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An expression for the probability of the excitation of polarized atoms by polarized radiation is obtained by using the
graphical technique of angular momentum. In the case of pure states, the applied method is an alternative to that of density
matrix formalism. The obtained expression enables one to describe the polarization state of an excited atom and can be used to
derive formulas for the special cases under specific experimental conditions as well as for the photoexcitation as the first step
process. The application of obtained expressions for the description of multistep processes is discussed. The photoexcitation
of unpolarized atoms by polarized radiation and polarized atoms by unpolarized radiation is considered as the examples of
practical application of the obtained general expression.
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1. Introduction

The laser [1] and tunable synchrotron radiation al-
lows one not only to ionize an electron of a specific
outer or inner shell of an atom but also to excite it to a
specific orbital [2, 3]. The state of the produced atom is
polarized if the radiation is polarized. Thus, the excita-
tion of atoms by polarized radiation is one of the ways
to produce atoms in polarized states for further mea-
surements [4, 5]. In the case of inner-shell ionization,
the ions can emit the fluorescence radiation [6, 7] that
provides information about the polarization state of an
atom before the ionization. The decay of atomic states
via the emission of a photon is the only way when elec-
trons are excited from outer shell. The emission of an
electron is another way of decay of an excited atomic
state in the case of the inner-shell ionization [8]. Thus,
the photoexcitation can be used as a first step to create
a resonant state with well-defined angular momentum
and parity for further investigations of polarization and
angular correlation phenomena [8, 9].

The main aim of the present work was the deriva-
tion of a general expression for the probability of the
excitation of polarized atoms with polarized radiation
and the application of this expression for specific cases
to describe the polarization used in measurements. The
application of the general formula for description of the

photoexcitation as the first step process is also consid-
ered. For derivation of the expression for excitation
probability, the graphical technique of angular momen-
tum [10] is applied. So far, the investigations of the
photoexcitation of polarized atoms was performed only
by using the methods of density matrix [11, 12], there-
fore, our treatment is an alternative to the density ma-
trix formalism. Some improvements of the graphical
technique and methods of the ordinary atomic theory
suggested in [13–15] have also found an application in
the present work.

2. Derivation of the photoexcitation probability

To obtain the general expression for the excitation of
polarized atoms by a polarized radiation the following
process was studied:

A(α0J0M0) + hν(ǫ̂λk0) → A∗(α1J1M1). (1)

Here an atom A in the state α0J0M0 is excited by the
electromagnetic radiation into the state α1J1M1, where
α defines the configuration and other quantum num-
bers, J is total angular momentum, and M is its pro-
jection. The electromagnetic radiation is described by
the wave vector k0 and unit vector ǫ̂λ of the polariza-
tion (λ is the helicity, λ = ±1). The system of atomic
units is used in the present work (~ = e = m = 1,
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c = 137, unless these constants are displayed explic-
itly). It is assumed that the fine structure splitting ≫
line width ≫ hyperfine structure splitting. Then the
states of an atom can be characterized by the total an-
gular momentum of all electronic shells. The modifica-
tions enabling the calculations of probability in a case
when hyperfine structure is important will be described
below. In the present work, it is assumed that the direc-
tions for the measurement of the projections M0 and
M1 may be different.

The differential cross-section of the process (1) can
be written as follows [12]:

dσ(α0J0M0ǫ̂λk0 → α1J1M1)

dΩ

= 2π2
[ ∫

〈α1J1M1|J(r)|α0J0M0〉Aλk0
(r) dr

]

×
[ ∫

〈α1J1M1|J(r)|α0J0M0〉Aλk0
(r) dr

]∗
.

(2)

Here J(r) stands for the operator of the current of elec-
trons and Aλk0

(r) is the operator of the vector poten-
tial of electromagnetic field. Taking into account that
kr ≫ 1, assuming an arbitrary direction of the in-
cidence k0 of the photon, and inserting the multipole
expansion for the Aλk0

(r), the expression in the right
square brackets of (2) acquires the form [12]

∫
〈α1J1M1|J(r)|α0J0M0〉Aλk0

(r) dr

=
∑

p=0,1

∞∑

k=1

k∑

q=−k

ik (−iλ)p
[
k + 1

k

]1/2 k
k−1/2
0

(2k − 1)!!

