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Quantum anti-Zeno effect

B. Kaulakys* and V. Gontis†

Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania
~Received 6 November 1996!

Prevention of a quantum system’s time evolution by repetitive, frequent measurements of the system’s state
has been called the quantum Zeno effect~or paradox!. Here we investigate theoretically and numerically the
effect of repeated measurements on the quantum dynamics of multilevel systems that exhibit the quantum
localization of classical chaos. The analysis is based on the wave function and Schro¨dinger equation, without
introduction of the density matrix. We show how the quantum Zeno effect in simple few-level systems can be
recovered and understood by formal modeling the effect of measurement on the dynamics by randomizing the
phases of the measured states. This analysis is extended to investigate the dynamics of multilevel systems
driven by an intense external force and affected by frequent measurements. We show that frequent measure-
ments of such quantum systems results in delocalization of the quantum suppression of classical chaos. This
result is the opposite of the quantum Zeno effect. The phenomenon of delocalization of the quantum suppres-
sion and restoration of quasi-classical time evolution of these systems, owing to repetitive frequent measure-
ments, can therefore be called thequantum anti-Zeno effect. From this analysis we furthermore conclude that
frequently or continuously observable quasiclassical systems evolve basically in a classical manner.
@S1050-2947~97!07707-X#

PACS number~s!: 03.65.Bz, 05.45.1b, 42.50.Lc
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I. INTRODUCTION

Dynamics of a quantum system which is not being o
served, can be described by the Schro¨dinger equation. In the
von Neumann axiomatics of quantum mechanics it is po
lated that any measurement gives rise to an abrupt chang
the state of the system under consideration and projec
onto an eigenstate of the measured observable. The mea
ment process follows irreversible dynamics, e.g., due to c
pling with the multitude of vacuum modes if spontaneo
radiation is registered, and causes the disappearance o
herence of the system’s state: the off-diagonal matrix e
ments of the density matrix decay, or the phases of the w
functions amplitudes are randomized.

It is known that a quantum system undergoes relativ
slow ~Gaussian, quadratic, or cosine type but not expon
tial! evolution soon after preparation or measurement@1#.
Repetitive frequent observation of a quantum system
therefore inhibit the decay of an unstable@2# system and
suppress dynamics of a system driven by an external fi
@3,4#. This inhibition, or even prevention, of the time evol
tion of the system by repeated frequent measurements
one eigenstate of an observable into a superposition of ei
states is called the quantum Zeno effect~paradox! or the
quantum watched pot@2–5#. Derivation and investigation o
the quantum Zeno effect is usually based on the von N
mann’s postulate of projection or reduction of the wa
packet in the measurement process. However, the outc
of the variation of the quantum Zeno effect in a three-le
system, originally proposed by Cook@3# and experimentally
realized by Itanoet al. @4#, has been explained by Frerich
and Schenzle@6# on the basis of the standard three-lev
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Bloch equations for the density matrix in the rotating-wa
approximation with spontaneous relaxation. The quant
Zeno effect can thus be derived either from thead hoccol-
lapse hypothesis@2–4# or formulated in terms of irreversible
quantum dynamics without additional assumptions, i.e.,
the dynamical quantum Zeno effect@6,7#. Moreover, the pos-
tulate of ‘‘collapse of the wave function’’ models the actu
measurement process only roughly@6#.

Aharonov and Vardi@8# showed that frequent measur
ments can not only stop the quantum dynamics but can
induce time evolution of the observable system. These
thors used the von Neumann projection postulate and
dicted an evolution of the system along a presumed tra
tory due to a sequence of measurements performed on s
that slightly change from measurement to measurement.
tenmüller and Schenzle@9# have demonstrated that such
phenomenon can be explained by replacing the collapse
pothesis by that of an irreversible physical interaction.

