
Lithuanian Journal of Physics, Vol. 44, No. 2, pp. 91–120 (2004)

JUCYS GRAPHS OF ANGULAR MOMENTUM THEORY

G. Merkelis
Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania

E-mail: merkelis@itpa.lt

Received 14 May 2004

Dedicated to the 100th anniversary of Professor A. Jucys

A brief review of the results obtained in Vilnius while developing the graphical methods of quantum angular momentum
theory is presented. Numerous modifications and extensions of the original method proposed by A. Jucys, J. Levinson, and
V. Vanagas are discussed. The application of the graphical method to the study of one-, two-electron as well as the effective
operators and their matrix elements in the coordinate and second quantization representation is surveyed.

Keywords: atomic spectroscopy, graphical methods, angular momentum

PACS: 31.15.Md, 31.15.–p, 35.15.Ar

1. Introduction

This paper is dedicated to mark the centenary of
Prof. A. Jucys as well as to give a brief review of the
results obtained in Vilnius while developing graphical
methods of angular momentum theory. The majority of
the basic results was obtained by Prof. A. Jucys with
co-workers or under his close supervision. More recent
investigations of the graphical method developed in the
second quantization representation take a considerable
part of the present paper.

More than forty years have passed since the basic
elements and theorems of the graphical methods of the
quantum angular momentum theory were established.
Despite this long period of time in the contemporary
papers dealing with theoretical spectroscopy one can
frequently find the references to the book [1] where the
foundations of the graphical methods were presented.
This can be explained by the fact that the graphical
methods of the angular momentum theory are still very
useful for solving atomic, molecular, and nuclear spec-
troscopic problems. From the very beginning the use
of the graphical approach allows us to avoid tedious
and lengthy algebraic manipulations while deriving the
analytical expressions and calculations by hand for rel-
atively simple from the point of view of the present-
day traditional problems: e. g., for the calculation of the
matrix elements of the Hamiltonian or operator of the
multipole radiation for atomic systems with one or sev-
eral open shells. Nowadays, the scope of the problems

where the graphical methods are used does not change
considerably, however, the complexity of the tasks to
be solved increases drastically. This is mainly due to
the use of wide expansions of wave functions of the
system under consideration in the computations. Then
the order of the matrix for solving the eigenvalue prob-
lems reaches thousands and the calculation of matrix
elements must be extremely fast. Here the graphical
approach can help to derive the optimal expressions for
the problem considered.

The graphical method of [1] was developed mainly
on the basis of the results of [2], group theory studies
of [3, 4], and tensor techniques of [5–10]. An impor-
tant suggestion of [11] to consider the wave function
of the angular momentum operator and irreducible ten-
sor operators as the representatives of the irreducible
tensorial sets opens the new possibilities in develop-
ing the algebraic and the graphical methods. A. Jucys
and co-workers intensively improved the tensor opera-
tor formalism for the complex cases of atoms with open
shells in the coordinate representation. These investi-
gations were summarized in [12]. A more recent list of
the publications on this topic can be found in [13]. At
the same time, an effective technique of the calculation
of matrix elements in the second quantization represen-
tation was considered (see, for example, [14, 15]). The
comprehensive studies of this method in Vilnius were
summarized in [16] and [17]. The innovations of alge-
braic methods in the studies of the atomic structure cal-
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culations stimulated the developing and modification of
the original graphical method [1]. In the present paper
we shall try to describe the innovations carried out by
the researchers in Vilnius.

