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An adaptive dynamic state feedback controller for stabilizing and tracking unknown steady states of dynamical systems is

considered. We prove that the steady state can never be stabilized if the system and controller as a whole has an odd number of

real positive eigenvalues. For two-dimensional systems, this topological limitation states that only an unstable focus or node

can be stabilized with a stable controller, and a stabilization of a saddle requires the presence of an unstable degree of freedom

in a feedback loop. The use of the controller to stabilize saddles and unstable spirals is demonstrated numerically with several

models: a pendulum driven with a constant torque, the Lorenz system, and an electrochemical Ni dissolution system.
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1. Introduction

The control theory is one of the central subjects in

engineering science. It has been studied for at least half

a century and has profited from a huge formal appara-

tus developed in applied mathematics [1, 2]. In fact,

the scope of the general control theory is rather wide

and covers almost all possible perturbations of dynam-

ical systems, which intend to direct their motion into a

desired state.

Within this background one might wonder why

physicists have revived their interest to the field of con-

trol in the last decade, with an emphasis on nonlinear

and especially chaotic dynamical systems. The interest

came from the observation that chaotic dynamical sys-

tems admit a huge number of unstable periodic orbits.

Since these orbits represent genuine motions of the

system under consideration one can expect to achieve

stabilization by applying tiny control forces. Hence,

chaotic dynamics opens the possibility to control quite

distinct types of motion with a low control power.

The idea of controlling chaos has been first for-

mulated by Ott et al. in 1990 [3]. It stimulated de-

velopment of rich variety of new control techniques

(see [4] for a review), among which the delayed feed-

back control method [5] has gained widespread accep-

∗ The report presented at the 35th Lithuanian National Physics Con-
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tance. This method provides the stabilization of a de-

sired orbit without knowledge of the system equations.

It has been successfully implemented in various experi-

mental systems. However, Nakajima [6] proved a topo-

logical limitation that the method cannot stabilize the

torsion-free periodic orbits, which are characterized by

an odd number of real positive Floquet exponents. Re-

cently, it has been shown that an additional unstable

degree of freedom introduced into a feedback loop can

overcome this limitation [7].

Although the field of controlling chaos deals mainly

with stabilization of unstable periodic orbits, the prob-

lem of stabilizing unstable steady states of dynamical

systems is of great importance for various technical

applications. Stabilization of a fixed point by usual

methods of classical control theory requires a knowl-

edge of its location in the phase space. However, for

many complex systems (e. g., chemical or biological),

the location of the fixed points, as well as exact model

equations, are unknown. In this case, adaptive control

techniques capable of automatically locating the un-

known steady states are preferable. An adaptive sta-

bilization of a fixed point can be attained with the de-

layed feedback method [5, 8, 9]. However, the use of

the time-delayed signals in this problem is not nec-

essary, and thus the difficulties related to the infinite-

dimensional phase space due to delay can be avoided.

A simpler adaptive controller for stabilizing unknown
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steady states can be designed on the basis of ordinary

differential equations (ODEs). The simplest example

of such a controller utilizes a conventional low-pass fil-

ter described by one ODE. The filtered dc output signal

of the system estimates the location of the fixed point,

so that the difference between the actual and the fil-

tered output signals can be used as a control signal. Ef-

ficiency of such a simple controller has been demon-

strated for different experimental systems [9–11].

In this paper we consider a generalized adaptive con-

troller described by a system of ODEs and prove that it

has a topological limitation concerning an odd num-

ber of real positive eigenvalues of the steady state. We

show that the limitation can be overcome by imple-

menting an unstable degree of freedom into a feed-

back loop. The efficiency of the adaptive controller is

demonstrated with several models, namely, the Lorenz

system, a pendulum driven by a constant torque, and

electrochemical dissolution of nickel in sulphuric acid.

2. Adaptive controller

2.1. Controller based on the low-pass filter

An adaptive controller based on the conventional

low-pass filter, which was successfully used in sev-

eral experiments [9–11], is not universal. This can

be illustrated with a simple example. Consider a one-

dimensional dynamical system ẋ = λs(x − x∗) having

a single unstable steady state x = x∗ with the eigen-

value λs > 0. We assume that the location of the fixed

point x∗ is unknown and test a possibility of its stabi-

lization by means of the dynamic controller based on a

low-pass filter,

ẋ = λs(x − x∗) + k(w − x),

ẇ = λc(w − x).
(1)

Here w is a dynamic variable of the controller. The

equation ẇ = λc(w − x) for λc < 0 represents a con-

ventional low-pass filter, rc circuit, with the time con-

stant τ = −1/λc. The control signal k(w−x) is added

as a feedback to the controlled system ẋ = λs(x−x∗).
Note that the controller is designed in such a way that

it does not change the location of the fixed point of the

free system. The fixed point of the closed-loop system

in the whole phase space of variables (x,w) is (x∗, x∗)
so that its projection onto the x axis corresponds to the

fixed point of the free system at arbitrary control gain k.