It should be noted that most of the systems analyzed
the papers mentioned above consist of only a few~usually
two or three! quantum states and are purely quantum s
tems. It is consequently of interest to investigate the infl
ence of repeated frequent measurements on the evolutio
multilevel quasiclassical systems, the classical counterp
of which exhibit chaos. It has been established@10–12# that
chaotic dynamics of such systems, e.g., dynamics of non
ear systems strongly driven by a periodic external field
suppressed by the quantum interference effect and gives
to quantum localization of the classical dynamics in the
ergy space of the system. The quantum localization phen
enon thus strongly limits the quantum motion. As stat
above, repeated frequent measurements or continuous o
vation of a quantum system can inhibit its dynamics as w
It is therefore natural to expect that frequent measurem
of suppressed system will result in additional freezing of
system’s state.
1131 © 1997 The American Physical Society
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1132 56B. KAULAKYS AND V. GONTIS
In connection with this question we refer to papers
which the influence of small external noise, environme
and measurement-induced effects on quantum chaos is
lyzed ~see@13–20# and references therein!. The general con-
clusion of such investigations is that noise, interaction w
the environment, and measurements induce decoherenc
reversibility, and delocalization. The direct link betwe
measurements of the suppressed chaotic systems an
quantum Zeno effect has, however, to the best of our kno
edge not yet been analyzed. We can only refer to papers@21#
in which some preliminary relation between the quant
Zeno effect and the influence of repeated measurement
the dynamics of localized quantum systems is presented

The purpose of the present study is to investigate theo
cally and numerically the influence of frequent measu
ments on the evolution of multilevel quasiclassical system

Analysis of the measurement effect on the dynamics o
quantum system is usually performed with the aid of
density matrix formalism. The investigation of the quantu
dynamics of a multilevel system affected by repeated m
surements is, however, very difficult analytically and tim
consuming in numerical calculations. Analysis based on
wave function and Schro¨dinger equation is considerabl
more tractable and transparent. We first show how the qu
tum Zeno effect in a few-level system can be described
terms of the wave function and Schro¨dinger equation without
introducing the density matrix and how the measureme
can be incorporated in the equations of motion.

We then apply the same method to the analysis of
dynamics of a multilevel system affected by repeated
quent measurements. We show that repetitive measurem
on a multilevel system with quantum suppression of class
chaos results in delocalization of the superposition of st
and restoration of chaotic dynamics. Since this effect is
reverse of the quantum Zeno effect we call this phenome
the quantum anti-Zeno effect.

II. DYNAMICS OF A TWO-LEVEL SYSTEM

We consider the simplest quantum-dynamical process
the influence of frequent measurements on the outcom
the dynamics. Time evolution of the amplitudesa1(t) and
a2(t) of the two-state wave function

C5a1~ t !C11a2~ t !C2 ~2.1!

of the system in the resonance field~in the rotating-wave
approximation! or of the spin-one-half system in a consta
magnetic field can be represented as

a1~ t !5a1~0!cos1
2 Vt1 ia2~0!sin1

2 Vt,
~2.2!

a2~ t !5 ia1~0!sin1
2 Vt1a2~0!cos1

2 Vt,

where V is the Rabi frequency. We introduce a matrixA
representing time evolution during the time intervalt, be-
tween time momentst5kt and t5(k11)t with k integer,
and rewrite Eq.~2.2! in the mapping form

S a1~k11!

a2~k11!
D 5AS a1~k!

a2~k!
D , ~2.3!
t,
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where the evolution matrixA is

A5S cosw i sinw

i sinw cosw D , w5
1

2
Vt. ~2.4!

The evolution of the amplitudes from timet50 to
t5T5nt can be expressed as

S a1~n!

a2~n!
D 5AnS a1~0!

a2~0!
D . ~2.5!

One can calculate matrixAn by diagonalizing the matrix
A:

An5S cosnw i sinnw

i sinnw cosnw
D , ~2.6!

wherenw5 1
2VT.

Equations~2.2!–~2.6! represent the time evolution of th
system without intermediate measurements in the interva
T. If at t50 the system was in the stateC1, i.e., a1(0)51
anda2(0)50, and if VT5p, then at the momentt5T we
will certainly find the system in the stateC2, i.e., we have
ua1(T)u250 andua2(T)u251, a certain~with probability 1)
transition between the states. Such quantum dynamics w
out intermediate measurements is regular and coherent fo
time until the final measurement.