Since the middle of the fifties, the activities in Vil-
nius for developing the graphical approach of quantum
angular momentum theory can be observed. In a series
of papers [18–20] the diagrammatic representation of
the Wigner coefficients (WC) and their sum of prod-
ucts were proposed while treating the problems of an-
gular momentum theory. Here also the construction
and reduction of the complex diagrams composed of
the Wigner coefficients were investigated. The gener-
ation, classification, and symmetric properties of 3nj
coefficients as cornerstone diagrams entering into the
expressions of the graphical approach were intensively
considered by many authors [21–25]. The results of
the above-mentioned investigations were generalized
and presented in the final version in the book [1]. The
application of the graphical approach of [1] was illus-
trated in [26] while deriving a general expression of
the matrix element for the scalar two-particle opera-
tor in the case of the antisymmetric two-electron wave
fuctions. In the same issue in which [26] appeared,
in a series of papers [27–29], the graphical approach
based on the Clebsch–Gordan coefficients (CGC) in-
stead of the Wigner coefficients has been developed.
This approach and the studies of many other problems
of the angular momentum theory were presented in the
monograph [30]. (The second edition appeared in 1977
[31].) The idea of [11] of the irreducible tensorial sets
was widely explored in [30]. The graphical representa-
tion of tensorial operators introduced in [32], their ma-
trix and submatrix elements (important for the graph-
ical method results) were also included in this book.
The application of the graphical method of the angu-
lar momentum in the study of the perturbation the-
ory (PT) expansions for atoms started with the paper
[33]. Here it was proved that the angular momentum
theory diagrams involved in the consideration of the
Coulomb interactions in the case of closed shells are
topologically equivalent to the Goldstone’s diagrams
[34] used in the diagrammatic Many-Body Perturba-
tion Theory (MBPT). Open-shell PT was considered
in [35, 36]. The PT expansion for the Green’s func-
tion of open-shell electrons was investigated in [35]
for the Coulomb interactions. In [36] the PT expan-
sion of the matrix element of the atomic transition op-
erator was studied. Here the graphical representation
of matrix elements by means of block diagrams cor-
responding to operator and many-electron states were

given. Angular-momentum part of a submatrix ele-
ment was presented by a closed diagram composed of
the Clebsch–Gordan coefficients. The detailed consid-
eration of graphical evaluation of matrix elements for
one- and two-particle operators in the case of antisym-
metric many-electron states by involving generalized
coefficients of fractional parentage (CFP) was given in
[37]. This approach was based on the algebraic method
of generalized coefficients of fractional parentage [38].
A general technique of the derivation of the expression
of matrix elements for one- and two-particle operators
in the graphical way for nonorthogonal orbitals was de-
veloped in [39, 40].

Comprehensive reviews of earlier studies (1950–
1980) in the development of the graphical methods and
techniques were presented in [41, 42]. Here we will
single out only the investigations necessary for deeper
understanding of our approach developed in the sec-
ond quantization representation. The main modifica-
tion of the graphical method of [1] introduced in [43]
consists of rejecting the arrows for the basic graph of
the Wigner coefficient. The arrow is involved for the
definition of the sum of products of the Wigner coef-
ficients. The studies of [44] and [42] start from the
definition of the graphs for bra- and ket-vectors cor-
responding to the wave function of quantum system.
This gives more space for the graphical considerations
of various quantities, e. g., scalar product, projection
operators. In [45–48] the graphical method of angular
momentum theory to form the expressions for the ef-
fective operators corresponding to PT expansion terms
is used. Here the open-shell cases were studied. For our
investigations particularly useful are the considerations
of [14] where the second quantization approach jointly
with diagrammatic MBPT is discussed. In the paper
[41] a detailed and consistent method of the graphical
construction of the expressions of N -electron matrix
elements for one- and two-particle operators as well as
for the effective operators is developed in the coordi-
nate representation. Finally, the book [49] accumu-
lates, probably, the most extensive information not only
of the graphical techniques used but it also contains nu-
merical tables, formula, etc. for basic quantities of the
angular momentum theory.

