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Quantum anti-Zeno effect
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Prevention of a quantum system’s time evolution by repetitive, frequent measurements of the system’s state
has been called the quantum Zeno eff@xtparadox Here we investigate theoretically and numerically the
effect of repeated measurements on the quantum dynamics of multilevel systems that exhibit the quantum
localization of classical chaos. The analysis is based on the wave function andiiBgkreequation, without
introduction of the density matrix. We show how the quantum Zeno effect in simple few-level systems can be
recovered and understood by formal modeling the effect of measurement on the dynamics by randomizing the
phases of the measured states. This analysis is extended to investigate the dynamics of multilevel systems
driven by an intense external force and affected by frequent measurements. We show that frequent measure-
ments of such quantum systems results in delocalization of the quantum suppression of classical chaos. This
result is the opposite of the quantum Zeno effect. The phenomenon of delocalization of the quantum suppres-
sion and restoration of quasi-classical time evolution of these systems, owing to repetitive frequent measure-
ments, can therefore be called thpeantum anti-Zeno effedErom this analysis we furthermore conclude that
frequently or continuously observable quasiclassical systems evolve basically in a classical manner.
[S1050-294P@7)07707-X

PACS numbg(s): 03.65.Bz, 05.45th, 42.50.Lc

I. INTRODUCTION Bloch equations for the density matrix in the rotating-wave
approximation with spontaneous relaxation. The quantum
Dynamics of a quantum system which is not being ob-Zeno effect can thus be derived either from #tehoccol-
served, can be described by the Sclimger equation. In the lapse hypothesig—4] or formulated in terms of irreversible
von Neumann axiomatics of quantum mechanics it is postuguantum dynamics without additional assumptions, i.e., as
lated that any measurement gives rise to an abrupt change tife dynamical quantum Zeno eff¢é;7]. Moreover, the pos-
the state of the system under consideration and projects itilate of “collapse of the wave function” models the actual
onto an eigenstate of the measured observable. The measumeasurement process only rough8j.
ment process follows irreversible dynamics, e.g., due to cou- Aharonov and Vard{8] showed that frequent measure-
pling with the multitude of vacuum modes if spontaneousments can not only stop the quantum dynamics but can also
radiation is registered, and causes the disappearance of daduce time evolution of the observable system. These au-
herence of the system’s state: the off-diagonal matrix elethors used the von Neumann projection postulate and pre-
ments of the density matrix decay, or the phases of the waveicted an evolution of the system along a presumed trajec-
functions amplitudes are randomized. tory due to a sequence of measurements performed on states
It is known that a quantum system undergoes relativelythat slightly change from measurement to measurement. Al-
slow (Gaussian, quadratic, or cosine type but not exponentenmiller and Schenzlg¢9] have demonstrated that such a
tial) evolution soon after preparation or measuremdlt  phenomenon can be explained by replacing the collapse hy-
Repetitive frequent observation of a quantum system capothesis by that of an irreversible physical interaction.
therefore inhibit the decay of an unstahl2] system and It should be noted that most of the systems analyzed in
suppress dynamics of a system driven by an external fielthe papers mentioned above consist of only a fegually
[3,4]. This inhibition, or even prevention, of the time evolu- two or thre¢ quantum states and are purely quantum sys-
tion of the system by repeated frequent measurements fromems. It is consequently of interest to investigate the influ-
one eigenstate of an observable into a superposition of eigeence of repeated frequent measurements on the evolution of
states is called the quantum Zeno eff¢paradox or the  multilevel quasiclassical systems, the classical counterparts
guantum watched pd2-5|. Derivation and investigation of of which exhibit chaos. It has been establisfizd—17 that
the quantum Zeno effect is usually based on the von Neuehaotic dynamics of such systems, e.g., dynamics of nonlin-
mann’'s postulate of projection or reduction of the waveear systems strongly driven by a periodic external field, is
packet in the measurement process. However, the outconsippressed by the quantum interference effect and gives rise
of the variation of the quantum Zeno effect in a three-levelto quantum localization of the classical dynamics in the en-
system, originally proposed by Co¢R] and experimentally ergy space of the system. The quantum localization phenom-
realized by ltancet al. [4], has been explained by Frerichs enon thus strongly limits the quantum motion. As stated
and Schenzlg¢6] on the basis of the standard three-levelabove, repeated frequent measurements or continuous obser-
vation of a quantum system can inhibit its dynamics as well.
It is therefore natural to expect that frequent measurements
*Electronic address: kaulakys@itpa.lt of suppressed system will result in additional freezing of the
TElectronic address: gontis@itpa.lt system’s state.
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In connection with this question we refer to papers inwhere the evolution matriA is
which the influence of small external noise, environment,
and measurement-induced effects on quantum chaos is ana- o
lyzed (see[13-2Q and references thergiriThe general con- Cosp Ising
clusion of such investigations is that noise, interaction with i sing  cosp
the environment, and measurements induce decoherence, ir-
reversibility, and delocalization. The direct link between
measurements of the suppressed chaotic systems and thBe evolution of the amplitudes from timé=0 to
quantum Zeno effect has, however, to the best of our knowlt=T=nr can be expressed as
edge not yet been analyzed. We can only refer to pd@dis
in which some preliminary relation between the quantum
Zeno effect and the influence of repeated measurements on
the dynamics of localized quantum systems is presented.
The purpose of the present study is to investigate theoreti-
cally and numerically the influence of frequent measure-
ments on the evolution of multilevel quasiclassical systemspne can calculate matriA™ by diagonalizing the matrix
Analysis of the measurement effect on the dynamics of &-
guantum system is usually performed with the aid of the
density matrix formalism. The investigation of the quantum
dynamics of a multilevel system affected by repeated mea- (cosmp i silne