Consider now the dynamics of a system subjected to
termediate measurements at intervalst. Measurement of the
system’s state, at timet5kt projects the system onto th
stateC1 with probability p1(k)5ua1(k)u2 or onto the state
C2 with probabilityp2(k)5ua2(k)u2. After the measuremen
we know the probabilitiesp1(k) and p2(k) but we have no
information about the phasesa1(k) anda2(k) of the ampli-
tudes

a1~k!5ua1~k!ueia1~k!, a2~k!5ua2~k!ueia2~k!, ~2.7!

i.e., the phasesa1(k) anda2(k) after measurement are ran
dom. Randomization of the phases after a measurement
also be confirmed by analysis of the definite measurem
process, e.g., in theV-shape three-level configuration wit
the spontaneous transition to the ground state@3–7#. Every
measurement of the system’s state results in mutually un
related phasesa1(k) anda2(k). After the full measuremen
of the system’s state these phases are also uncorrelated
the phases before the measurement. For this reason, ac
ing to the measurement postulate, the outcome of the m
surement does not depend on the phases of the amplitud
the expansion of the wave function in terms of the eige
functions of the measured observable. The interference te
in the expressions derived below hence do not affect
transition probabilities between the eigenstates.
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56 1133QUANTUM ANTI-ZENO EFFECT
Now we derive equations for the transition probabiliti
between the states in the case of evolution with intermed
measurements. From Eqs.~2.3! and ~2.4! we have

ua1~k11!u25ua1~k!u2cos2w1ua2~k!u2sin2w

1ua1~k!a2~k!usin@a1~k!2a2~k!#sin2w,

ua2~k11!u25ua1~k!u2sin2w1ua2~k!u2cos2w

2ua1~k!a2~k!usin@a1~k!2a2~k!#sin2w.

~2.8!

After a measurement at timet5kt the phase difference
a1(k)2a2(k), according to the above statement, is rand
and the contribution of the last term in expressions~2.8! to
the average of the large number of iterations equals zero.
equations for the probabilities hence are

S p1~k11!

p2~k11!
D 5M S p1~k!

p2~k!
D , ~2.9!

where

M5S cos2w sin2w

sin2w cos2w
D ~2.10!

is the evolution matrix for the probabilities. The full evolu
tion from the initial timet50 until t5T with (n21) equi-
distant intermediate measurements is described by the e
tion

S p1~n!

p2~n!
D 5MnS p1~0!

p2~0!
D . ~2.11!

The result of the calculation of the matrixMn by the method
of diagonalization of the matrixM is

Mn5
1

2S 11cosn2w 12cosn2w

12cosn2w 11cosn2w
D . ~2.12!

From Eqs.~2.11! and ~2.12! we recover the quantum Zen
effect obtained by the density matrix technique@3–6#: if ini-
tially the system is in the stateC1, then the result of the
evolution until the timeT5nt5p/V ~after the p pulse!
with (n21) intermediate measurements is characterized
the probabilitiesp1(T) and p2(T) for finding the system in
the statesC1 andC2, respectively:

p1~T!5 1
2 ~11cosn2w!. 1

2 ~11e2p2/2n!.12
p2

4n
→1,

p2~T!5 1
2 ~12cosn2w!. 1

2 ~12e2p2/2n!.
p2

4n
→0, n→`.

~2.13!

We see that Eqs.~2.11!–~2.13! represent inhibition of the
quantum dynamics by measurements and coincide with th
obtained by the density-matrix technique@3–6#. This also
confirms correctness of the proposition that the act of m
surement can be represented as randomization of the am
tudes’ phases. Further we will use this proposition and
te
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same method to analyze the influence of repeated meas
ments on the quantum dynamics of multilevel systems,
classical counterparts of which exhibit chaos. We rest
ourselves to systems of one degree of freedom stron
driven by a periodic force. The investigation is also based
the mapping equations of motion for such systems.