The second quantization approach developed in
[14–16] is an efficient method to study many-electron
states and matrix elements of operators for atomic in-
teractions. For many problems of the open-shell atoms
this method gives more elegant and simpler solutions
in comparison to considerations performed in the coor-
dinate representation [16]. In [50] the possibilities to
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use the graphical methods of angular momentum the-
ory jointly with the second quantization approach while
taking into account the tensorial properties of creation
and annihilation operators in the perturbation expan-
sion of the effective operator were discussed. This
graphical technique was developed in [51–57]. We
have chosen the graphical technique of [31] as the ba-
sis of the studies. In [53] the extension of the graphi-
cal method [31] consists of the introduction of arrows
in the use of the Clebsch–Gordan coefficients. The
diagrams as well as the algebraic expressions for the
second-order effective operator in a coupled tensorial
form were presented in [52, 57] where the open-shell
case for the Coulomb interaction was investigated. The
basic ideas of the graphical evaluation of matrix ele-
ments between the antisymmetric many-particle states
by using second quantization formalism were formu-
lated in [55, 58] and developed in [59]. Here the gen-
eral rules for the construction and reduction of the dia-
grams for operators and matrix elements are presented.
The possibility to derive graphically the relationship
between the submatrix elements of operator and its
conjugate is discussed. In [60, 61] the graphical way to
construct the effective operator not only for MBPT but
also for some other problems of atomic spectroscopy
was considered. The graphical technique in a coupled
form was considered in [62–64]. In these papers, how-
ever, the main attention was given to the study of the
transformations of irreducible tensorial products of cre-
ation and annihilation operators attached to the one-
and two-particle operators.

Note that in [65] the schematic expressions for the
matrix elements of one- and two-particle operators
were presented in terms of the one-particle coefficients
of fractional parentage and the diagrams for recoupling
coefficients by using the graphical method of [44]. The
graphical technique of [48] was explored in [66] to gen-
erate the recoupling coefficients which arise due to the
change of the coupling schemes for the creation and
annihilation operators in the effective operator.

The paper is structured as follows. In Section 2 a
brief review of the basic elements, rules, and theorems
involved for the construction, transformation, and re-
duction of the sums of products of the Clebsch–Gordan
or the Wigner coefficients are presented. Various tech-
niques of the graphical method are discussed. The
graphical representation of the irreducible tensorial op-
erators is given in Section 3. Here also the construction
and evaluation of submatrix elements are studied. Sec-
tion 4 indicates the ways of graphical representation of
one- and two-particle operators as well as PT expansion

terms. Section 5 describes the graphical techniques of
the derivation of the expressions for N -particle opera-
tors. The CR and SQR representations are considered.
Computer codes using the graphical methods are dis-
cussed.

The following abbreviations are used in the paper:
CR, coordinate representation; CFP, coefficient of frac-
tional parentage; CGC, Clebsch–Gordan coefficient;
GCGC, generalized CGC; RME, reduced matrix ele-
ment; SBE, submatrix element; SR, summation rule;
SQR, second quantization representation; WC, Wigner
coefficient. The diagrams of the present paper are clas-
sified by means of the symbol X(A,B,C, . . .)Y , where
X + 1 points to the section number, and Y indicates
the ordering number of a diagram. The capital letters
A,B,C, . . . differentiate the subjects of the diagrams
attached. Graphical relations (equations) in the figures
are itemized by (a), (b), (c) etc.

2. The basic elements of graphical representation

In this section we discuss the basic elements and
statements which make a background of the graphical
approach of the angular momentum theory and which
are introduced in [18–20] and developed in the final
version in [1]. Although the Wigner coefficient (WC)
is the main quantity of the mentioned papers, we will
follow the methods in [30] and [31] where the Clebsch–
Gordan coefficient (CGC) is the fundamental element
of the graphical approach. This study will be useful to
us.

To introduce the main element of the graphical con-
sideration, let us study the unitary transformation be-
tween the basis functions (referred to as uncoupled ba-
sis) formed from the products of the eigenstates

∣∣jimi
〉

of the angular momentum operators j2
i and jzi

to the
basis of coupled wave functions [31]:

∣∣j1j2j3m3
〉

=
∑

m1m2

[
j1 j2 j3

m1 m2 m3

] ∣∣j1m1
〉∣∣j2m2

〉
.