, QDZEQT. (2.4

. (2.5

al(n))

ay(n)

. ( a,(0)
a,(0)

surements is, however, very difficult analytically and time AN=

consuming in numerical calculations. Analysis based on the
wave function and Schdinger equation is considerably
more tractable and transparent. We first show how the qua%herengo= 107,

tum Zeno effect in a few-level system can be described in Equations(2.2—(2.6) represent the time evolution of the

Ferms of.the wave fun.ct|on an'd Schifnger equation without system without intermediate measurements in the interval 0—
introducing the density matrix and how the measurement§ ¢ 4t =0 the system was in the statie,, i.e., a,(0)=1

can be incorporated in the equations of motion. anda,(0)=0, and if QT =, then at the momertt=T we
We .then apply the same methad to the analysis of th?’/vill certainly find the system in the stat&,, i.e., we have
dynamics of a multilevel system affected by repeated l‘reii

. , (2.6
i sinng codg

o (T)|?=0 and|ay(T)|?=1, a certain(with probability 1)
quent measurements. We show that repetitive measureme %nsition between the states. Such quantum dynamics with-
on a multilevel system with quantum suppression of classic

. o . ut intermediate measurements is regular and coherent for all
chaos results in delocalization of the superposition of state; o until the final measurement

and restoration of chaotic dynamics. Since this effect is the™ ~ - <ijer now the dynamics of a system subjected to in-

reverse of the qgantum Zeno effect we call this phenomeno&:rmediate measurements at intervaldMeasurement of the
the quantum anti-Zeno effect system'’s state, at time=kr projects the system onto the

stateW, with probability p; (k) =|a;(k)|? or onto the state
Il. DYNAMICS OF A TWO-LEVEL SYSTEM ¥, with probability p,(k) =|a,(k)|2. After the measurement

We consider the simplest quantum-dynamical process an§f€ know the probabilitiep, (k) andp,(k) but we have no
the influence of frequent measurements on the outcome dpformation about the phases (k) and a(k) of the ampli-

the dynamics. Time evolution of the amplitudag(t) and  tudes
a,(t) of the two-state wave function

T =a, ()W, +ay(t) ¥, 2.1) ay(k)=lay(k)[e'*1®), a,(k)=|ay(k)|e'*2®), (2.7)

of the system in the resonance figlid the rotating-wave
approximatiop or of the spin-one-half system in a constant!-€- the phase&; (k) and a,(k) after measurement are ran-

magnetic field can be represented as dom. Randor_nization of the p_hases after a measurement can
also be confirmed by analysis of the definite measurement
a,(t)=a,(0)cost Ot +ia,(0)sin Ot, process, e.g., in th¥-shape three-level configuration with