× Dk
qλ(k̂0)〈α1J1M1|Qp

kq|α0J0M0〉

=
∞∑

k=1

k∑

q=−k

〈α1J1M1|Q(k)
q |α0J0M0〉Dk

qλ(k̂0), (3)

〈α1J1M1|Q(k)
q |α0J0M0〉

= k
k−1/2
0

∑

p=0,1

[
k + 1

k

]1/2 ik (−iλ)p

(2k − 1)!!

× 〈α1J1M1|Qp
kq|α0J0M0〉. (4)

Here Dk
qλ(k̂0) is the Wigner rotation matrix [16], and

p = 0 indicates the operator of electric multipole tran-
sition (Ek)

〈α1J1M1|Q0
kq|α0J0M0〉

=

[
4π

2k + 1

]1/2 ∑

j

〈α1J1M1|rk
j Ykq(r̂)|α0J0M0〉,

(5)

and p = 1 is for the magnetic multipole transition (Mk)

〈α1J1M1|Q1
kq|α0J0M0〉

=

[
4π

2k + 1

]1/2 ∑

j

〈α1J1M1|∇rk
j Ykq(r̂)

×
[

lj
k + 1

+ sj

]
|α0J0M0〉. (6)

Note that the parities of the magnetic and electric
multipole fields are (−1)k and (−1)k+1, respectively.
Only the magnetic (Mk) and electric (Ek) part con-
tributes to transitions between specific electronic states
owing to parity selection rules. Since we are con-
sidering pure photon states, there is no need to in-
troduce Stokes parameters explicitly. In electrical
dipole approximation, the matrix element (4) is as fol-
lows:

〈α1J1M1|Q1
q|α0J0M0〉

=
√

2k0〈α1J1M1|Q0
1q|α0J0M0〉. (7)

The helicity λ = ±1 describes the right-hand and
left-hand circular radiation. In the case of any polariza-
tion ǫ, the polarization may be expressed via the circu-
lar polarizations. Then

Aǫk0
(r) = αAλ=+1k0

(r) + βAλ=−1k0
(r) (8)

has to be inserted into Eq. (3) to obtain the expression
for the excitation cross-section (2).

Since there is no dependence on the direction of
k0 in the electrical dipole approximation, the cal-
culated angular distributions of the emitted radiation
are symmetric with respect to k0 reversal. Retain-
ing terms up to the second order, the calculation then
includes electric dipole – electric quadrupole (E1–E2)
and electric dipole – magnetic dipole (E1–M1) cross
terms, i. e. interference between the E1 photoion-
ization amplitudes and those for E2 and M1 inter-
actions, but excludes E1–M2, M1–M1, and E2–M1
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cross terms that are of the order (k0r)
2. The E1–E2

and E1–M1 cross terms have odd parity and produce
calculated asymmetry in angular distributions of ra-
diation with respect to the reversal of the direction
of k0 [17].

Sometimes it is more convenient to analyse the po-
larization state of a particle with respect to the direc-
tion that differs from the one used for the calculation
of the matrix element, where all particles of the pro-
cess (1) should be described in the same coordinate
system, and their projections of the angular momen-
tum are on the same quantization axis. For switching
from the wave function |JM〉 defined in the laboratory
fixed direction to the wave function |JM̃ 〉 of the atomic
frame, the coordinate rotation transformation [16] is
used:

|JM〉 =
∑

M̃

DJ
M̃,M

(Ĵ) |JM̃〉 . (9)

Here DJ
M̃,M

(Ĵ) denotes the Wigner rotation matrix

[16], and the hat on J indicates the rotation by
solid angle that transforms the atomic frame into
the laboratory one used for the polarization measure-
ments of the characteristics depending on J . In the
laboratory system of coordinates the matrix element