(1)
Here the first factor on the right of (1) denotes the
CGC (or vector coupling coefficient) [2]. The function∣∣j1j2j3m3

〉
is an eigenstate of the operators j2

1 , j2
2 , j2

3 ,
and jz3

, where j3 = j1 + j2. The CGC is related to the
WC by (see, for example, [1])

[
j1 j2 j3

m1 m2 m3

]

= (−1)j1−j2+m3 [j3]
1/2

(
j1 j2 j3

m1 m2 −m3

)
. (2)



94 G. Merkelis / Lithuanian J. Phys. 44, 91–120 (2004)

Namely the WC (the last factor on the right of Eq. (2))
is the quantity for which the graph 1A1 has been intro-
duced in [18]. Each line of 1A1 was associated with
ji, mi. The arrow pointed to the free end of a line de-
scribes mi, whereas the arrow pointed to a node indi-
cates −mi (see 1A2). The node of the graph is supplied
with “+” or “−” (positive or negative sign) if the argu-
ments of the WC are ordered in counter-clockwise or
clockwise direction. The change of a sign involves the
phase factor (−1)j1+j2+j3 .

The authors of [30] advise to use CGC instead of
WC in a graphical evaluation. They stressed the sim-
plicity of the suggested method as an advantage com-
paring it with other approaches. In this approach, the
graph 1A3 denotes the CGC of (1). The heavy (thick)
line is associated with the resultant momentum j3 of
the vector sum of j1 and j2. A sign at the node for
CGC obeys the same rule as for WC, however, the
change of a sign at the node involves the phase fac-
tor (−1)j1+j2−j3 . The method of [31] is developed
in such a way that there is no need to use arrows at
all. Below, we will indicate the problems where the
use of the arrows is still very effective in the CGC ap-
proach.

The symbols 1A1 and 1A3 are not the unique graphs
used to represent the WC and CGC. For instance, in
[43] and [48] the WC is denoted by 1A4. Then, for
example, in [48] CGC is presented by a graph 1A5. In
these techniques, the arrows are explored in a slightly
different way from that defined in [1]. This aspect will
be discussed later.

When generalizing Eq. (1) in the case of k eigen-
states, we write [31]

∣∣(j1, j2, j3, . . . , jk)A ajm
〉

=
∑

m1m2...mk

[
j1 j2 · · · j
m1 m2 · · ·m

]A

a

× |j1m1〉|j2m2〉|j3m3〉 . . . |jkmk〉, (3)

where the first factor on the right of Eq. (3) is a general-
ized Clebsh–Gordan coefficient (GCGC) [31]. Notice
that for GCGC in (3) m1 + m2 + · · · + mk = m. In
the case when the WC is used instead of CGC in (3),
the quantity corresponding to GCGC is referred to as a

generalized WC [1]. A GCGC is given by the follow-
ing expression [31]:
[

j1 j2 · · · j
m1 m2 · · ·m

]A

a

=
∑

ma

[
j1 j2 j12

m1 m2 m12

]

×
[

j12 j3 · · ·
m12 m3 · · ·

]
· · ·

[ · · · jk j
· · ·mk m

]
.

(4)

Here A denotes a coupling scheme of the momenta
j1, j2, j12, . . . , jk, j, and a = {j12, . . .} represents
the sequence of intermediate momenta. In (4) sum-
mation is carried out over all projections ma =
{m12, . . .} of a. For example, for the specific case
when k = 4 and when the coupling scheme A =
{j1j2(j12), j3j4(j34), j} is chosen,

[
j1 j2 j3 j4 j
m1 m2 m3 m4 m

]A

j12,j34

=
∑

m12m34

[
j1 j2 j12

m1 m2 m12

] [
j3 j4 j34

m3 m4 m34

]

×
[

j12 j34 j
m12 m34 m

]
, (5)

where a = {j12, j34} and ma = {m12,m34}.
Formulated in [1] a fundamental statement (below

referred as summation rule (SR)) for the construction of
a composite diagram for the CGC claims that the sum-
mation over twice-repeated magnetic quantum number
mi in CGC is performed by joining the corresponding
lines with ji, mi [31]. By applying this rule to (5),
we obtain the diagram 1B2 for GCGC formed from the
product of three CGC (the diagrams 1B1, 1B′

1, and 1B′′

1 ).
Here a thin-thick line represents intermediate momenta
j12 and j34. Usually, the block diagram 1B3 is associ-
ated with the GCGC (4) if a coupling scheme A is not
specified or is immaterial. We have to keep in mind that
by working with the WC, a typical sum over mi has,
for example, in the case of two WC (the diagrams 1B4

and 1B′

4), the following schematic form [1, 18]:

1B5 =
∑

m1

(−1)j1−m1 1B4
1B′

4

=
∑

m1

(−1)j1−m1

(
j1 j2 j3

m1 m2 m3

) (
j1 j′2 j′3

−m1 m′

2 m′

3

)
.