(2.2)  the spontaneous transition to the ground sfate7]. Every
) - measurement of the system’s state results in mutually uncor-
a,(t) =iay(0)sin; Qt+a,(0)cos; Ot, related phasea; (k) and a,(k). After the full measurement
. . , of the system’s state these phases are also uncorrelated with
where () is the Rabi frequency. We introduce a matd  the phases before the measurement. For this reason, accord-
representing time evolution during the time intervalbe-  ing to the measurement postulate, the outcome of the mea-
tween time moments=kr andt=(k+1)7 with k integer, syrement does not depend on the phases of the amplitudes in
and rewrite Eq(2.2) in the mapping form the expansion of the wave function in terms of the eigen-
functions of the measured observable. The interference terms
_ ay(k) 2.3 in the expressions derived below hence do not affect the
ay(k))’ ' transition probabilities between the eigenstates.

a;(k+1)
ay(k+1)
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Now we derive equations for the transition probabilitiessame method to analyze the influence of repeated measure-
between the states in the case of evolution with intermediatenents on the quantum dynamics of multilevel systems, the
measurements. From Eq.3) and (2.4) we have classical counterparts of which exhibit chaos. We restrict
ourselves to systems of one degree of freedom strongly
driven by a periodic force. The investigation is also based on
the mapping equations of motion for such systems.

|lay(k+1)[2=]ay(k)|*cos ¢+ |ay(k)|*sinfe
+|ai(k)az(k)[sin a1 (k) — az(k)]sin2¢,
lay(k+1)|%=|a,(k)|sirf e+ |a,(k)|*>cog ¢ . QUANTUM MAPS FOR MULTILEVEL SYSTEMS

—lay(k)az(k)[sin a; (k) — ay(k)]sin2e.
(2.9

In general, the classical equations of motion are noninte-
grable and the Schdinger equation for strongly driven sys-
tems cannot be solved analytically. The mapping forms of
After a measurement at time=kr the phase difference th€ classical and quantum equations of motion however
a1(K) — a,(K), according to the above statement, is randongreatly famhta;es the investigation of stocha§t|C|ty an_d
and the contribution of the last term in expressi¢2$) to guantum-classical correspondence for the chaotic dynamics.

the average of the large number of iterations equals zero. THe"OM the standpoint of understanding the effect of the mea-
equations for the probabilities hence are surements on the dynamics of multilevel systems, the region

of large quantum numbers is of greatest interest. Here we can

py(k+1) p1(k) use the quasiclassical approximation when convenient vari-
( (k+1) = M( 3k (2.9 ables are the angle and actionl. Transition from the clas-
P2 P2 sical to a quantunfquasiclassicaldescription can be under-
where taken by replacing with the operatof = —i(3/36) [22,23.
(We use the system of units with=1.) One of the simplest
cose sirfe cases in which dynamical chaos and its quantum localization
M= sifp  coSe (210 can be observed is a system with one degree of freedom

described by the unperturbed Hamiltonidg(l) and driven
is the evolution matrix for the probabilities. The full evolu- by periodic kicks. The full Hamiltoniahi of the driven sys-
tion from the initial timet=0 until t=T with (n—1) equi- tem can be represented as
distant intermediate measurements is described by the equa-
p1(n) P1(0)

tion
(pz(n) M (p2<0>)'

The result of the calculation of the matf&" by the method
of diagonalization of the matrii is

H(1,0,t)=Ho(1)+kcossY, 8(t—j7), (3.
J

(2.1)

wherer andk are the period and strength of the perturbation,
respectively.

The intrinsic frequency of the unperturbed system is
Q=dHgy/dl. In particular, for a linear oscillator we have
Ho=Ql. The HamiltoniarH,=12/2 describes the widely in-
vestigated rotator, which results in the so-called standard
map [12,14, while the Hamiltonian (3.1) with
Ho=w/[2w0(lo+1)]*2 andk=27bF/»w®?® (b=0.411) mod-
els a highly excited atom in a monochromatic field of
strengthF and frequencyw [23,25-27.

1+cos2¢ 1—cos2¢
1—-cod2¢ 1+cod2¢

1

n
M 2

(2.12

From Egs.(2.11) and(2.12 we recover the quantum Zeno
effect obtained by the density matrix technid®e-6]: if ini-

tially the system is in the stat#;, then the result of the Integration of the classical equations of motion for the

evolution until the timeT=nr==/Q (after the w pulsd  Hamiltonian(3.1) over the perturbation periodleads to the

with (n—1) intermediate measurements is characterized by|assical map for the action and angle

the probabilitiesp,(T) and p,(T) for finding the system in

the statesV; and¥,, respectively: lj41=1;+ksing
’ (3.2

2

— 1,

p1(T)= %(1+CO§2¢>):%(1+e—7r2/2n)21_ -

0j+l: 0J+ TQ(I]+1).
For the rotator, the wunperturbed frequency s
Q(lj11)=1;+1 and the mag3.2) coincides with the standard
map investigated in great detil2,22,24.
For the derivation of the quantum equations of motion we
expand the state functiop( 6,t) of the system in quasiclas-