III. QUANTUM MAPS FOR MULTILEVEL SYSTEMS

In general, the classical equations of motion are nonin
grable and the Schro¨dinger equation for strongly driven sys
tems cannot be solved analytically. The mapping forms
the classical and quantum equations of motion howe
greatly facilitates the investigation of stochasticity a
quantum-classical correspondence for the chaotic dynam
From the standpoint of understanding the effect of the m
surements on the dynamics of multilevel systems, the reg
of large quantum numbers is of greatest interest. Here we
use the quasiclassical approximation when convenient v
ables are the angleu and actionI . Transition from the clas-
sical to a quantum~quasiclassical! description can be under
taken by replacingI with the operatorÎ 52 i (]/]u) @22,23#.
~We use the system of units with\51.! One of the simplest
cases in which dynamical chaos and its quantum localiza
can be observed is a system with one degree of freed
described by the unperturbed HamiltonianH0(I ) and driven
by periodic kicks. The full HamiltonianH of the driven sys-
tem can be represented as

H~ I ,u,t !5H0~ I !1k cosu(
j

d~ t2 j t!, ~3.1!

wheret andk are the period and strength of the perturbatio
respectively.

The intrinsic frequency of the unperturbed system
V5dH0 /dI. In particular, for a linear oscillator we hav
H05VI . The HamiltonianH05I 2/2 describes the widely in-
vestigated rotator, which results in the so-called stand
map @12,14#, while the Hamiltonian ~3.1! with
H05v/@2v(I 01I )#1/2 andk52pbF/v5/3 (b.0.411) mod-
els a highly excited atom in a monochromatic field
strengthF and frequencyv @23,25–27#.

Integration of the classical equations of motion for t
Hamiltonian~3.1! over the perturbation periodt leads to the
classical map for the action and angle

I j 115I j1k sinu,
~3.2!

u j 115u j1tV~ I j 11!.

For the rotator, the unperturbed frequency
V(I j 11)5I j 11 and the map~3.2! coincides with the standard
map investigated in great detail@12,22,24#.

For the derivation of the quantum equations of motion
expand the state functionc(u,t) of the system in quasiclas
sical eigenfunctions,wn(u)5einu/A(2p), of the Hamil-
tonianH0,

c~u,t !5~2p!21/2(
n

an~ t !i 2ne2 inu. ~3.3!
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1134 56B. KAULAKYS AND V. GONTIS
Here, the phase factori 2n is introduced for maximal simpli-
fication of the quantum map. Integration of the Schro¨dinger
equation over the periodt, leads to the following maps fo
the amplitudes before the kicks@21,23#:

am~ t j 11!5e2 iH 0~m!t(
n

an~ t j !Jm2n~k!, t j5 j t,

~3.4!

where theJm(k) are Bessel functions.
The form ~3.4! of the map for the quantum dynamics

rather common: similar maps can be derived for monoch
matic perturbations as well, e.g., for an atom in a microwa
field @23,27#. A particular case of map~3.4!, corresponding
to the model of a quantum rotatorH5I 2/2, has been inves
tigated comprehensively with the aim of determining the
lationship between classical and quantum chaos@12,22,24#.
It has been shown that at the onset of dynamical chao
K[tk.Kc50.9816, motion with respect toI is not
bounded and is a kind of diffusion in the classical case, wh
in the quantum description diffusion with respect tom is
bounded, i.e., the diffusion ceases after some time and
state of the system is localized exponentially. The expon
tial localization lengthl of the quantum state is usually de
fined as

lim
N→`

uam~Nt!u2;expS 2
2um2m0u

l D , ~3.5!

wherem0 is the initial action. It has been shown@10–12# that
for a quantum rotator the localization length isl.k2/2. The
effect of quantum limitation of dynamical chaos is extreme
interesting and important. It reveals itself in many quant
systems, for which the classical counterparts exhibit chao
should be noted that for the rotator the exact quantum
scription coincides with the quasiclassical one.

The classical dynamics of the system described by m
~3.2! in the case of global distinct stochasticity is diffusio
like with the diffusion coefficient inI space

B~ I !5~DI !2/2t5k2/4t. ~3.6!

From Eqs. ~3.4! we obtain the transition probabilitie
Pn,m between statesn andm during the periodt

Pn,m5Jm2n
2 ~k!. ~3.7!

Using the expression(nn2Jn
2(k)5k2/2 and approximation of

the uncorrelated transitions we can formally evaluate the
cal quantum diffusion coefficient inn space@21,25,26#,

B~n!5
1

2t(m ~m2n!2Jm2n
2 ~k!5

k2

4t
. ~3.8!