If for some values of k the closed-loop system is stable,

the controller variable w converges to the steady-state

value w∗ = x∗ and the feedback perturbation vanishes.
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Fig. 1. Stabilization of an unstable fixed point with an unstable

controller in a simple model of Eq. (1) for λs = 1 and λc = 0.1.

(a) Root loci of the characteristic equation as k varies from 0 to ∞.

The crosses and solid dot denote the root locations at k = 0 and

k → ∞, respectively. (b) Re λ versus k. Here k0 = λs + λc and

k1,2 = λs + λc ∓ 2
√

λsλc.

The closed-loop system is stable if both eigenvalues

of the characteristic equation λ2 − (λs + λc − k)λ +
λsλc = 0 are in the left half-plane, Reλ < 0. The sta-

bility conditions are k > λs + λc, λsλc > 0. We see

immediately that the stabilization is not possible with a

conventional low-pass filter, since for any λs > 0 and

λc < 0 we have λsλc < 0, and the second stability con-

dition is not satisfied. However, the stabilization can be

attained via an unstable controller with a positive pa-

rameter λc. Electronically, such a controller can be im-

plemented as the rc circuit with a negative resistance.

Figure 1 shows the mechanism of the stabilization. For

k = 0, the eigenvalues are λs and λc, which correspond

to the free system and the free controller, respectively.

With the increase of k, they approach each other on the

real axis, then collide at k = k1, and pass to the com-

plex plane. At k = k0 they cross symmetrically into

the left half-plane (Hopf bifurcation). At k = k2 there

is another collision on the real axis, after which one

of the roots moves towards −∞ while the second one

approaches the λ-plane origin. For k > k0, the closed-

loop system is stable. An optimal value of the control

gain is k2, since it provides the fastest convergence to

the fixed point.

2.2. Generalized adaptive controller

Now we consider the problem of adaptive stabiliza-

tion in general. Let

ẋ = f(x,p) (2)

be the dynamical system with the N -dimensional vec-

tor variable x and and the L-dimensional vector param-

eter p available for an external adjustment. Assume

that the n-dimensional vector variable y(t) = g(x(t)),
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which is a function of the dynamical variables x(t),
represents the system output. Suppose that at p = p0

the system has an unstable fixed point x∗ that satisfies

f(x∗,p0) = 0. The location of the fixed point x∗ is

unknown. To stabilize the fixed point we perturb the

parameters by an adaptive feedback

p(t) = p0 + kB
[
Aw(t) + Cy(t)

]
, (3)

where w is the M -dimensional dynamical variable of

the controller that satisfies the equation

ẇ(t) = Aw + Cy. (4)

Here A, B, and C are the matrices of dimensions

M × M , M × L, and n × M , respectively, and k is

a scalar parameter that defines the feedback gain. The

feedback is constructed in such a way that it does not

change the steady-state solutions of the free system.

For any k, the fixed point of the closed-loop system

is {x∗,w∗}, where {x,w} denotes the phase space of

variables, x∗ is the fixed point of the free system, and

w∗ is a corresponding steady-state value of the con-

troller variable. The latter satisfies the system of lin-

ear equations Aw∗ = −Cg(x∗) which has a unique

solution for any nonsingular matrix A. The feedback

perturbation kBẇ vanishes whenever the fixed point

of the closed-loop system is stabilized.

Small deviations δx = x − x∗ and δw = w − w∗

from the fixed point are described by the variational

equations

δẋ = Jδx + kPBδẇ,

δẇ = CGδx + Aδw,
(5)

where J = Dxf(x
∗,p0), P = Dpf(x

∗,p0), and

G = Dxg(x∗). Here Dx and Dp denote the vector

derivatives (Jacobian matrices) with respect to the vari-

ables x and parameters p, respectively. The character-

istic equation for the closed-loop system has the form

∆k(λ) ≡

∣∣∣∣∣∣

Iλ − J −kλPB

−CG Iλ − A

∣∣∣∣∣∣
= 0. (6)

For k = 0, we have ∆0(λ) = |Iλ − J ||Iλ − A|
and Eq. (6) splits into two independent equations

|Iλ − J | = 0 and |Iλ − A| = 0 that define N eigen-

values of the free system, λ = λs
j , j = 1, . . . , N ,

and M eigenvalues of the free controller, λ = λc
j ,

j = 1, . . . ,M , respectively. By assumption, at least

one eigenvalue of the free system is in the right half-

plane. The closed-loop system is stabilized in an inter-

val of the control gain k for which all eigenvalues of

Eq. (6) are in the left half-plane, Re λ < 0.

2.3. Limitation of the generalized controller

Now we prove an important topological limitation of

the above-described adaptive controller. It is similar to

the Nakajima theorem [6] concerning the limitation of

the time-delayed feedback controller.

Consider a fixed point x∗ of the dynamical sys-

tem (2) characterized by Jacobian matrix J and the

adaptive controller (4) with a nonsingular matrix A. We

assert that if the total number of real positive eigenval-

ues of the matrices J and A is odd, then the closed-loop

system described by Eqs. (2)–(4) cannot be stabilized

by any choice of matrices A, B, C and control gain k.