2

" o

—_— — 0

4n e
(2.13

We see that Eqs(2.1)—(2.13 represent inhibition of the

pZ(T) = %(1_ CO§]2cp): %(1_ e 7'r2/2n)2

guantum dynamics by measurements and coincide with tho
obtained by the density-matrix techniq(i@—6]. This also

SSé'cal eigenfunctions,e,(6)=e"?\(27), of the Hamil-
tonianH,,

confirms correctness of the proposition that the act of mea-

surement can be represented as randomization of the ampli-

tudes’ phases. Further we will use this proposition and th

P(0,)=(2m) Y2, a,(t)i e "e. (3.3

e
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Here, the phase factor " is introduced for maximal simpli-
fication of the quantum map. Integration of the Sclinger
equation over the period, leads to the following maps for
the amplitudes before the kick21,23:

d
3500 @

3000

2500 F

N
o
=3
=3

am(tnl):e““om@ an(t)Im_n(k), t=j7,

Dispersion

1500

(3.9
i 1000
where thel,,(k) are Bessel functions.

The form (3.4) of the map for the quantum dynamics is
rather common: similar maps can be derived for monochro |
matic perturbations as well, e.g., for an atom in a microwave 0
field [23,27]. A particular case of mafB.4), corresponding

_12 ;
to the model of a quantum rotatét=17/2, has been inves- FIG. 1. Dependence of the dimensionless momentum disper-

tigated comprehensively with the aim of determining the r€ion, ((m—mg)?), as defined by Eq4.1) for the quantum rotator

500

200 400 600

Discrete time

800 1000

lationship between classical and quantum chd@s22,24.

with my=500, 7=1, andk= 10 on the discrete dimensionless time

It has been shown that at the onset of dynamical chaos 3tor the dynamics according to E¢8.4): (a) without the interme-

K=7k>K.=0.9816, motion with respect td is not

diate measurementgh) with measurements of the initial state,

bounded and is a kind of diffusion in the classical case, whiley,, after every kick,(c) with measurements of all states every
in the quantum description diffusion with respectrtois 200 kicks, andd) with measurements of all states after every kick.
bounded, i.e., the diffusion ceases after some time and the

state of the system is localized exponentially. The eXponenﬁwodels(&l) with nonlinear Hamiltoniangio(1) as well as

tial localization length\ of the quantum state is usually de- for other quantum systems. The diffusion coeffici¢at8)

fined as derived in the approximation of uncorrelated transiti(3\3)
2|m—my| thus does not describe the true quantum dynamics in energy
lim |am(Nr)|2~exp( - T) (3.5  space.
N—s oo

The quantum interference effect is essential for such dy-

) o ) namics and results in the quantum evolution being quantita-
wherem, is the initial action. It has been sholb0—12that |y different from the classical motion. Quantum equa-

for a quantum rotator the localization length\is-k?/2. The  tions of motion, i.e., the Schdinger equation and the maps

effect of quantum limitation of dynamical chaos is extremelysq, the amplitudes, are linear with respect to the wave func-
interesting and important. It reveals itself in many quantumjon and probability amplitudes. The quantum interference
systems, for which the classical counterparts exhibit chaos. Wfect therefore manifests itself even for the quantum dynam-
should be noted that for the rotator the exact quantum dggs of the systems, the classical counterparts of which are
scription Commdes with _the guasiclassical one. _ described by nonlinear equations; chaotic dynamics of the

The classical dynamics of the system described by mapyer exhibit dynamical chaos. On the other hand, quantum
(.3.2) in the case of global ('ZiI'StInC't stochasticity is diffusion- equations of motion are very complex as well. The $ehro
like with the diffusion coefficient il space dinger equation is a partial differential equation with
coordinate- and time-dependent coefficients, while the sys-
tem of equations for the amplitudes is infinite. Moreover, for
the nonlinear HamiltoniarHy(m), the phase increments
Ho(m) 7 during the free motion between two kicks, while
reduced to the basic intervdl0,27], are pseudorandom
(3.7 quantities as functions of the state’s quantum numiner

