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The impetus given by the work of A. Jucys, combining creativity and mathematical rigour, continues to thrive and to find

very useful applications. Some earlier implementations of the graphical theory of Jucys, Levinson, and Vanagas as well as its

future developments and applications are shortly characterized.
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1. Introduction. Historical notes

Some contributions to physics are so fundamental

that they open an entirely new way of looking at things.

So is the work of Professor Jucys and coworkers, and

specifically the famous YLV [1], published in 1962. It

is an abstract, rather than mathematical work, but after

more than 40 years it continues to be cited and to gen-

erate enthusiasm and new algorithms. I found 94 ci-

tations in the Science Citation Index, the most recent

ones from 2003, and they cover a rather broad spec-

trum of research interests. Unfortunately, some more

advanced work [2–5] published later by him and his

former students was written in Russian and I could

not have access to them. It is remarkable that Profes-

sor Jucys (this is the way I shall write his name from

now on) was able, with limited resources, to start a re-

search group that continues vibrantly to this day to in-

novate both on the purely theoretical aspect and on the

computational aspect of atomic theory. I would dare

to say that there is no modern computer program for

atomic physics – i. e. necessarily computing recoupling

coefficients – that is not based, one way or another, on

the ground breaking work of Jucys, Levinson, Vanagas,

and others.
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I had the privilege to meet Professor Jucys in

1969 when I was preparing my PhD at Laboratoire

Aime Cotton (LAC), in Orsay, France. This labora-

tory was then primarily concerned with experimental

atomic spectroscopy. A small theory group (which

included J. Bauche, C. Bauche-Arnoult, Y. Bordarier,

S. Feneuille, and myself) had been started in 1964 at

the initiative of the director, late Professor L. Jacquinot.

Professor B. Judd was then invited to stay for two years

to introduce us to the new developments in atomic the-

ory. Professor Jucys was invited in November 1969 by

C. Moser, of the Centre Européen de Calcul Atomique

et Moléculaire, Orsay, France (CECAM), but he actu-

ally came to LAC and gave three seminars. He had then

the opportunity to explain to us the mathematical foun-

dations of his graphical theory. At first sight, he gave

the impression of a small old man, but when he was

lecturing, his mastery of the subject, and his rigour in

demonstration were very powerful. We were very im-

pressed because we had had previously an introduction

to graphical representation in the lectures by B. Judd,

but in Judd’s book [6], there are no arrows nor node

signs, so the phases cannot be computed, and it did not

lead to practical applications. It was, however, useful

for finding symmetries and selection rules.

It was already understood some time before that that

the study of complex spectra would require computer

programs, and it became clear after Professor Jucys’
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Fig. 1.

visit that the graphical theory would be a requisite tool

for this purpose. In July 1970, after working inten-

sively on YLV, Y. Bordarier defended his PhD thesis

[7] on such a program. This program uses already the

concept of choice of the best cut [8]. Professor Jucys

was invited again, to be member of the jury for that oc-

casion. That was really the start of the possibility of

classification of complex spectra of heavy elements at

LAC, and many papers were published using this code.

Unfortunately, this program was never published.

At that time, I was more interested in the radial

part of the wave functions. In the early 1980s, when

I became a professor at the Hebrew University of

Jerusalem, I got involved in electron–atom collisions

for collisional radiative models for atoms in plasmas.

I tried then to use available computer programs [9] for

this purpose from the Computer Physics Communica-

tion Library. It turned out that the computation of the

recoupling coefficients, using a code of P.G. Burke [10]

(NJSYM) was extremely slow. In fact, the computa-

tions were not feasible with the computer we had at

that time.

So we had no choice but to write our own program.

In the meantime, a book by Lindgren and Morrisson

[11] had been published, with extensive tutorial on use

of graphical methods for atomic physics. However,

upon examination, their notations were found not to be

convenient for coding, because they introduced differ-

ent kinds of lines and arrows. So we turned again to

YLV [1], and that was the basis for our code NJGRAF

[12], which was written in such a way that it could eas-

ily replace NJSYM. The former turned out to be orders

of magnitude quicker than the latter. It is instructive to

understand where this difference of performance comes

from.