The proof of the statement is based on the analysis of

roots of ∆k(λ) which define the stability of the closed-

loop system. Rewriting Eq. (6) for k = 0 in the basis

where matrices J and A are diagonal, one obtains

∆0(λ) =
N∏

j=1

(
λ − λs

j

) M∏

m=1

(
λ − λc

m

)
. (7)

Here λs
j and λc

m are the eigenvalues of the matrices J
and A, respectively. Now from Eq. (6) we also have the

relation ∆k(0) = ∆0(0) and, therefore, Eq. (7) implies

∆k(0) =
N∏

j=1

(
−λs

j

) M∏

m=1

(
−λc

m

)
(8)

for all k. Since the total number of real and positive

eigenvalues λs
j and λc

m is odd and other eigenvalues are

either real and negative or come in complex conjugate

pairs, ∆k(0) must be real and negative. On the other

hand, from the definition of ∆k(λ) we see immediately

that limλ→∞ ∆k(λ) → λN+M > 0 for all k. Since

the polynomial ∆k(λ) is continuous for all λ and it is

negative for λ = 0 and is positive for large λ, it follows

that ∆k(λ) = 0 for some real positive λ. Thus the

closed-loop system always has at least one real positive

eigenvalue and cannot be stabilized.

This limitation can be explained by bifurcation the-

ory, similarly to [6]. If a fixed point with an odd total

number of real positive eigenvalues is stabilized, one

of such eigenvalues must cross into the left half-plane

on the real axis accompanied by coalescence of fixed

points. However, this contradicts the fact that the feed-

back perturbation does not change locations of fixed

points.

From this limitation it follows that any fixed point x∗

with an odd number of real positive eigenvalues cannot

be stabilized with a stable controller. In other words, if

the Jacobian J of a fixed point has an odd number of

real positive eigenvalues then it can be stabilized only
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with an unstable controller, matrix A of which has an

odd number (at least one) of real positive eigenvalues.

In the rest of the paper we illustrate the efficiency

of an adaptive unstable controller for several physical

models.

3. Control of a pendulum driven by a constant

torque

Consider a simple mechanical example of a nonlin-

ear oscillator: a pendulum driven by a constant torque.

The equation of motion in dimensionless form reads

Θ̈ + βΘ̇ + sinΘ = γ. (9)

Here Θ denotes the angle between the pendulum and

the downward vertical (see inset in Fig. 2), β =
b/(mL3/2g1/2) and γ = Γ/(mgL) are the dimension-

less parameters, m is the mass and L is the length of

the pendulum, b is the viscous damping constant, g is

the free fall acceleration, and Γ is the applied constant

torque. The time variable is normalized to the period

T = (L/g)1/2 of the free pendulum oscillations.

For a small torque γ < 1, the pendulum has two

equilibrium steady states, coordinates of which in the

(Θ, Θ̇) phase plane are (Θs, 0) and (Θu, 0), where

Θs = arcsin γ and Θu = π − arcsin γ. In these steady

states the gravity is balanced by the applied torque. The

first state corresponds to a stable node or spiral while

the second one is a saddle point. Our goal is to stabilize

the saddle point (Θu, 0) by using an unstable adaptive

controller based on the rc circuit with a negative resis-

tance.

We suppose that an observable is the angle Θ and

that we can control the system by applying a feedback

perturbation to the torque γ. Then our controlled sys-

tem is

Θ̇ = Ω,

Ω̇ =−βΩ − sin Θ + γ + k(w − Θ),

ẇ = λc(w − Θ).

(10)

The controller can stabilize the saddle steady state of

the pendulum if the fixed point (Θu, 0,Θu) of the con-

trolled system (10) in the extended phase space of vari-

ables (Θ,Ω, w) is stable. Linearization of the sys-

tem (10) in the vicinity of the fixed point yields the

characteristic equation

λ3 +
(
β − λc

)
λ2 +

[
k −

(
1 − γ2

)1/2
− λcβ

]
λ

+ λc
(
1 − γ2

)1/2
= 0. (11)
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Fig. 2. Stabilization of a saddle steady state of a pendulum driven

by a constant torque. (a) Eigenvalues of the controlled pendulum

as functions of the control gain k. (b) Dynamics of the y variable

of the pendulum. (c) Dynamics of the perturbation. The feedback

perturbation switching moment is t = tc = 19 and the control gain

is k = 2.6.

The fixed point is linearly stable if all the roots of

Eq. (11) have negative real parts. Using the well-known

Routh–Hurwitz criteria [12] one obtains the following

stability conditions:

k > k0 ≡ β

(
λc +

(1 − γ2)1/2

β − λc

)
, 0 < λc < β.

(12)

As expected from the above general theory, the nec-

essary stability condition is λc > 0, i. e. the saddle

steady state can be stabilized only with an unstable con-

troller.