This causes a very complicated and irregular quantum dy-
Using the expressioB ,n2J2(k) =k?/2 and approximation of namics of the classically chaotic systems. We observe not
the uncorrelated transitions we can formally evaluate the loonly very large and apparently irregular fluctuations of prob-
cal guantum diffusion coefficient in spacg21,25,24, abilities of the states’ occupation but also almost irregular
) fluctuations in time of the momentum dispersimee curves
1 k (@) in Figs. 1 and 2
B(n)= Z_T% (m_”)z‘]rzn—n(k): 47 (3.8 The gquantum dynamics of such systems driven by an ex-
ternal periodic force is, however, coherent and the evolution
The expression for the local quantum diffusion coefficientof the amplitudesi,(t; ) in time is linear: they are defined
hence coincides with the classical equati{8rt). by the linear map(3.4) with time-independent coefficients.

It turns out, however, that such quantum diffusion takesThe nonlinearity of the HamiltoniaH (1), being the reason
place only for some finite time<t*=rk?/2 [28], after for the classical chaos, causes the pseudorandom nature of
which an essential decrease of the diffusion rate is observethe increments of the phasé,(m)r as functions of the
Such behavior of quantum systems in the region of strongtate’s numbem (but constant in time These increments of
classical chaos is called “quantum suppression of classicdhe phases remain the same for each kick. The dynamics of
chaos”[10,11]. This phenomenon turns out to be typical for the amplitudesam(tjﬂ):|am(t,-+1)|e'“m(ti+l) and of their

B(1)=(Al)?/2r=K?/4r. (3.6)

From Egs. (3.4 we obtain the transition probabilities
P..m between states andm during the periodr

Pom=J2_n(K).
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state ¢, the probability of finding the system in the state
¢m coincides with that before the measurement. There is,

however, no interference between the amplitﬁijﬂtj) of
wool @ te) the statee,, after the measurement and the amplitudes of
other statesa,(t;), i.e., the cross terms containing the am-

plitude Em(tj) in the expressions for probabilities vanish.

@) Interference between the unmeasured states remains, how-
2000 ] ever, and the cross terms containing the amplitudes of the
unmeasured states do not vanish.

In the calculation of the system’s dynamics the influence
of measurements can be taken into account in the same way
0 260 00 600 500 1000 as in Sec. ll, i.e., by randomizing the phases of the ampli-

piscrete rime tudes after the measurement of the appropriate state’s popu-
lation. The phases of amplitudes after the measurements are
completely random and uncorrelated with the phases before
the measurements, after another measurement, or with the
phases of other measured or unmeasured states. After a full
measurement of the system after a kjckall phases of the

phasesap(t;+ 1) is thus strongly deterministic and noncha- amplitudesan(t;) the’refore are random.. This full measure-
otic, but very complicated and apparently irregular. For in-ment o_f the system'’s state therefore m_flue_nces the further
stance, the phases(t; ;1) are phases of the complex am- dynamics of the system through randomlza'qon of the phases
plitudesan(t; , 1), which are linear combinatior(.4) of the of the amplitudegsee Sec. II_for analogy This fact can be
complex amplitudes,(t;) before the preceding kick, with expressed by replacgmentillgn(tEc()sA) of the .ampl|tudes
the pseudorandom coefficiergsHo(M73 (k). Neverthe- @m(tj+1) by the amplitudes' " 2a,(t; . ;) with random
less, the iterative equatiof8.4) is a linear transformation PhaseBm(t;+1). The essential point here is that the phases
with coefficients regular in timeThat is why we observe for Bm(tj+1) are different, uncorrelated for the different mea-

such dynamics the quasiperiodic reversibility in the timeSurements, i.e., for different time moments of the measure-
evolution [12] with the quantum localization of the mentt; ;. This is the principal difference between the ran-

pseudochaotic motion. dom phasey(t;, 1) and the phaselo(m) 7 in Egs.(3.4),

In Ref.[23] it has been demonstrated that this peculiarityWh'Ch are pseudorandom variables as functlons of the eigen-
of the pseudochaotic quantum dynamics is indeed due to thgate’s quantum numben (but not of the timet;. ;).
pseudorandom nature of the phabggm) 7 in Eq. (3.4) as a Introducing the appropriate random phases we can thus

function of the eigenstate’s quantum number(but not of analyze the influence on the system’s dynamics of full mea-
the kick's number j). Replacing the multipliers surements of the system’s state performed after every kick,

exd—iHom)7] in Eq. (3.4 by the expressions &fter everyN kicks, or of measurements of the population
exd —i2mg,], whereg,, is a sequence of random numbers probabilities just of some states, e.g., only the initial state.