2. Earlier implementation of the graphical theory

Thanks to graphical representation it is easy to see

what is the difference. In NJSYM, the only process

taken into account was the interchange of two lines,

shown in Fig. 1. Each interchange introduces a sum-

mation variable. For the sake of simplicity, arrows are

(a)

(b)

(c)

Fig. 2.

omitted. With this process, one can always resolve an

angular momentum recoupling coefficient into a sum

over product of 6j symbols, but the decomposition will

generally not be optimal. An example of nonoptimal

decomposition is finding the left-hand side of Eq. (1)

instead of its right-hand side. This is the well known

Biedenharn–Elliott sum rule:

∑

x

[x](−1)x
{

a b x
c d p

} {

c d x
e f q

} {

e f x
b a r

}

= (−1)s
{

p q r
e a d

} {

p q r
f b c

}

, (1)

where S is the sum of all angular momenta except x. It

is obvious that the right-hand side is much quicker to

compute than the left-hand side. The time ratio will de-

pend on the number of values that the summation vari-

able x can take. This range depends on the values of

the angular momenta through triangular inequalities.

Also it is impossible, with this restricted reduction

scheme, to take into account the fact that some angu-

lar momenta have zero value, thus losing the possibil-

ity of great simplifications. Once this shortcoming was

realized, we decided to make full use of the graphical

method of analysis for evaluating all the recoupling co-

efficients and matrix elements of tensor operators that

are needed for the various atomic processes in plas-

mas: energies, radiative transitions, auto-ionization,

and electron collision excitation and ionization.
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Fig. 3.

In our program NJGRAF [12], we endeavoured to

identify loops of different orders, so as to use the well-

known rules appearing in YLV, as described in Fig. 2.

The aim of most codes is to transform a recoupling

coefficient into a sum of products of 6js. Some codes

also recognize 9js and even higher njs, but since sim-

ple closed formulas for them are not available, it is not

necessarily a practical advantage.

One question is how does one store graphs in the

computer. Several methods have been described in the

literature [7, 13] for that purpose. For instance, one can

store the nodes, their sign, and the lines coming into

them with their arrows. It usually turns out that it is

useful to also list the lines and the nodes they are con-

nected with. The memory storage is nowadays not usu-

ally a problem.

The identification of the various loops is also not too

difficult. It is sufficient to follow the lines through the

nodes, until one comes back to the departing node. The

more difficult question is to find the optimal decom-

position – i. e. according to the criterion of Jucys [8],

the one that will have the least summation variables.

The methods for achieving this goal will be described

in the next section. In NJGRAF these methods were not

implemented. Indeed, we realized that most of the re-

coupling coefficients occurring normally in the atomic

processes we consider – e. g., energies or transitions –

were quite simple, and on the other hand, the research

of the optimal cut could be time consuming. Conse-

quently, we scanned the graph for loops of order 2, 3,

and 4, and we were content with cutting along the lines

of the first loop of each kind encountered in the scan.

As mentioned above, this procedure was already very

much quicker than NJSYM. The graphs are stored in

the computer in the so-called flat diagram representa-

tion, inspired by the book of Brink and Satchler [14].

An example is shown in Fig. 3.

One sees the principle on the left side of Fig. 3: the

main axis goes from the second to the third position of

the momenta in the triad. If a momentum appears two

times in the first position in nodes n1 and n2, e. g., as

above in nodes 2 and 4, then there is a loop of order

n2 − n1 + 1, here 4 − 2 + 1 = 3. One then scans

the graph for loop of order 2, cuts them out, then loops

of order 3, etc. After each loop of order k is cut, the

scan starts again for loops of order k − 1. The node

signs and arrows are not indicated here for simplicity,

but they are taken into account in the code. No attempt

is made to find the optimal cuts. Care has to be taken

to ensure one finds loops involving the end nodes, but

all in all the procedure is very quick.

It should be noted that the original program NJGRAF

had some mistakes, that were noticed by some users

[15] and other authors [13]. These errors were cor-

rected, and the corrected version, although never pub-

lished, was used in several packages [9, 16] as well as

in the collisional radiative model HULLAC [17]. These

packages were (and still are) used in a large number of

computations, and thus it can be said that the graphi-

cal theory in its first application to atomic codes was

extremely fruitful.