Figure 2(a) shows the real parts of eigenvalues λ
as functions of the control gain k (calculated at the

following set of parameters: β = 0.2, γ = 0.7,

λc = 0.1). Similarly to the above simple example,

the real positive eigenvalues of the pendulum and con-

troller collide on the real axis, pass to the complex

plane, and enter the left half-plane at k = k0. Re-

sults of direct numerical integration of the nonlinear

system (10) are presented in Figs. 2(b) and (c). The

initial condition of the controller at the switching mo-
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ment t = tc = 19 of the control coincides with the

current value of the angle, w(tc) = Θ(tc). The pa-

rameters are chosen in such a way that the uncontrolled

pendulum is in a multistable regime: depending on ini-

tial conditions it can settle into either a rotating solu-

tion where it whirls over the top, or to a stable rest

state Θs where the gravity is balanced by the applied

torque. For the same values of parameters, there is

a coexisting unstable rest state Θu of a saddle type.

Figure 2(b) shows how the rotating pendulum reaches

this state after applying the feedback perturbation. As

seen from Fig. 2(c) the perturbation vanishes when-

ever the stabilization of the saddle steady state is at-

tained. Note that our controller is reference-free, i. e.

it does not utilize a knowledge of the position of the

fixed point. Thus, it can be used for a tracking pro-

cedure. The controlled system will remain in the sta-

bilized saddle state even under a slow variation of the

applied torque.

4. Control of the Lorenz system

Now we consider the control of stability of the

steady states in a chaotic system described by the

Lorenz equations [13]

ẋ = σ(y − x),

ẏ = rx − y − xz,

ż = xy − bz,

(13)

where σ, b, and r are dimensionless parameters. Orig-

inally the model (13) has been derived and analysed

in the context of turbulent convection. Fortunately,

there is a simple physical realization of the Lorenz

model: convection in a vertical loop (see inset in Fig. 3)

[14, 15]. The fluid is heated from below, and for strong

enough heating convection sets in. Just before the

onset, the motion is steady, with a constant veloc-

ity V . Clearly, due to symmetry, motions in both the

clockwise and counter-clockwise directions are possi-

ble. If the heating increases, the steady rotation be-

comes unstable and chaotic reversions of the flow are

observed. In the context of the above experiment, vari-

ables of the Lorenz equations have the following phys-

ical meaning: x is proportional to the flow velocity

V , y is proportional to the horizontal temperature dif-

ference T3 − T1, and z is proportional to the verti-

cal temperature difference T4 − T2. When analysing

the Lorenz system the parameters σ and b are usu-

ally fixed to the values 10 and 8/3, respectively. The

Fig. 3. Stabilization of a saddle steady (nonconvective) state of

the Lorenz system with an unstable controller. (a) Eigenvalues of

the controlled Lorenz system as functions of the control gain k.

(b) Dynamics of the y variable. (c) Dynamics of the perturba-

tion. The set of parameters used is σ = 10, b = 8/3, r = 28,

λc = 1. The feedback perturbation is switched on at the moment

t = tc = 30. The initial condition of the controller at this moment

coincides with the observable y, w(tc) = y(tc). The control gain

is k = 55.

parameter r is proportional to the heating rate at the

bottom and is usually taken as a main control parame-

ter.

For 0 < r < 1, the Lorenz system has a unique sta-

ble steady state, a stable node, at the origin (x, y, z) =
(0, 0, 0). For r > 1, the origin becomes a saddle. This

means that the motionless state of the liquid looses sta-

bility. Just at this bifurcation, two additional symmetri-

cal stable steady states ([b(r−1)]1/2, [b(r−1)]1/2, r−1)
and (−[b(r−1)]1/2,−[b(r−1)]1/2, r−1) appear. They

correspond to the stationary motion of the liquid with

the constant velocity. For r > rh = σ(σ + b + 3)/
(σ − b − 1), these fixed points loose their stability and

become unstable spirals. Now a chaotic motion of the

liquid is observed in the system. Our aim is to stabi-

lize all unstable steady states of the system in a chaotic

regime when r > rh, using the above adaptive dynamic

controller.

We suppose that an observable is y and we can influ-

ence the temperature difference T3 − T1 by additional

heating of the loop in the horizontal direction. Then we
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analyse the controlled Lorenz system described by the

following equations:

ẋ = σ(y − x),

ẏ = rx − y − xz + k(w − y),

ż = xy − bz,

ẇ = λc(w − y).

(14)

We start with the problem of stabilizing the motion-

less steady state, i. e. the saddle fixed point at the ori-

gin. This fixed point has two negative and one positive

real eigenvalues. Thus, it can be stabilized only with

an unstable controller with the positive parameter λc.