The expression for the local quantum diffusion coefficie
hence coincides with the classical equation~3.6!.

It turns out, however, that such quantum diffusion tak
place only for some finite timet<t* .tk2/2 @28#, after
which an essential decrease of the diffusion rate is obser
Such behavior of quantum systems in the region of str
classical chaos is called ‘‘quantum suppression of class
chaos’’ @10,11#. This phenomenon turns out to be typical f
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models~3.1! with nonlinear HamiltoniansH0(I ) as well as
for other quantum systems. The diffusion coefficient~3.8!
derived in the approximation of uncorrelated transitions~3.7!
thus does not describe the true quantum dynamics in en
space.

The quantum interference effect is essential for such
namics and results in the quantum evolution being quan
tively different from the classical motion. Quantum equ
tions of motion, i.e., the Schro¨dinger equation and the map
for the amplitudes, are linear with respect to the wave fu
tion and probability amplitudes. The quantum interferen
effect therefore manifests itself even for the quantum dyna
ics of the systems, the classical counterparts of which
described by nonlinear equations; chaotic dynamics of
latter exhibit dynamical chaos. On the other hand, quan
equations of motion are very complex as well. The Sch¨-
dinger equation is a partial differential equation wi
coordinate- and time-dependent coefficients, while the s
tem of equations for the amplitudes is infinite. Moreover,
the nonlinear HamiltonianH0(m), the phase increment
H0(m)t during the free motion between two kicks, whi
reduced to the basic interval@0,2p#, are pseudorandom
quantities as functions of the state’s quantum numberm.
This causes a very complicated and irregular quantum
namics of the classically chaotic systems. We observe
only very large and apparently irregular fluctuations of pro
abilities of the states’ occupation but also almost irregu
fluctuations in time of the momentum dispersion@see curves
~a! in Figs. 1 and 2#.

The quantum dynamics of such systems driven by an
ternal periodic force is, however, coherent and the evolut
of the amplitudesam(t j 11) in time is linear: they are defined
by the linear map~3.4! with time-independent coefficients
The nonlinearity of the HamiltonianH0(I ), being the reason
for the classical chaos, causes the pseudorandom natu
the increments of the phasesH0(m)t as functions of the
state’s numberm ~but constant in time!. These increments o
the phases remain the same for each kick. The dynamic
the amplitudesam(t j 11)5uam(t j 11)ueiam(t j 11) and of their

FIG. 1. Dependence of the dimensionless momentum dis
sion, ^(m2m0)2&, as defined by Eq.~4.1! for the quantum rotator
with m05500,t51, andk510 on the discrete dimensionless tim
j for the dynamics according to Eq.~3.4!: ~a! without the interme-
diate measurements,~b! with measurements of the initial state
w500, after every kick,~c! with measurements of all states eve
200 kicks, and~d! with measurements of all states after every kic
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56 1135QUANTUM ANTI-ZENO EFFECT
phasesam(t j 11) is thus strongly deterministic and nonch
otic, but very complicated and apparently irregular. For
stance, the phasesam(t j 11) are phases of the complex am
plitudesam(t j 11), which are linear combinations~3.4! of the
complex amplitudesan(t j ) before the preceding kick, with
the pseudorandom coefficientse2 iH 0(m)tJm2n(k). Neverthe-
less, the iterative equation~3.4! is a linear transformation
with coefficients regular in time.That is why we observe fo
such dynamics the quasiperiodic reversibility in the tim
evolution @12# with the quantum localization of the
pseudochaotic motion.

In Ref. @23# it has been demonstrated that this peculiar
of the pseudochaotic quantum dynamics is indeed due to
pseudorandom nature of the phasesH0(m)t in Eq. ~3.4! as a
function of the eigenstate’s quantum numberm ~but not of
the kick’s number j ). Replacing the multipliers
exp@2iH0(m)t# in Eq. ~3.4! by the expressions
exp@2i2pgm#, wheregm is a sequence of random numbe
that are uniformly distributed in the interval@0,1#, we ob-
serve the quantum localization as well@23#. The essential
point here is the independence of the phasesH0(m)t or
2pgm on the step of iterationj or time t. This is the basic
difference from the randomness of the phases due to m
surements under consideration in Sec. IV.