〈α1J1M1|Q(k)
q |α0J0M0〉 can be written, by taking into

account Eq. (9), in the form

〈α1J1M1|Q(k)
q |α0J0M0〉

=
∑

M̃0,q̃,M̃1

〈α1J1M̃1|Q(k)

q̃
|α0J0M̃0〉

× DJ0

M̃0M0

(Ĵ0)Dk
q̃q

(k̂0)D∗J1

M̃1M1

(Ĵ1). (10)

The matrix element 〈α1J1M̃1|Q(k)

q̃
|α0J0M̃0〉 is de-

fined in the atomic frame. The angular momentum
part of this matrix element is represented by dia-
gram A1 in Fig. 1 [10], where the open lines are de-
fined in the laboratory fixed coordinate system, the
circles with D inside stand for the Wigner rotation
matrices (9), and the rectangle at the lines represent-
ing the total angular quanta J of the initial and fi-
nal states stands for the configuration and other quan-
tum numbers. The application of the Wigner–Eckart
theorem [10] enables us to separate the part that is
independent of the space rotation (diagram A2 in
Fig. 1) and a Clebsch–Gordan coefficient (diagram A3

in Fig. 1) that, together with the Wigner rotation ma-

trices (see Fig. 1), describes the directions of an atom
in the initial and final states and a photon. The
second Clebsch–Gordan coefficient comes up from
the diagram of the complex conjugate matrix ele-
ment (2).

For further simplification of the part describing the
space rotation dependence, the following relation can
be used:

DJ
M̃M

(Ĵ) D∗J ′

M̃ ′M
(Ĵ)

=
∑

K,N

T ∗K
N (J, J ′,M |Ĵ)

[
J ′ K J

M̃ ′ N M̃

]
. (11)

The tensor in Eq. (11) is defined as [15]

T ∗K
N (J, J ′,M |Ĵ)

= (−1)J
′−M

[
4π

2J + 1

]1/2 [
J J ′ K
M −M 0

]
Y ∗

KN(θ, φ).

(12)

Three Clebsch–Gordan coefficients for each momen-
tum J0, J1, and k (see Eq. (11)) are used to per-
form the summation over the projections M̃0, M̃ ′

0,
M̃1, M̃ ′

1, q̃, q̃′ in Eq. (10) and its complex conjugate.
All Clebsch–Gordan coefficients coming up from di-
agram A1 and its complex conjugate counterpart as
well as for each angular momentum from Eq. (11)
are shown in diagram A4. This summation was per-
formed graphically, and the result is represented by di-
agram A5. The closing of open lines from A5 produces
the diagram A6 invariant under space rotation and the
diagram A7 describing rotation properties of the exci-
tation cross-section (2). The bow on the open lines of
diagram A7 represents the operator (11). The final ex-
pression for the excitation probability (2) can be writ-
ten by using diagrams A2, A6, and A7 in the following
form:

dσ(α0J0M0ǫ̂k0 → α1J1M1)

dΩ

= C
∑

K0,Kr,K1,k.k′

1

2K1 + 1
Br(K0,Kr,K1, k, k′)

×
∑

N0,Nr,N1,q

[
K0 Kr K1

N0 Nr N1

]
T ∗K0

N0
(J0, J0,M0|Ĵ0)

× T ∗Kr

Nr

(k, k′, q|k̂0)TK1

N1
(J1, J1,M1|Ĵ1), (13)
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Fig. 1. The diagrams of angular momentum theory used to derive the expression for the probability of excitation of polarized atoms by
polarized radiation.

where

Br(K0,Kr,K1, k.k′)

= (α1J1||Q(k)||α0J0)(α1J1||Q(k′)||α0J0)
∗

×





J0 K0 J0

k Kr k′

J1 K1 J1





[
(2J0 + 1)(2J1 + 1)

× (2k + 1)(2K1 + 1)
]1/2

. (14)

In Eq. (14) the relation

(α1J1||Q(k)||α0J0) = [2J1 +1]1/2〈α1J1||Q(k)||α0J0〉
(15)

is taken into account. In Eq. (13), C = 2π2.
In the case when hyperfine structure is important, the

reduced matrix element (α1J1||Q(k)||α0J0) in Eq. (14)
should be changed by (α1J1(I)F1||Q(k)||α0J0(I)F0).
A simple relation between these two matrix elements
holds:
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(α1J1(I)F1‖Q(k)‖α0J0(I)F0)