that are uniformly distributed in the interva0,1], we ob- T_here is no need to measure more frequently than after every
serve the quantum localization as wg23]. The essential kick because the results of subsequent measurements before

point here is the independence of the phalsgm)r or the next kick repeat the results of measurements after the last

219, on the step of iterationp or timet. This is the basic kick.

difference from the randomness of the phases due to mea- Instead of representi_ng the detail_ed quantum dynam@cs
surements under consideration in Sec. IV expressed as the evolution of all amplitudes in the expansion

(3.3) of the wave function we can represent only dynamics of
the momentum dispersion

5000

{b)

Dispersion
w
=3
S
o

1000

FIG. 2. Same as in Fig. 1 but for the system with random dis-
tribution of energy levels, i.e., for random phas¢g(m) = in Eqgs.
(3.4) defined as #g,,, whereg,, is a sequence of random numbers
that are uniformly distributed in the intervgd,1].

IV. INFLUENCE OF REPETITIVE MEASUREMENTS
ON THE QUANTUM DYNAMICS

: —Mmg)%)= —mo)?|am(tj)|?, 4.1
Each measurement of the system’s state projects the state {(m;=mo)®) % (m-=mo)“Jan( J)| @3

onto one of the energy states, with definitem. Therefore,
if we make a measurement of the system after the kibkit ~ wherem, is the initial momentum quantum number. Such a
before the next kick j(+1), we will find the system in the representation of the dynamics is simpler, more easily pic-
stateg,,, with probability p,(j) = |am(tj)|2. tured, and more readily compared with classical dynamics.
In principle, such a measurement can be performed as in In Figs. 1 and 2 we show the results of numerical analysis
the experiment of Itanet al. [4], i.e., by short-impulse laser of the influence of measurements of the system’s state on the
excitation of the system from state, to some higher state gquantum dynamics of a rotator and of a system with random
followed by the irreversible return of the system to the samelistribution of energy levels, i.e., for random phases
stateg,,, with registration of the state’s population by pho- Ho(m) 7 in Egs.(3.4) as a function of the eigenstate’s quan-
ton counting. After the measurement of the population of theum numbem. We see that quantum diffusionlike dynamics
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of the systems without measurements, represented by curvegstem’s stafe the second term in Eq4.4 on average
(a), after sufficiently short time* = 7k?/2 (of the order of equals zerdsee Sec. Il for clarification From Eq.(4.4) we
507 in our casg ceases. For timé>t* the monotonic in- then have
crease of the momentum dispersigtm—mg)?)=2Bt=
(k?/27)t for time t<t* turns into the stationary distribution
(on average for the time intervdlt=t*) with the momen- 2\ 2 272
tum dispersion (mg;— M) ?)=\?/2=k*/8. This is a demon- {(My+1=mo) >_; [an ()] % (M= Mo)"Jn—n(K)
stration of the effect of quantum suppression of classical 2
chaos. _ ol o 2
In the case of measurement of the population of only the _% |am(tj)| (m Mot ?)
initial state ¢5oy after every kick [which technically is 5
achieved by introduction of the random pha8ey(t;. 1), —(m—mg)?) + k_ 4.5
after every kickj ], we observe monotonic, though slow, in- 1o 2° ’
crease of the momentum dispersion for very long time, until
t~6007 in our casdgcurves p) in Figs. 1 and 2 After such
time the population of the initial state on the average beln the derivation of Eq(4.5) we have used the summations
comes very small and measurement of this state’s population
almost does not influence the system’s dynamics. )
The dynamics with measurements of all states every 200 2 m%_ (k)=0 and 2 m2J2_ (k)=n?+ k_
kicks represented by curves)(is staircaselike: fast increase m " m men 2"
of the momentum dispersion after the immediate measure-
ment turns into quantum suppression of the diffusionlike mo-
tion for At=t* until the next measurement destroys the According to Eq.(4.5 for the uncorrelated phases of the
quantum interference and induces the succeeding diffusioramplitudesa,(t;) and a:,(tj) with n’ #n, the dispersion of
like motion. the momentum as a result of every kick therefore increases
The quantum dynamics of the kicked rotator or someon average by magnitudé/2, just as for classical dynamics.
other system with measurements of all states’ populationgor the dynamics of isolated quantum systems in the absence
after every kick, represented by curved)(is essentially of measurements or unpredictable interaction with the envi-
classical-like: the momentum dispersion increases linearly ifonment, the second term of E@t.4) compensategon av-
time with the classical diffusion coefficief.6) for all time  erage for sufficiently large time intervalst=t*) the first
of the calculation. term of Eq.(4.4), due to the quantum interference between
Theoretically such differences of dynamics can be underthe amplitudes of different states arisen from the same initial
stood from the iterative equations for the momentum disperstates’ superposition. Thus the quantum suppression of dy-
sion namics may be observed.
Similar analysis can be used as well for the investigation
of the influence of measurements on the quantum dynamics
((Mj1—m)2)=2, (m—mg)?an(tj+1)|% (4.2  of another quantum systems with quantum localization of the
m classical chaos.
As has already been stated above, the influence of repeti-
where tive measurements on quantum dynamics is closely related to
the effect of unpredictable interactions between the system
and the environment. It should be noticed that in general, for
2_ , Na* (1 the analysis of the measurement effect and to facilitate the
[t +0)[*= E In-n(k)Im-n'(K)An(t;)2, (). comparigon between quantum and classical dynamics of cha-
4.3 otic systems, it is convenient to employ the Wigner represen-
tation py(X,p,t) of the density matriX19,29. The Wigner
function of a system with the Hamiltonian of form
H=p?/2m+V(x,t) evolves according to the equation