Indeed, linearizing the system (14) in the vicinity of

the origin (x, y, z, w) = (0, 0, 0, 0) we obtain that one

eigenvalue is independent of k and is negative, λ = −b,

while remaining three eigenvalues satisfy the character-

istic equation

λ3 +
(
σ + 1 − λc + k

)
λ2

+
[
σ
(
1 − r − λc + k

)
− λc

]
λ

+ σλc(r − 1) = 0. (15)

The necessary condition of stability of the polyno-

mial (15) is σλc(r − 1) > 0. The latter can be sat-

isfied only with an unstable controller, λc > 0. Us-

ing the Routh–Hurwitz criteria [12] one can obtain

the threshold of the stability k0. For σ = 10, r =
28, and sufficiently small λc, the stability condition

reads

k > k0

(
λc

)
≈ 27 + 1.81λc. (16)

Figure 3(a) presents the three largest real parts of

the eigenvalues as functions of the control gain k.

The horizontal line in the figure corresponds to the

eigenvalue λ = −b that is independent of k. Re-

sults of direct integration of the nonlinear system (14)

are presented in Figs. 3(b) and (c). Initially the

system is in a chaotic regime. After the pertur-

bation was switched on, the system is forced to

the rest state. Whenever the stabilization of the

rest state is attained the feedback perturbation van-

ishes.

Similar results of adaptive stabilization of the un-

stable spirals (±[b(r − 1)]1/2,±[b(r − 1)]1/2, r − 1)
are shown in Fig. 4. These fixed points correspond

to the stationary motion of the liquid in clockwise

and counter-clockwise directions with a constant ve-
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Fig. 4. Stabilization of an unstable spiral (the convective state

with a constant velocity of the fluid) of the Lorenz system

with a stable controller. The values of parameters are the same

as in Fig. 3, except λc and k that here are equal to −4 and 20,

respectively.

locity. They have identical stability conditions and de-

pending on initial conditions the system can be sta-

bilized to either of these states. The unstable spi-

rals have one real negative eigenvalue and a com-

plex conjugate pair of eigenvalues with the positive

real parts. Thus, we use a stable controller for

the stabilization. Physically, this stabilization means

that chaotic convection of the system is transformed

into regular convection with a constant velocity of

the liquid. We emphasize that this state can be

maintained just by applying tiny feedback perturba-

tion.

5. Control of an electrochemical oscillator

Lastly, we demonstrate the use of adaptive controller

with control in an electrodissolution process, the disso-

lution of nickel in sulphuric acid. The main features of

the process can be qualitatively described with a model

proposed by Haim et al. [16]. The dimensionless model

reads

ė =
V − e

R
− f3(e)(1 − Θ),

Γ1Θ̇ = f1(e)(1 − Θ) − f2(e)Θ.

(17)
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Here e is the dimensionless potential of the Ni elec-

trode and Θ is the surface coverage of NiO + NiOH.

The functions in the above expressions are

f1(e) =
exp(0.5e)

1 + Ch exp(e)
,

f2(e) =
bCh exp(2e)

ChC + exp(e)
,

f3(e) = Chf1(e) + a exp(e).

(18)

An observable is the current through the Ni electrode

i =
V − e

R
, (19)

where R is the series resistance of the cell and V is the

circuit potential, the main experimentally controlled

parameter. We shall control the system dynamics by

varying this parameter, V = V0 + δV , with the feed-

back signal δV derived from the observable i(t). But

first we consider the steady-state solutions and dynam-

ical properties of the free system, when δV = 0, i. e.

V = V0 = const.

5.1. Analysis of the free system

For a fixed voltage V = V0, the steady-state solu-

tions (e0,Θ0) of the system (17) are determined by the

equations

V0 − e0

R
− f3(e0)(1 − Θ0) = 0,

f1(e0)(1 − Θ0) − f2(e0)Θ0 = 0.

(20)

The equations are linear with respect to variables V0

and Θ0. Thus, we can easily obtain explicit expressions

Θ0 = Θ0(e0) =
f1(e0)

f1(e0) + f2(e0)
,

V0 = V0(e0) = e0 + R
f2(e0)f3(e0)

f1(e0) + f2(e0)
,

(21)

that define the steady-state characteristics of the sys-

tem in a parametric form (e0 is interpreted as an inde-

pendent parameter). The steady-state characteristics e0

versus V0 and i versus V0 are shown in Fig. 5. We see

that in a certain interval of the potential V0 the system

has three coexisting fixed points. The linear analysis of

these points shows that the lower branch in Fig. 5(a)

corresponds to an unstable spiral, the middle branch

represents a saddle, and the upper branch is a stable

node.
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1

60 70 80
1.2

1.3

1.4

1.5

1.6(a)

e 0

V
0

(b)

i

V
0

Fig. 5. Steady-state characteristics of the chemical reaction ob-

tained from Eqs. (20). The dashed line represents an unstable spi-

ral, the dotted line corresponds to a saddle, and the solid one is a

stable node. The values of parameters are R = 50, Γ1 = 10−2,

b = 6·10−5, Ch = 1600, C = 10−3, a = 0.3.