= (−1)F0−J1+I+k[
(2F0 + 1)(2J1 + 1)

]1/2

×
{

F0 k F1

J1 I J0

}
(α1J1‖Q(k)‖α0J0). (16)

I is the spin of the nucleus. The values of J0, J1 in
Eqs. (14) and (15) should be changed by F0, F1. The
probability W (α0J0M0ǫ̂k0 → α1J1M1) equals to the
cross-section (2) divided by the density of the flow of
the radiation. Then the same expressions of the cross-
section can be used for the probability, only the defini-
tion of the constant C should be changed.

3. Photoexcitation as the first step of a multistep
process

The excitation of an atom by laser or other electro-
magnetic radiation is often used to prepare the atom in
a polarized state. Then the magnetic state of an atom
is not observed, and summation over M1 has to be per-
formed coherently. In this case, the excitation (1) is the
first step of the multistep process, while the second step
is

A∗(α1J1M1) + b(α) → A(α2J2M2) + b′(α′). (17)

Here b(α) stands for the impacting particle or electro-
magnetic radiation in the state α, and b′(α′) indicates
one or more ionized and emitted particles. In two-step
approximation, the probability of the processes (1) and
(17) can be written as coherent sum, since the projec-
tion M1 cannot be observed [18]:

W t(α0J0M0ǫ̂k0 → α1J1α → α2J2M2α
′)

= C ′

∣∣∣∣
∑

M1

〈α2J2M2α
′|H2|α1J1M1α〉

× 〈α1J1M1|H1|α0J0M0〉
∣∣∣∣
2

= C ′
∑

M1,M ′

1

〈α2J2M2α
′|H2|α1J1M1α〉

× 〈α2J2M2α
′|H2|α1J1M

′
1α〉∗

× 〈α1J1M1|H1|α0J0M0〉

× 〈α1J1M
′
1|H1|α0J0M0〉∗. (18)

H1 and H2 are the operators of the interaction in the
first and second processes, respectively. Then the prod-
uct (11) should be changed by

DJ1

M̃1M1

(Ĵ1)D
∗J ′

1

M̃ ′

1
M ′

1

(Ĵ1)

=
∑

K1,N1,N ′

1

[
J ′

1 K1 J1

M̃ ′
1 N1 M̃1

]

× T ∗K1

N1N ′

1

(J1, J
′
1,M1,M

′
1|Ĵ1), (19)

where the tensorial operator (12) acquires a more gen-
eral form

TK1

N1N ′

1

(J1, J
′
1,M1,M

′
1|Ĵ1)

= (−1)J
′

1
−M ′

1

[
2K1 + 1

2J1 + 1

]1/2 [
J1 J ′

1 K1

M1 M ′
1 N ′

1

]

× D∗K1

N1N ′

1

(Ĵ1). (20)

Now the summation over M1 and M ′
1 in Eq. (18)

may be carried out. From the examination of ex-
pressions (29) in [4] and (13) of the present work,
for both terms in (18) it follows that only the tensors
TK1

N1N ′

1

(J1, J
′
1,M1,M

′
1|Ĵ1) depend on M1 and M ′

1.

The sum over M1,M
′
1 of the product of these tensors

is equal to
∑

M1,M ′

1

TK1

N1N (J1, J1,M1,M
′
1|Ĵ1)

× T
∗K ′

1

N ′

1
N ′

(J1, J1,M1,M
′
1|Ĵ1)

=

√
(2K1 + 1)(2K ′

1 + 1)

2J1 + 1
D∗K1

N1N (Ĵ)D
K ′

1

N ′

1
N ′

(Ĵ)

×
∑

M1,M ′

1

(−1)2J1−2M ′

1

[
J1 J1 K1

M1 M ′
1 N

] [
J1 J1 K ′

1

M1 M ′
1 N ′

]

=
2K1 + 1

2J1 + 1
D∗K1

N1N (Ĵ)DK1

N ′

1
N (Ĵ)

× δ(K1,K
′
1)δ(N,N ′). (21)