(6)

Then the summation over mi is performed by connect-
ing the lines of the graphs of the WC corresponding to



G. Merkelis / Lithuanian J. Phys. 44, 91–120 (2004) 95

Fig. 1. The graph for the Clebsch–Gordan and Wigner coefficients and the sum of their products.

(jimi) and (ji −mi) and by removing one arrow from
the obtained line. Note that in [43] and [48] the graph
1A4 without arrows is used to denote WC. In their ap-
proach the line with the ingoing [48] (or outgoing [43])
arrow represents the WC with a negative parameter −m

which (WC) is multiplied by the phase factor (−1)j+m.
For example, the diagram 1A6 stands for

(−1)j1+m1

(
j1 j2 j3

−m1 m2 m3

)
.

In this case the summation over mi is carried out by
connecting the lines corresponding to mi and −mi.

The same convention of the arrow usage as explored
in [48] for WC, in [53] was applied to CGC in order
to present by a simple graphs the irreducible tensorial
products of rank equal to zero (more details are given
in Section 2). For this purpose, the diagram 1A7 was
introduced to represent the CGC with −m1 and multi-
plied by the phase factor (−1)j1+m1 . Furthermore, the
outgoing arrow denotes the CGC with −m1 but mul-
tiplied by (−1)j1−m1 (1A′

7). Then, for example, the
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Fig. 2. Diagrams for recoupling coefficients and 3nj coefficients.

GCGC (5) when j = m = 0 is given by (see (c) of
Fig. 1)

1B7 =
∑

m12

1B6
1B′

6

=
∑

m12

[j12]

{
(−1)j12−m12 [j12]

−1/2
[

j1 j2 j12

m1 m2 m12

]

×
[

j3 j4 j12

m3 m4 −m12

] }
. (7)

In [53] the hyphen on the thick (thin) momentum
line j indicates that the diagram contains the factor
[j]1/2([j]−1/2). The factor [j12] in (7) was included
following the convention of [31] about the graphical
representation of diagrams with thick lines. Using the
conventions of [53], the CGC (1) with resulting mo-
mentum j3 = 0 is presented by the graph 1A8 , whereas
in the approach of [31] one has to use the same sym-
bol 1A3 as for j3 6= 0 indicating that j3 = 0. The
graph 1A8 as well as the convention (7) and the di-
agram 1A9 = δ(j1m1, j3m3) (it represents the CGC
when j2 = 0) will be extensively used in our further
considerations.

Let us return now to the approach of [31] and discuss
the problem of transformation of the basis functions
|(j1, j2, j3, . . . , jk)

Aajm〉 with the coupling scheme A
to other basis functions |(j1, j2, j3, . . . , jk)

Bbjm〉 with
the coupling B. The coefficients

Rab =
〈
(j1, j2, j3, . . . , j

A
k ajm

∣∣

×
∣∣(j1, j2, j3, . . . , jk)

Bbjm
〉

of such transformation are easily found by applying
Eq. (3), the orthonormality condition 〈jkmk|j′km′

k〉 =
δ(jkmk, j

′

km′

k), the diagram 1B3 and the SR. The sum-
mation of (3) leads to the diagram 1C1 which represents
Rab. Because the coefficient Rab is independent of m
(see [1] or [2]), it can be shown by the closed diagram
1C2 (a diagram which has no free lines) according to
[1] and [31]. In [1] and [31] the diagram 1C2 is called
a transformation matrix (TM) whereas in [43] it is re-
ferred to as a recoupling coefficient (RC) and Rab is
denoted by