n,n

Substitution of Eq(4.3) into Eq. (4.2) yields

Ipw
<(mj+1—m0)2)=§:1 (m—mg)232_(K)|an(t))|? WZ{HaPW}ME{H!PW}
ﬁZn(_l)n (92n+lv (?2n+1pw
+23 3 (M=o oK) I (K) + 2 a7 5T gL (49
N n"<n
X Rea(t))a (t))]. (4.49)

where{-- -}y and{---} denote the Moyal and Poisson brack-
ets, respectively. The terms in E@.6) containing Planck’s

For the random phase differences of the amplitudegonstant and higher derivatives represent the quantum cor-
an(t;) anda:,(tj) with n’ #n (after the measurement of the rections to the classical dynamics generated by the Poisson
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brackets. In the region of regular dynamics, one can neglecuantum Zeno effect: inhibition or even prevention of time
the quantum corrections for very long times if the characterevolution of the system from an eigenstate of an observable
istic actions of the system are large. For classically chaotiinto a superposition of eigenstates by repeated frequent mea-
motion, the exponential instabilities lead to the developmensurements. We can therefore call this phenomenon the
of the fine structure of the Wigner function and exponential“quantum anti-Zeno effect.”

growth of its derivatives. As a result, the quantum correc- It should be noted that the same effect can be derived
tions become significant after a relatively short time even foiwithout thead hoccollapse hypothesis but from the quantum
macroscopic bodiegl9,28. The extremely small additional theory of irreversible processes, in analogy with the method
diffusionlike terms in Eq(4.6), which reproduce the effect used in[6,9]. Even the simplest detector follows irreversible
of interaction with the environment or frequent measure-dynamics due to coupling to the multitude of vacuum modes,
ments, prohibit development of the Wigner function’s finewhich results in the randomization of the quantum ampli-
structure and remove barriers posed by classical chaos fendes’ phases, decay of the off-diagonal matrix elements of

the correspondence principl&9,29. the density matrix, and smoothing of the fine structure of the
Wigner distribution function, i.e., just what is needed to ob-
V. CONCLUSIONS tain the classical equations of motion.

) , The quantum-classical correspondence problem caused by
From the above analysis we can conclude that the influzhaotic dynamics thus is closely related to the old problem of
ence of repetitive measurements on the dynamics of & quaneasurement in quantum mechanics. In the case of frequent
siclassical multilevel systems with quantum suppression ofeasurements or unpredictable interaction with the environ-

classical chaos_ _is opposite to that of the f_ew-level quantumnent the quantum dynamics of quasiclassical systems ap-
system. Repetitive measurements of multilevel systems '&roaches classical-like motion.

sult in delocalization of the states’ superposition and accel-

eration of the chaotic dynamics. In the limit of frequent full  The research described in this publication was made pos-
measurements of the system’s state the quantum dynamisible in part by support of the Alexander von Humboldt
approaches classical motion, which is the opposite of th&oundation.
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