Then the quantization axis can be chosen along the
z axis of the laboratory coordinate system, and

D∗K1

N1N (0, 0, 0)DK1

N ′

1
N (0, 0, 0) = δ(N1, N)δ(N ′

1, N).
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The square root of the multiplier (2K1 + 1)/(2J1 + 1)
is convenient to attribute to both terms of the following
expression:

W t(α0J0M0ǫ̂k0 → α1J1α → α2J2M2α
′)

=
∑

K1,N1

WK1N1
(α0J0M0ǫ̂k0 → α1J1α)

× W A
K1N1

(α1J1α → α2J2M2α
′). (22)

Here the sum over M1,M
′
1 in Eq. (18) is changed by

the sum over K1, N1, i. e. the probability of the two-
step process is expanded as the sum of state multi-
poles [11]. Then the expressions for the photoexcita-
tion probability and that of the second process slightly
change. For the excitation probability, it is

dWK1N1
(α0J0M0ǫ̂k0 → α1J1)

dΩ

=
C

[2J1 + 1]1/2

∑

K0,Kr,k,k′

Br(K0,Kr,K1, k, k′)

×
∑

N0,Nr,q

[
K0 Kr K1

N0 Nr N1

]

× T ∗K0

N0
(J0, J0,M0|Ĵ0)T ∗Kr

Nr

(k, k′, q|k̂0), (23)

W00(α0J0k → α1J1)

=
C

(2J0 + 1)(2k + 1)[2J1 + 1]1/2

×
∣∣〈α1J1‖Q(k)‖α0J0〉

∣∣2. (24)

The expression for the second term in Eq. (22) depends
on the second step process. In the case of the Auger
decay, it is presented by Kupliauskienė and Tutlys (see
Eq. (4) in [19]).

The proposed method is easy to generalize for multi-
step process when intermediate states are not observed.
In the case of a three-step process where the fluores-
cence radiation of the doubly charged ion formed after
the photoionization of an atom and the Auger decay of
a singly charged ion is registered, the summation over
intermediate states gives

∑

M1,M ′

1
,M2,M ′

2

W 1(J0M0k1 → J1M1M
′
1p1m1)

× W 2(J1M1M
′
1p1m1 → J2M2M

′
2p2m2)

× W 3(J2M2M
′
2p2m2 → J3M3k2)

=
∑

K1,N1,K2,N2

W 1
K1N1

(J0M0k1 → J1p1m1)

× 2K1 + 1

2J1 + 1
W 2

K1N1K2N2
(J1p1m1 → J2p2m2)

× 2K2 + 1

2J2 + 1
W 3

K2N2
(J2p2m2 → J3M3k2). (25)

The square root of each multiplier (2K + 1)/(2J + 1)
in Eq. (25) is also convenient to attribute to both terms
standing side by side.

4. Practical applications

The expressions (13) and (23) represent the general
case of the excitation of polarized atoms by polarized
radiation. Two cases are chosen to demonstrate their
practical application. The first case is the excitation
of randomly oriented atoms by the circularly and lin-
early polarized dipole radiation. The second one is the
excitation of polarized atoms by unpolarized radiation.
Since usually the photoexcitation is used to prepare an
atom in a polarized state, the practical application of
the expression (13) is limited. Therefore, the above-
mentioned expressions will be obtained for the excita-
tion probability in the first step process characterized
by Eq. (23).

4.1. Photoexcitation of unpolarized atoms

To obtain the expression for the probability describ-
ing the excitation of an unpolarized atom by polarized
dipole radiation, one needs to average the probabil-
ity (23) over the initial states of an atom. The use of
the expression (A1) from [15]

∑

M0

TK0

N0
(J0, J0,M0|Ĵ0) = δ(K, 0)δ(N, 0) (26)

in Eq. (23) enables us to write

dWKN(α0J0ǫ̂k0 → α1J1)

dΩ

=
4πC

(2J0 + 1)
√

3(2J1 + 1)

×
∑

K,q

(−1)1−qBr(0,K,K, 1, 1)

