numbers which cannot be derived automatically and which
distinguish the individual coefficients and matrix elements. For calculating a cfp or a reduced matrix elements of
T, for instance, the orbital quantum numbiethe subshell occupation numh¥r the seniority quantum number
v, and the subshell total angular momentunis needed in order to specify the bra-function uniquely. Only if
additional quantum numbers are indeed required for a unique classification of the subshell states, the program will
ask for the quantum numbafr. A number of examples will illustrated the usage of RCFP below in Section 4.

3.3. Distribution and installation of the program

RCFP has been developed as (a new) component of the RATIP package [21]. To facilitate the combination
with this package, RCFP will be distributed as an archive file of the directiy rcfp . From this archive,
first of all the file structure is reconstructed by the comméand -xvf ratip_rcfp.tar on a UNIX
workstation or any compatible environment. The directatyp_rcfp then contains the Fortran 90/95 module
rabs_rcfp.f , the (main) programxrcfp.f  as well as the makefilmake-rcfp . It also includes a number
of examples in the subdirectotgst-rcfp and a shoriRead.me which explains further details about the
installation. Since the same file structure is preserved in both cases, the combination of RCFP with RATIP is simply
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RCFP: Calculation of coefficients of fractional parentage (cfp) and various
reduced matrix elements in jj-coupling (Fortran 90 version)
(C) Copyright by G. Gaigalas and S. Fritzsche, Kassel (1999).

Select one issue from the list for calculating:

coefficients of fractional parentage,

reduced coefficients of fractional parentage,

completely reduced matrix elements of the operator WNk_q k_j},
reduced matrix elements of unit operator TA{(K)},

return back to this menue,

quit.

2ohwdbkR

Fig. 1. The main menue of RCFP.

achieved by running the commaog -r ratip_rcfp/. ratip/. Inside of the RATIP root directory, then

make -f make-rcfp  will generate the executalskecf |, similarly as for the other two componexisesd99

[22] andxreos99 [21] of the RATIP package. Like before, the name of the (Fortran 90/95) compiler and special
compiler flags can be overwritten in the header of the makefile. Although RCFP msd@fsfour other modules

which are part already of RATIP, no further adaptation of the program is needed. At present, the RCFP program has
been installed and tested under the operating systems Linux and AlX but, owing to the compliance of the Fortran
90/95 standard, no difficulties should arise on any other platform.

The subdirectoryest-rcfp lists a number of examples which demonstrate the usage of the program. To each
item in the main menu in Fig. 1, a short file displays the full dialog to compute one or several individual coefficients
or (completely reduced) matrix elements. The filow-cfp-dialog , for instance, reports the calculation of
several cfp for subshells with= 9/2 including an example for which the (additional) quantum nuniNreneed
to be specified.

Apart from the application aabs_rcfp  inthe RCFP program, this module can be used also in other programs
which, in the future, will provide the angular coefficients for general matrix elements of one- and two-particle
operators forj j-coupled functions.

4. Examples

To illustrate the use of RCFP in its interactive mode, we show three examples concerning the calculation of rcfp
and matrix elements. We will just display the input (which has to be typed in by the user) along with the given reply
by the program. In order to support also an occasional usage of the program, the notation of the various coefficients
and matrix elements is kept as close as possible with their printed form (cf. Section 2). Moreover, all information
which can automatically be deduced by the program is simply provided by typirg | at input time. For an
improper selection of quantum numbers or any incomplete information, a short message is printed explaining the
failure before all previous (correct) input is repeated. This saves the user from re-enter all of the previously typed
input just because of one single (mistyped) quantum number. In the following examples, we display the user’s input
in boldface mode while the response of the program is shown in normal text mode.

Our first examples displays the computation of the ¢fy2]*, v =2, J = 2{|[7/2]%,v=3,J =3/2,v =1,

Jj =7/2); from the main menue in Fig. 1, we therefore select the first item

1
Calculate a cfp ("N nu J {| jNN-1} nu’ J', ) :
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(7/2°4 2 2Enter ]

712’4 2 2 {| 7/12 "3 33/2,[Enter |
(7124 2 2 (] 7/2 "3 3 3/2, 1 7/2 ) = 2.53546276E-01

Continue

Next, let us calculate the rcif®/2,v =5, J = 1/2|||a'9"|||9/2, v = 4, J = 5) for which we select item 2 from
the main menue

2
Calculate a reduced cfp j nu J ||| aM@/2 )} Il ] nu J) :

(9/2 5 1/2[Enter ]
(9/2 5 12 ||| & {(1/2/))ll 9/2 45,[Enter |

Input must either start with symbol (" or end with symbol °)’; reenter ...

925 12 ||| & ((1/2))) || 9/2 45)[Enter ]
9/2 5 12 ||| &  {(1/2))} ||| 9/2 4 5) = 3.22490310E+00

Continue

In our third example, finally, we ask for the value of one of the completely reduced matrix elementbfithe
operator, i.e(j =9/2,v=4,J =6,Nr=2|||W19|||j =9/2,v =4, J =6, Nr =2). As mentioned in Section 2,
an additional quantum numbhr is required for a unique specification of the subshells states jwtl9/2. Here,
we start by selecting item 3 from the main menue.

3

Calculate a completely reduced matrix element
G nuJ Il WNk_g k_} (Il nut )

(9/2 4 6[Enter |

Enter the additional state identifier Nr = 1 or 2.

(9/2 4 6 Nr= 2 [Enter |
9/2 4 6 Nr= 2 || W { 10[Enter ]
(9/2 4 6 Nr= 2 ||| W {10} [[9/24 6 )[Enter ]

(9/2 46 Nr= 2 || W {10} 92Nr=2)[Enter |
(9/2 4 6 Nr= 2 ||| W {10} ||l 92 Nr= 2) = -3.94968353E+00

Continue

A very similar dialog occurs for the computation of any other coefficient or reduced matrix element. In
conclusion, RCFP has been developed as a new component of the RATIP package which enables the user to
calculate standard quantities in the evaluation of many-electron matrix elements explicitly. In the future, the
underlying Fortran 90/95 modulabs_rcfp  will be exploited also to calculate the Hamiltonian matrix and
further properties of free atoms froyy-coupled configuration state functions. The definition of the rcfp and the
completely reduced matrix elements and further improvements (see Gaigalas et al. [9]) will allow for faster and
more convenient computations than it is presently supported by standard atomic structure programs. A module for
calculating the angular coefficients fpi-coupled functions with respect to any (given) scalar two-particle operator
is currently under development.
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