Now we discuss the bifurcations that appear in the

system when varying the control parameter V0. The

phase portraits of the system for different values of V0

are shown in Fig. 6. The results are presented in the de-

layed phase space coordinates (i(t), i(t− τ)) using the

observable i(t). Such a choice of the phase space vari-

ables allows us to compare the numerical results with

the experimental ones.

For small values V0, an unstable spiral is the only

steady state of the system. The spiral is surrounded

by a stable limit cycle that corresponds to chemical

oscillations (Fig. 6(a)). The increase of V0 leads to a

saddle-node bifurcation at which two additional fixed

points appear (Fig. 6(b)). Then the saddle collides with

the limit cycle (homoclinic bifurcation, Fig. 6(c)) and

the limit cycle disappears (Fig. 6(d)). The further in-

crease of V0 leads to another saddle-node bifurcation

(Fig. 6(e)) and the only one fixed point, a stable node,

remains in the system (Fig. 6(f)).

Next, we fix the value of the voltage V0 = 63.888
(which is marked in Fig. 5(a) by a vertical dotted line).

Then the system has two unstable fixed points: the sad-

dle and the unstable spiral, the coordinates (e0,Θ0)
of which are (0.0, 0.0166) and (−1.7074, 0.4521), re-

spectively. We consider the problem of stabilizing

these unstable states by using two different strategies.

In the first, the value of the potential e is taken as a

control signal. We suppose that this value can be re-

constructed from the observable i. In the second, we

design the controller that uses directly the observable i.

5.2. Stabilization using the potential as a control

signal

Since the input variable, the voltage V , perturbs only

the first differential equation of the system (17), it is
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Fig. 6. Phase portraits of the free chemical system presented in de-

layed coordinates (τ = 0.94) for different values of the voltage V0:

(a) 62.5, (b) 64.5, (c) 66.5, (d) 68.5, (e) 74.5, and (f) 76.5. The

circles, triangles, and squares denote unstable spirals, saddles, and

stable nodes, respectively. The values of parameters are the same

as in Fig. 5.

natural to construct the perturbation in such a way that

it introduces a negative feedback to the potential e. If

the value of the circuit resistance R is known then the

value of the potential e can be reconstructed from the

observable i and the input variable V , e = V − iR.

However, the exact value R is unknown in experiment.

Then we propose to use the difference ẽ = V − ir
as an effective control signal, where r is an adjustable

control parameter which is not required to be exactly

equal to the circuit resistance R. We shall see that the

stabilization can be attained for r 6= R as well.

Here we restrict ourselves to the problem of stabi-

lizing the saddle steady state that requires a use of an

unstable controller. Introducing an effective potential

ẽ we define an unstable controller by the differential

equation

dw

dt
= λc(w − ẽ) = λc(w − V + ir), (22)

where w is a dynamic variable of the controller and λc

is a positive constant. Now we feed back the control

perturbation δV = k(w − V + ir) to the adjustable

parameter V ,

V = V0 + k(w + ir − V ). (23)

Solving this equation together with Eq. (19) we obtain

the following expression for the voltage:

V =
V0 + k(w − e/R)

1 + k(1 − r/R)
, (24)

where k is the control gain. Thus, the controlled chem-

ical system is defined by differential Eqs. (17) and

(22) and algebraic expressions (18), (19), and (24).

Note that the introduced controller does not change the

steady-state solutions of the free chemical system. In-

deed, the stationary state of the controller is determined

by the equality w−V + ir = 0. Thus, the perturbation

added to the voltage is equal to zero and from Eq. (23)

we obtain that V = V0. The steady-state value of

the controller variable is w0 = V0(1 − r/R) + e0r/R
and the corresponding fixed point of the controlled

chemical system in the whole phase space of vari-

ables (e,Θ, w) is (e0,Θ0, w0), where (e0,Θ0) are the

steady-state solutions of the free chemical system. Lin-

earizing Eqs. (17) and (22) in the vicinity of this fixed

point one can obtain the stability conditions. Fig-

ure 7(a) shows the eigenvalues of the saddle fixed point

(e0,Θ0, w0) = (0.0, 0.1666,−12.7776), taken at the

voltage V0 = 63.888, as functions of the control gain k.

For k > k0 ≈ 2.97, the saddle steady state of the

free systems becomes stable due to introduced feed-

back control. This result of a linear theory is confirmed

by direct integration of nonlinear Eqs. (17) and (22).

Figures 7(c) and (d) show the dynamics of the current

and perturbation, respectively, for k = 0.02. At the

moment of switching on the control t = tc ≈ 93 the

initial condition for the controller is w(tc) = ẽ(tc).
Note that the parameter r is chosen not equal to R
(r = 60 and R = 50). Although the effective poten-

tial ẽ does not coincide with the real potential e, the

stabilization of the fixed point is still possible.