×
[
1 1 K
q −q 0

]
YKN(θ, φ). (27)
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Here θ, φ are polar and azimuthal angles between the
direction of incoming radiation for the circularly po-
larized and unpolarized light, or its electrical vector E
in the case of linearly polarized light, and laboratory z

axis. When these directions coincide with the labora-
tory z axis, by using

Y ∗
KN(0, 0) =

[
2K + 1

4π

]1/2

δ(N, 0), (28)

YK0(θ, φ) =

[
2K + 1

4π

]1/2

PK(cos θ), (29)

the final expression may be written in the form

WK0(α0J0q → α1J1M1)

= (−1)1−q C

2J0 + 1

[
2K + 1

3(2J1 + 1)

]1/2

× Br(0,K,K, 1, 1)

[
1 1 K
q −q 0

]
, (30)

Br(0,K,K, 1, 1)

= (α1J1||Q(1)||α0J0)
2(−1)1+K+J1+J0

×
[
(2J1 + 1)3

2K + 1

]1/2 {
1 1 K
J1 J1 J0

}
, (31)

and PK(cos θ) is the Legendre polynomial [16].
In the case of circularly polarized electrical dipole

radiation, k = 1, q = ±1, K = 0, 1, 2, the excited
atom is oriented along the laboratory z axis if J1 ≥ 1/2

because of the condition K ≤ 2J1. The ranks K = 1

and K = 2 describe the orientation and alignment [11],
respectively. For the linearly polarized light, q = 0 and
K = 0, 2 because the Clebsch–Gordan coefficient in
Eq. (30) is equal to zero when q = 0 and 2 + K is odd
[10]. The unpolarized light is described by the sum of
equal parts of the right- and left-hand circularly polar-
ized radiation. Then the terms of the sum with K = 1

cancel, and only the terms with K = 0, 2 bring the con-
tribution like in the case of linearly polarized light, but
one must have in mind that q = 1. This means that the
excited atom is created in the aligned state even if ex-
citated by unpolarized radiation. For the description of
orientation and alignment, the parameters A1 and A2,
respectively, were introduced [12]. In the case of ex-

citation by electrical dipole radiation, their expressions
are

A1 =
W10

W00
= 3

√
2J1 + 1(−1)J1+J0+1−q

×
[
1 1 1
q −q 0

] {
1 1 1
J1 J1 J0

}
, (32)

A2 =
W20

W00
= 3

√
2J1 + 1(−1)J1+J0−q

×
[
1 1 2
q −q 0

] {
1 1 2
J1 J1 J0

}
. (33)

For the linearly polarized dipole radiation, A1 = 0,
and

AL
2 =

√
6(2J1 + 1)(−1)J1+J0

{
1 1 2
J1 J1 J0

}
. (34)

In the case of circularly polarized dipole radiation,
A2 coincides with that of unpolarized radiation:

A2 =

[
3(2J1 + 1)

2

]1/2

(−1)J1+J0−1
{

1 1 2
J1 J1 J0

}

(35)
and

A1 = 3

[
2J1 + 1

2

]1/2

(−1)J1+J0

{
1 1 1
J1 J1 J0

}
. (36)

The calculated parameters describing the orienta-
tion A1 (36) and alignment A2 (34)–(35) of atoms ex-
cited by the electrical dipole radiation are presented
in Table 1. The orientation and alignment of the res-
onance state in the case of photoexcitation are well-
determined and both are model-independent because
they do not depend on the values of the reduced ma-
trix elements (see Eqs. (32)–(36)). Therefore, they can
be used for the investigation of any atom in any exper-
iment. The values of these coefficients can differ from
those obtained by using the density matrix formalism
by

√
2J1 + 1 (e. g., [9]) because of our definition (25)

where [(2K+1)/(2J +1)]1/2 is attributed to each term
standing side by side.

The data from Table 1 show that all atoms excited
to the states J1 ≥ 1/2 by electric dipole radiation are
oriented (J1 ≥ 1/2) and aligned (J1 ≥ 1). This polar-
ization was observed in the second step process prod-
ucts. The transferred spin polarization of the resonantly
excited 3d−1

J 5p Auger electrons of krypton was regis-
tered [20] to be 80%.
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Table 1. Parameters describing orientation A1 and alignment A2 in the case of right circularly polar-
ized dipole radiation and alignment AL

2 for the linearly polarized radiation.