IV. INFLUENCE OF REPETITIVE MEASUREMENTS
ON THE QUANTUM DYNAMICS

Each measurement of the system’s state projects the
onto one of the energy stateswm with definitem. Therefore,
if we make a measurement of the system after the kickj but
before the next kick (j 11), we will find the system in the
statewm with probability pm( j )5uam(t j )u2.

In principle, such a measurement can be performed a
the experiment of Itanoet al. @4#, i.e., by short-impulse lase
excitation of the system from statewm to some higher state
followed by the irreversible return of the system to the sa
statewm , with registration of the state’s population by ph
ton counting. After the measurement of the population of

FIG. 2. Same as in Fig. 1 but for the system with random d
tribution of energy levels, i.e., for random phasesH0(m)t in Eqs.
~3.4! defined as 2pgm , wheregm is a sequence of random numbe
that are uniformly distributed in the interval@0,1#.
-

he
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e

e

statewm the probability of finding the system in the sta
wm coincides with that before the measurement. There
however, no interference between the amplitudeãm(t j ) of
the statewm after the measurement and the amplitudes
other states,an(t j ), i.e., the cross terms containing the am
plitude ãm(t j ) in the expressions for probabilities vanis
Interference between the unmeasured states remains,
ever, and the cross terms containing the amplitudes of
unmeasured states do not vanish.

In the calculation of the system’s dynamics the influen
of measurements can be taken into account in the same
as in Sec. II, i.e., by randomizing the phases of the am
tudes after the measurement of the appropriate state’s p
lation. The phases of amplitudes after the measurements
completely random and uncorrelated with the phases be
the measurements, after another measurement, or with
phases of other measured or unmeasured states. After a
measurement of the system after a kickj , all phases of the
amplitudesam(t j ) therefore are random. This full measur
ment of the system’s state therefore influences the fur
dynamics of the system through randomization of the pha
of the amplitudes~see Sec. II for analogy!. This fact can be
expressed by replacement in Eqs.~3.4! of the amplitudes
am(t j 11) by the amplitudeseibm(t j 11)am(t j 11) with random
phasesbm(t j 11). The essential point here is that the phas
bm(t j 11) are different, uncorrelated for the different me
surements, i.e., for different time moments of the measu
ment t j 11. This is the principal difference between the ra
dom phasesbm(t j 11) and the phasesH0(m)t in Eqs.~3.4!,
which are pseudorandom variables as functions of the eig
state’s quantum numberm ~but not of the timet j 11).

Introducing the appropriate random phases we can t
analyze the influence on the system’s dynamics of full m
surements of the system’s state performed after every k
after everyN kicks, or of measurements of the populatio
probabilities just of some states, e.g., only the initial sta
There is no need to measure more frequently than after e
kick because the results of subsequent measurements b
the next kick repeat the results of measurements after the
kick.

Instead of representing the detailed quantum dynam
expressed as the evolution of all amplitudes in the expan
~3.3! of the wave function we can represent only dynamics
the momentum dispersion

^~mj2m0!2&5(
m

~m2m0!2uam~ t j !u2, ~4.1!

wherem0 is the initial momentum quantum number. Such
representation of the dynamics is simpler, more easily p
tured, and more readily compared with classical dynamic

In Figs. 1 and 2 we show the results of numerical analy
of the influence of measurements of the system’s state on
quantum dynamics of a rotator and of a system with rand
distribution of energy levels, i.e., for random phas
H0(m)t in Eqs.~3.4! as a function of the eigenstate’s qua
tum numberm. We see that quantum diffusionlike dynamic

-
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1136 56B. KAULAKYS AND V. GONTIS
of the systems without measurements, represented by cu
(a), after sufficiently short timet* .tk2/2 ~of the order of
50t in our case! ceases. For timet@t* the monotonic in-
crease of the momentum dispersion^(m2m0)2&.2Bt5
(k2/2t)t for time t!t* turns into the stationary distributio
~on average for the time intervalDt>t* ) with the momen-
tum dispersion̂ (mst2m0)2&.l2/2.k4/8. This is a demon-
stration of the effect of quantum suppression of class
chaos.