5.3. Stabilization using the current as a control signal

The controller described in previous paragraph is

based on reconstruction of the potential e and imple-

mentation of a negative feedback to this variable. Now

we consider another controller that does not require any

reconstructions of dynamic variables and is particularly

convenient for experimental implementation. We take

the observable i(t) as a control signal, transform it by
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Fig. 7. Stabilization of a saddle steady state of the chemical system

using the potential as a control signal. (a) Eigenvalues of the con-

trolled chemical system as functions of the control gain k. (b, c)

Dynamics of the current and perturbation, respectively. The pa-

rameters of the controller are λc = 0.02, r = 60, k = 3.9. The

feedback perturbation is switched on at the moment t = tc = 93.

an adaptive dynamic controller, and feed back the out-

put to the control parameter V (t). Specifically, we de-

fine an adaptive controller by the differential equation

dw

dt
= λc(w − i), (25)

where w is a dynamic variable of the controller and

λc is a characteristic parameter. Then we feed back

the control perturbation δV = k(i − w) to the input

voltage V ,

V = V0 + δV = V0 + k(i − w), (26)

where k is the control gain. Substituting this V ex-

pression into Eq. (19) and solving it with respect to un-

known current, we obtain i = (V0 − e− kw)/(R − k).
Then from Eq. (26) we obtain the following expression

for the voltage:

V = V0 + k
V0 − e − wR

R − k
. (27)

We see that the voltage perturbation is singular for

k = R. The controlled chemical system is defined

by differential Eqs. (17) and (25) and algebraic ex-

pressions (18), (19), and (27). This controller as well

as considered before does not change the steady state

solutions of the free chemical system. Whenever the

controller attains the steady state, dw/dt = 0, the

voltage perturbation δV = k(i − w) vanishes. The

steady-state value of the controller variable coincides

with the steady-state value of the current of the un-

perturbed system, w0 = i0 = (V0 − e0)/R. Thus,

the fixed point of the controlled chemical system in the

whole phase space of variables (e,Θ, w) is (e0,Θ0, i0).
Linearizing Eqs. (17) and (25) in the vicinity of this

fixed point one can obtain the dependence of its eigen-

values on the control gain k. For the unstable spi-

ral (e0,Θ0, i0) = (−1.7074, 0.4521, 1.3119), taken at

the voltage V0 = 63.888, this dependence is shown

in Fig. 8(a). For k > k0 ≈ 46.2, the initially un-

stable spiral becomes stable. Figures 8(b) and (c)

show the results of a nonlinear analysis. The dynam-

ics of the current and perturbation are obtained by di-

rect integration of the nonlinear system of Eqs. (17)

and (25). At the moment of switching on the control

t = tc = 90 the initial condition for the controller

is taken to be equal to the current, w(tc) = i(tc).
Again, the current of the controlled chemical system

asymptotically converges to the unperturbed steady-

state value i0 and the perturbation vanishes. To sta-

bilize the unstable spiral we used a stable controller

with the negative parameter λc = −0.01. Figure 9

shows similar results of stabilizing the saddle point

(e0,Θ0, i0) = (0.0, 0.0166, 1.27778) taken at the same

voltage V0 = 63.888. However, now an unstable con-

troller with the positive parameter λc = 0.01 has been

used.

Note that the controller considered in this section

has only one adjustable parameter λc, while the con-

troller based on reconstruction of the potential e has

two adjustable parameters, λc and r. Thus, this con-

troller is more convenient for experimental implemen-

tation.

6. Restriction of perturbation and basins of

attraction

The linear stability of a fixed point of dynamical

system guarantees its stabilization only for the initial

conditions that are close to the fixed point. Impor-

tant questions arise what is the basin of attraction of

a linear stable fixed point in the phase space of nonlin-

ear system and how to control the size of this basin?

These questions are especially significant from an ex-

perimental point of view. Generally, there is no analyt-

ical approach to answer these questions. The basins of

attraction can be obtained numerically by direct inte-

gration of the underlying differential equations for dif-

ferent values of initial conditions. We performed such

an analysis for the chemical system in the case when
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the chemical system without restriction of the perturbation (a) and

for restricted perturbation with different values of δVmax: (b) 100,

(c) 50, and (d) 25. The solid line, as well as in Fig. 6, represents
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saddles, and nodes, respectively.

the current is used as a control signal. The basin of

attraction in the (e,Θ) phase plane for the stabilized

saddle fixed point is presented in Fig. 10(a). The ini-

tial condition for the controller is taken to be equal

to the initial value of the current, w(0) = i(0) =
(V0 − e(0))/R. We see that only a small part of the

limit cycle resides in the basin of attraction of the sad-

dle point. It means that the control will not be suc-

cessful always if we try to switch the system behaviour

from a regime of limit cycle oscillations to a saddle

steady state. We will succeed in our intention only

if we switch on a control at a proper moment when

the phase of limit cycle oscillations is in the basin of

attraction of the saddle steady state. If the control

is switched on at an improper moment, the feedback

perturbation grows up rapidly and the system runs far

away from the saddle point and the limit cycle. A nat-

ural way to avoid the runaways is to restrict the pertur-

bation.