J0 J1 A1 A2 AL

2 J0 J1 A1 A2 AL

2

0 1 1.2247 0.7071 −1.4142 5/2 3/2 −0.6708 0.1 −0.2
1/2 1/2 1 0 0 5/2 0.2928 −0.4276 0.8552

3/2 1.1180 0.5 −1 7/2 0.9820 0.3873 −0.6546
1 0 0 0 0 3 2 −0.7071 0.1195 −0.2390

1 0.6124 −0.3536 0.7071 3 0.25 −0.4330 0.8660
2 1.0607 0.4183 −0.8367 4 0.9682 0.3134 −0.6268

3/2 1/2 −0.5 0 0 7/2 5/2 −0.7319 0.1336 −0.2673
3/2 0.4472 −0.4 0.8 7/2 0.2182 −0.4364 0.8729
5/2 1.0247 0.3742 −0.7483 9/2 0.9574 0.3028 −0.6055

2 1 −0.6124 0.0707 −0.1414 4 3 −0.75 0.1443 −0.2887
2 0.3536 −0.4183 0.8367 4 0.1936 −0.4387 0.8775
3 1 0.3464 −0.6928 5 0.9487 0.2944 −0.5889

4.2. Photoexcitation of polarized atoms

In the second case of the excitation of polarized
atoms by unpolarized radiation, one needs to take into
account the earlier mentioned description of unpolar-
ized light and the condition that K = 0, 2, as well as
that the laboratory z axis is aligned along the direction
of incoming radiation. Then Nr = 0 due to the re-
lation (28), and the contribution of terms of only the
same multipolarity Eq. (22) acquires a simpler form:

WK1N1
(α0J0M0q → α1J1)

= C

[
4π

(2J0 + 1)(2k + 1)(2J1 + 1)

]1/2

× (−1)J0−M0+1−q
∑

K0,Kr

[2Kr + 1]1/2

× Br(K0,Kr,K1, 1, 1)

[
K0 Kr K1

N1 0 N1

]

×
[

J0 J0 K0

M0 −M0 0

] [
k k Kr

q −q 0

]
YK0N1

(θ, φ).

(37)

The angles θ and φ of the total angular momentum J0

are measured from the direction of incoming radiation.
In the electrical dipole approximation, Kr = 0, 2,

Eq. (37) can be written as

WK1N1
(α0J0M0 → α1J1)

= W00(α0J0 → α1J1)

×
[
1 + A2(J0M0,K1N1, θ, φ)

]
, (38)

A2(J0M0,K1N1, θ, φ)

=
∑

K0

[
4π

2K0 + 1

]1/2

× YK0N1
(θ, φ)β(K0, 2,K1)

[
K0 2 K1

N1 0 N1

]
, (39)

β(K0, 2,K1)

= (−1)J0−M0+1−q3(2J0 + 1)

×
[
(2J1 + 1)(2K1 + 1)(2K0 + 1)(2Kr + 1)

]1/2

×
[
1 1 Kr

q −q 0

][
J0 J0 K0

M0 −M0 0

]



J0 K0 J0

1 2 1
J1 K1 J1



 . (40)

Parameter A2(J0M0,K1N1, θ, φ) describes the
alignment of the excited atom that was created by the
photoexcitation of a polarized atom. It depends on the
orientation of the atom in its initial state, but is indepen-
dent of the value of the reduced matrix element. The
values of A2(J0M0,K1N1) can be calculated if the ori-
entation of the atom is known. In the case of J0 aligned
along the z axis that coincides with the direction of ex-
citing radiation, the expression for A2(J0M0,K1N1)
is simple, because M0 = J0, K0 + K1 = even, and
N1 = 0:

A2(J0J0,K10, 0, 0)

= 3(2J0 + 1)

×
∑

K0≤2J0

[
5(2J1 + 1)(2K1 + 1)(2K0 + 1)/6

]1/2

×
[
K0 2 K1

0 0 0

] [
J0 J0 K0

J0 −J0 0

] 



J0 K0 J0

1 2 1
J1 K1 J1



 . (41)
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Table 2. Parameters describing the alignment A2(J0, J0 = M0, K10, 0, 0) in the case
of the photoexcitation of atoms polarized along the direction of incoming unpolarized

radiation (J0 ≤ 3, J1 ≤ 3).