3. Further developments

The HULLAC code [17] is organized in such a way

that all the angular coefficients for the different pro-

cesses are computed at the beginning, the same for-

mulas being used many times, and this part of the

computation takes a negligible amount of time, com-

pared to, e. g., collision cross-sections. However, this is

not necessarily the case in other packages [18], where

the number of configuration state functions (CSF) is

very large, and can grow dynamically, and the angular

computations are an important part of the computing

time.

Thus, the question arises of how to find the optimal

decomposition, that is, as mentioned above, the one

that will give the least summation variables.

This involves, for each order k of loops (or cuts)

sought, two stages:

(i) Being able to find and store all the loops of or-

der k.

(ii) Being able to judge which one is the “best”.

The last point is a little ambiguous, since the number

of summation variables will be different if we consider

only 6js in the final formula, or if we also have closed

formulas for, e. g., 9js, 12js, etc. The first point is de-

scribed in the work of Rumšas and Jucys [19] and it

involves building the matrix of incidence of the graph.

This is a rectangular matrix, the lines of which corre-

spond to the nodes, and the columns to the branches.
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The elements r(i, j) = 1 if the node i is an extremity

of line j, and 0 otherwise. Then considering the log-

ical sum of k lines of the matrix gives the number of

branches that are connected in a loop of order k. This

is the equivalent of scanning the flat diagram as men-

tioned above.

The second point is more complicated, and involves

two more matrices, the matrix of the common branches,

and the matrix associated with the graph, which allows

one to evaluate the “distance” between any two nodes.

If one decides to end up with higher njs than 6js, then

there is another choice to be made, since, e. g., there are

two species of 12js, etc.

This process is quite elaborate, and it is not always

worth the effort. That was the rationale for skipping it

in NJGRAF.

The Belgian group of Fack et al. [20, 21] used an-

other approach for finding all the relevant cycles, based

on an algorithm of Vismara [22]. Then, they first get rid

of all bubbles (2-loop) and triangles (3-loop). For the

rest, they define a cost of each branch as the difference

in length of the two smallest loops in which this branch

participate. The cost of the loop is then the minimum

cost of its branches. Then, after computing the cost of

all the girth loops – i. e. the loops with the smallest or-

der k – they select the one with minimal cost. They

devised a method for choosing the best of these loops

if there are several with the same minimum cost. With

this algorithm, they achieve a significant gain in com-

puting time for complicated graph.

On the other hand, the Lithuanian school [23, 24]

took a more mathematical approach, and went one step

further in the analysis, by considering graphs that are

based on second quantization. Quasispin [25] is also

considered explicitly. They were able to tabulate re-

duced matrix elements of any two-particle operators,

depending on the subshells on which they act, but inde-

pendent of the occupation number of the subshells. The

remaining graph gets then much simpler. The usual

rules are again used to reduce the graph in a sum of

products of 6js. The advantages of the latter approach

are:

(i) These tabulated universal quantities allow great

simplifications of the graphs, and thus the com-

putations are several times quicker.

(ii) The introduction of quasispin gives the possibility

of evaluating the coefficients of fractional parent-

age, so, e. g., the relativistic computations are no

more limited to two electrons on the j = 9/2
shell.

4. Conclusion

The different codes mentioned above all are based

on the breakthrough of Professor Jucys. Some codes

[12] just use the simple graphical methods described

in YLV. Some use the algorithm of the best cut, ei-

ther based on graph theory [7], or on a heuristic ap-

proach [20]. In even more advanced methods, the fol-

lowers of Professor Jucys in Vilnius use second quan-

tification and quasispin to generate even more efficient

codes [23–25]. All this shows that the impetus given

by Professor Jucys, combining creativity and mathe-

matical rigour, continues to thrive and to find very use-

ful applications. All modern atomic physics codes use

Professor Jucys’ methods one way or another.
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Santrauka

Trumpai apžvelgiama prof. A. Jucio darbų, ypač jo ir mokinių

išplėtoto grafinio metodo, įtaka tolesnei atomo fizikos skaičiavimo

metodų raidai. Nagrinėjami tiek ankstyvieji grafinio metodo tai-

kymai, tiek vėlesnė raida, išplėtimas į antrinio kvantavimo vaizda-

vimą. Apibūdintos kai kurios bendros atominių dydžių skaičiavimo

programos.