We analysed the system behaviour under the follow-

ing algorithm of restriction. When the absolute value of

the perturbation |δV | reaches some maximum δVmax

we zero the perturbation by changing the state of the

controller. Let tm be the moment when the perturba-

tion reaches the maximum of the allowable amplitude,

|δV (tm)| = δVmax. At this moment we change the

state of the controller by setting the variable w to be

equal to the current, w(tm) = i(tm). From Eq. (26)
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it follows that the perturbation at this moment drops

to zero, δV (tm) = 0. Figures 10(b), (c), and (d)

show the evolution of the basin of attraction when vary-

ing the parameter δVmax. For sufficiently small δVmax

the basin of attraction becomes rather large so that the

limit cycle totally resides within the basin of attrac-

tion (Fig. 10(d)). In this case the system behaviour

can be changed from periodic limit cycle oscillations

to a saddle steady state by switching on the control at

any moment independent of the phase of oscillations.

Thus, the constrained perturbations can essentially im-

prove the control of dynamical system in a real experi-

ment.

In a similar manner, we analysed the basin of at-

traction for the spiral fixed point. The analysis shows

that this basin is rather large (similar to that presented

in Fig. 10(d)) even without restriction of the perturba-

tion. The different sizes of attraction basins for the spi-

ral and saddle fixed points are probably related to the

fact that different controllers have been used for the

stabilization. For the saddle fixed point we used the

unstable controller, while the spiral is stabilized with

the stable one. The unstable controller increases the

probability of runaway and to avoid it a restriction of

the perturbation is required. The stable controller does

not introduce any additional instabilities to the system

and the restriction on the perturbation is not so essen-

tial.

7. Conclusions

In the present paper we have considered an adap-

tive dynamic controller for stabilizing unknown un-

stable steady states of dynamical systems. The con-

troller automatically finds the position of the unstable

fixed point in the phase space and stabilizes it. When-

ever the stabilization is attained the feedback perturba-

tion vanishes and there is no power dissipation in the

feedback loop. The simplest example of such a con-

troller is a conventional low-pass filter. However, it

has a topological limitation similar to that of a time-

delayed feedback controller. The controller cannot sta-

bilize unstable steady states with an odd number of

real positive eigenvalues. We prove this limitation in

a rather general way. To avoid the limitation we intro-

duce an unstable degree of freedom into a controller

and show that such an unstable controller is capable

to stabilize the saddle steady states of dynamical sys-

tems.

The efficiency of the adaptive controller is demon-

strated for several models: a pendulum driven with

a constant torque, the Lorenz system, and an electro-

chemical oscillator. We analyse the basin of attrac-

tion of the stabilized fixed point in the phase space and

show that this basin can be essentially enlarged by a

restriction of the feedback perturbation. A recent ex-

periment [17] with the electrochemical Ni dissolution

system confirms the theoretical results presented in this

paper.

References

[1] R. Bellman, Introduction to the Mathematical The-

ory of Control Processes (Academic Press, New York,

1971).

[2] G. Stephanopoulos, Chemical Process Control: An In-

troduction to Theory and Practice (Prentice Hall, En-

glewood Cliffs, NJ, 1984).

[3] E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos,

Phys. Rev. Lett. 64, 1196–1199 (1990).

[4] Handbook of Chaos Control, ed. H.G. Shuster (Wiley-

VCH, Weiheim, 1999).

[5] K. Pyragas, Continuous control of chaos by self-

controlling feedback, Phys. Lett. A 170, 421–428

(1992).

[6] H. Nakajima, On analytical properties of delayed feed-

back control of chaos, Phys. Lett. A 232, 207–210

(1997).

[7] K. Pyragas, Control of chaos via an unstable delayed

feedback controller, Phys. Rev. Lett. 86, 2265–2268

(2001).

[8] K. Pyragas, Control of chaos via extended delay feed-

back, Phys. Lett. A 206, 323–330 (1995).
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NETIESINIŲ DINAMINIŲ SISTEMŲ NESTABILIŲJŲ RIMTIES BŪSENŲ

ADAPTYVUSIS STABILIZAVIMAS

V. Pyragas, K. Pyragas

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Nagrinėtas dinaminis grįžtamojo ryšio valdiklis nežinomoms

dinaminių sistemų rimties būsenoms stabilizuoti. Įrodyta, kad rim-

ties būsena negali būti stabilizuota, jeigu sistema ir valdiklis kartu

turi nelyginį realiųjų teigiamų tikrinių verčių skaičių. Antros ei-

lės sistemoms toks topologinis ribojimas reiškia, kad stabiliuoju

valdikliu galima stabilizuoti tik nestabiliąją spiralę arba nestabilųjį

mazgą, o balnui stabilizuoti grįžtamojo ryšio kilpoje reikalingas pa-

pildomas nestabilusis laisvės laipsnis. Valdiklio naudingumas bal-

nams bei nestabiliosioms spiralėms stabilizuoti yra parodytas skai-

tiškai keliems modeliams: svyruoklei, veikiamai jėgos momento,

Lorenz’o sistemai ir elektrocheminei Ni tirpimo reakcijai.