In the case of measurement of the population of only
initial state w500 after every kick @which technically is
achieved by introduction of the random phaseb500(t j 11),
after every kickj #, we observe monotonic, though slow, in
crease of the momentum dispersion for very long time, u
t;600t in our case@curves (b) in Figs. 1 and 2#. After such
time the population of the initial state on the average
comes very small and measurement of this state’s popula
almost does not influence the system’s dynamics.

The dynamics with measurements of all states every
kicks represented by curves (c) is staircaselike: fast increas
of the momentum dispersion after the immediate meas
ment turns into quantum suppression of the diffusionlike m
tion for Dt>t* until the next measurement destroys t
quantum interference and induces the succeeding diffus
like motion.

The quantum dynamics of the kicked rotator or so
other system with measurements of all states’ populati
after every kick, represented by curves (d), is essentially
classical-like: the momentum dispersion increases linearl
time with the classical diffusion coefficient~3.6! for all time
of the calculation.

Theoretically such differences of dynamics can be und
stood from the iterative equations for the momentum disp
sion

^~mj 112m0!2&5(
m

~m2m0!2uam~ t j 11!u2, ~4.2!

where

uam~ t j 11!u25(
n,n8

Jm2n~k!Jm2n8~k!an~ t j !an8
* ~ t j !.

~4.3!

Substitution of Eq.~4.3! into Eq. ~4.2! yields

^~mj 112m0!2&5(
m,n

~m2m0!2Jm2n
2 ~k!uan~ t j !u2

12(
m,n

(
n8,n

~m2m0!2Jm2n~k!Jm2n8~k!

3Re@an~ t j !an8
* ~ t j !#. ~4.4!

For the random phase differences of the amplitu
an(t j ) andan8

* (t j ) with n8Þn ~after the measurement of th
es

l

e

il

-
on

0

e-
-

n-

e
s

in

r-
r-

s

system’s state!, the second term in Eq.~4.4! on average
equals zero~see Sec. II for clarification!. From Eq.~4.4! we
then have

^~mj 112m0!2&5(
n

uan~ t j !u2(
m

~m2m0!2Jm2n
2 ~k!

5(
m

uam~ t j !u2S m22m0
21

k2

2 D
5^~mj2m0!2&1

k2

2
. ~4.5!

In the derivation of Eq.~4.5! we have used the summation

(
m

mJm2n
2 ~k!50 and (

m
m2Jm2n

2 ~k!5n21
k2

2
.

According to Eq.~4.5! for the uncorrelated phases of th
amplitudesan(t j ) andan8

* (t j ) with n8Þn, the dispersion of
the momentum as a result of every kick therefore increa
on average by magnitudek2/2, just as for classical dynamics
For the dynamics of isolated quantum systems in the abse
of measurements or unpredictable interaction with the en
ronment, the second term of Eq.~4.4! compensates~on av-
erage for sufficiently large time intervalsDt>t* ) the first
term of Eq.~4.4!, due to the quantum interference betwe
the amplitudes of different states arisen from the same in
states’ superposition. Thus the quantum suppression of
namics may be observed.

Similar analysis can be used as well for the investigat
of the influence of measurements on the quantum dynam
of another quantum systems with quantum localization of
classical chaos.

As has already been stated above, the influence of rep
tive measurements on quantum dynamics is closely relate
the effect of unpredictable interactions between the sys
and the environment. It should be noticed that in general,
the analysis of the measurement effect and to facilitate
comparison between quantum and classical dynamics of
otic systems, it is convenient to employ the Wigner repres
tation rW(x,p,t) of the density matrix@19,29#. The Wigner
function of a system with the Hamiltonian of form
H5p2/2m1V(x,t) evolves according to the equation

]rW

]t
5$H,rW%M[$H,rW%

1 (
n>1

\2n~21!n

22n~2n11!!