K1

J0 J1 1 2 3 4 5 6

0 1 1.58811
1/2 1/2 −1.1547

3/2 0.2582 1.7748
1 1 −1.5811

2 1.0690 1.4432
3/2 1/2 0.8660

3/2 −1.2394 −1.4199
5/2 0.4564 1.6424 1.0235

2 1 0.7906
2 −2.0045 −1.0690
3 1.1066 1.7665 0.6725

5/2 3/2 1.1619 0.5916
5/2 −1.5937 −2.2082 −0.7311

3 2 1.3363 0.4009
3 −2.4206 −1.9988 −0.4707

In Eq. (41), K1 ≤ 2J1.
The calculated values for A2(J0J0,K10, 0, 0) in the

case of J0 ≤ 3 and J1 ≤ 3 are presented in Table 2.
They are also model-independent and can be used for
the investigation of any atom in any experiment.

5. Concluding remarks

To summarize, a general expression for the excita-
tion probability of polarized atoms by polarized radi-
ation was obtained. The integration over the orbital
and spin variables was performed by using the graphi-
cal technique of angular momentum. The approach is
based on the ordinary atomic theory and is an alterna-
tive to the density matrix formalism in the case of pure
states. Since usually the photoexcitation is used to pre-
pare an atom in a polarized state, the general expres-
sion was also obtained for the probability of excitation
as the first step process. The generalization of the ob-
tained expressions in the case of a multistep process
when intermediate states are not observed is presented.
Two cases are chosen to demonstrate the practical ap-
plication. The first case is the excitation of randomly
oriented atoms by the unpolarized and by the circu-
larly and linearly polarized dipole radiation. The sec-
ond one is the excitation of polarized atoms by unpo-
larized radiation. The parameters describing the orien-
tation and alignment in the case of photoexcitation are
well-determined and both are model-independent be-
cause they do not depend on the values of the reduced
matrix elements. Therefore, the calculated values of

these parameters in the present work can be used for
the investigation of any atom in any experiment.
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POLIARIZUOTO ATOMO SUŽADINIMAS POLIARIZUOTA SPINDULIUOTE

A. Kupliauskienė

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Derinamo dažnio lazerio ir sinchrotroninė spinduliuotės at-
veria galimybę ne tiktai jonizuoti atomus, atplėšiant elektro-
nus iš pageidaujamo sluoksnio, bet ir juos sužadinti į pagei-
daujamą būseną. Šitaip paruošiami poliarizuoti atomai, kurie
toliau naudojami poliarizacijos reiškiniams jonizuojant atomus
elektronais ir fotonais tirti. Norint vieningai teoriškai aprašyti
atomo sužadinimo ir po jo einančius jonizacijos vyksmus bei
tirti, kaip antrąjį vyksmą apibūdinantys dydžiai priklauso nuo
pirmojo, reikalingos kuo bendresnės tokius vyksmus aprašančios
formulės. Panaudojant judėjimo kiekio momento grafinį vaiz-

davimą ir atomo teorijos metodus, surasta poliarizuoto atomo
sužadinimo poliarizuota spinduliuote tikimybės išraiška. Gry-
nųjų būsenų atveju panaudotasis metodas yra alternatyvus iki šiol
taikytam tankio matricos formalizmui. Surastoji formulė taip
pat aprašo sužadinto atomo poliarizaciją. Ji panaudota nepo-
liarizuoto atomo sužadinimo poliarizuota spinduliuote ir polia-
rizuoto atomo sužadinimo nepoliarizuota spinduliuote tikimybės
išraiškoms rasti, laikant, kad sužadinimas tėra pirmoji tolimesnio
vyksmo stadija. Taip pat parodyta, kokius pakeitimus reikia pa-
daryti, kad formulės būtų pritaikytos daugiapakopiams vyksmams
aprašyti.