]2n11V

]x2n11

]2n11rW

]p2n11 , ~4.6!

where$•••%M and$•••% denote the Moyal and Poisson brac
ets, respectively. The terms in Eq.~4.6! containing Planck’s
constant and higher derivatives represent the quantum
rections to the classical dynamics generated by the Pois
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brackets. In the region of regular dynamics, one can neg
the quantum corrections for very long times if the charac
istic actions of the system are large. For classically cha
motion, the exponential instabilities lead to the developm
of the fine structure of the Wigner function and exponen
growth of its derivatives. As a result, the quantum corr
tions become significant after a relatively short time even
macroscopic bodies@19,28#. The extremely small additiona
diffusionlike terms in Eq.~4.6!, which reproduce the effec
of interaction with the environment or frequent measu
ments, prohibit development of the Wigner function’s fi
structure and remove barriers posed by classical chaos
the correspondence principle@19,29#.

V. CONCLUSIONS

From the above analysis we can conclude that the in
ence of repetitive measurements on the dynamics of a
siclassical multilevel systems with quantum suppression
classical chaos is opposite to that of the few-level quan
system. Repetitive measurements of multilevel systems
sult in delocalization of the states’ superposition and ac
eration of the chaotic dynamics. In the limit of frequent fu
measurements of the system’s state the quantum dyna
approaches classical motion, which is the opposite of
.
.
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quantum Zeno effect: inhibition or even prevention of tim
evolution of the system from an eigenstate of an observa
into a superposition of eigenstates by repeated frequent m
surements. We can therefore call this phenomenon
‘‘quantum anti-Zeno effect.’’

It should be noted that the same effect can be deri
without thead hoccollapse hypothesis but from the quantu
theory of irreversible processes, in analogy with the meth
used in@6,9#. Even the simplest detector follows irreversib
dynamics due to coupling to the multitude of vacuum mod
which results in the randomization of the quantum amp
tudes’ phases, decay of the off-diagonal matrix elements
the density matrix, and smoothing of the fine structure of
Wigner distribution function, i.e., just what is needed to o
tain the classical equations of motion.

The quantum-classical correspondence problem cause
chaotic dynamics thus is closely related to the old problem
measurement in quantum mechanics. In the case of freq
measurements or unpredictable interaction with the envir
ment, the quantum dynamics of quasiclassical systems
proaches classical-like motion.

The research described in this publication was made p
sible in part by support of the Alexander von Humbol
Foundation.
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@16# R. Blümel, A. Buchleiter, R. Graham, L. Sirko, U. Smilansk

and H. Walther, Phys. Rev. A44, 4521~1991!.
@17# P. Goetsch and R. Graham, Phys. Rev. E50, 5242~1994!.
@18# D. Cohen and S. Fishman, Phys. Rev. Lett.67, 1945~1991!.
@19# W. H. Zurek, Phys. Today44~10!, 36 ~1991!; W. H. Zurek and

J. P. Paz, Phys. Rev. Lett.72, 2508~1994!.
@20# K. Shiokawa and B. L. Hu, Phys. Rev. E52, 2497~1995!.
@21# B. Kaulakys, inQuantum Communications and Measureme,

edited by V. P. Belavkin, O. Hirota, and R. L. Hudson~Plenum
Press, New York, 1995!, p. 193; V. Gontis and B. Kaulakys, J
Tech. Phys.38, 223 ~1997!.

@22# G. M. Zaslavskii,Stochastic Behavior of Dynamical System
~Nauka, Moscow, 1984; Harwood, New York, 1985!.

@23# V. G. Gontis and B. P. Kaulakys, Litov. Fiz. Sb.28, 671
~1988! @Sov. Phys. Collect.28, 1 ~1988!#.

@24# A. J. Lichtenberg and M. A. Lieberman,Regular and Stochas
tic Motion ~Springer-Verlag, New York, 1983!.

@25# V. Gontis and B. Kaulakys, J. Phys. B20, 5051~1987!.
@26# B. Kaulakys, V. Gontis, G. Hermann, and A. Scharman

Phys. Lett. A159, 261 ~1991!.
@27# V. Gontis and B. Kaulakys, Lith. Phys. J.31, 75 ~1991!.
@28# G. Casati and B. Chirikov, inQuantum Chaos: Between Orde

and Disorder, edited by G. Casati and B. V. Chirikov~Cam-
bridge University, Cambridge, England, 1994!, p. 3.

@29# B. Kaulakys, Lith. Phys. J.36, 343~1996!; quant-ph/9610041.