[
(j1, j2, j3 . . . jk

)A
aj

∣∣(j1, j2, j3, . . . , jk)Bb bj
]

≡
〈
(j1, j2, j3, . . . , jk

)A
ajm

∣∣

×
∣∣(j1, j2, j3, . . . , jk)B bjm

〉
. (8)
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For example, for the specific case k = 4 and for the
coupling schema A = {j1j2(j12), j3j4(j34), j} and
B = {j1j3(j13), j2j4(j24), j}, we can find Rab in the
form 1C3. In order to give more convenient form (the
form of a polygon) for the diagram 1C3 one can use the
Hamilton line [1] to redraw 1C3. The Hamilton line of
the diagram passes through each node once and after
the Hamilton line is drawn, the diagram may be pulled
apart so that this line lies along the edges of a polygon.
In our case the Hamilton line is given by a dot line in
1C3. The redrawing of 1C3 gives the equivalent dia-
gram 1C4. The comparison of 1C4 with the standard
diagram used in [31] for the RC of four angular mo-
menta yields

[
j1j2(j12), j3j4(j34), j

∣∣j1j3(j13), j2j4(j24), j
]

= [j12, j34, j13, j24]
1/2





j1 j2 j12

j3 j4 j34

j13 j24 j



 . (9)

The second factor in Eq. (9) is 9j coefficient (9j sym-
bol) and represents a symmetric part of Eq. (9) (see,
for example, [1]). The 9j coefficient is a specific case
of a 3nj coefficient when n = 3 (n + 1 is the num-
ber of angular momenta involved in the recoupling).
In general, 3nj coefficient is presented by the closed
diagram formed from the WC. For instance, 9j co-
efficient in (9) is given by 1C5 [1]. The diagram
of 3nj coefficient has 2n nodes and 3n parameters
(lines), and 2n − 2 intermediate momenta. It can-
not be decomposed into two separate parts by cutting
through three lines, however, arbitrary 3nj coefficient
can be expressed by multiple sums of products of 6j
coefficients. The exclusive role of 3nj coefficients
can be explained by the fact that in graphical evalua-
tions of the arbitrary diagram one is trying to express
it through 3nj coefficients which analytical formulas
are known. In a number of papers (see [31] for re-
view) the generation, classification, symmetric proper-
ties, and nonvanishing conditions of 3nj coefficients
up to n = 9 are considered. Of course, the 6j and
9j coefficients are the most frequently used quantities
in the calculations. The more detailed discussion on
this topic is out of the scope of our paper. The GCGC
and 3nj coefficients are the cornerstone elements of
the graphical approach of the angular momentum the-
ory [31].

If we sum the generalized CGC or WC at least over
one pair of m then one obtains the diagram with a cy-
cle, i. e. in this diagram we can distinguish a polygon
formed from the nodes. These diagrams are considered

as the ones which have a closed part of a diagram [31].
In the present paper the name “diagram” (or jm coef-
ficient [1]) frequently will be attributed to such type of
the diagrams in order to stress the difference from gen-
eralized CGC or WC. In the graphical evaluations it is
convenient to represent the diagram under considera-
tion in the standard form. A diagram is in the standard
form if after the cutting all thin lines it breaks into sev-
eral GCGC’s in the way that all free lines of the original
diagram are attributed to one GCGC. To present an ar-
bitrary diagram in the standard form one can use the
rules of [31]. Three basic theorems were formulated in
[1] which allow a transformation and reduction of arbi-
trary diagram. Here we present these theorems adopted
in [31] for CGC approach.

Theorem 1 (Expansion of a diagram). If the diagram

1D1 ≡ Fbb′

(
l1, . . . , lz

j1, . . . , jn, j
m1, . . . ,mn,m

)
(10)

(where m =
∑n

i=1 mi) is presented in the standard
form and breaks up into two GCGC by cutting the lines
l1, . . . , lz , then

1D1 =
∑

a

1D2(a) 1D3(a), (11)

where the diagram 1D2(a) represents the recoupling
coefficient Rbb′a

(
l1, . . . , lz , j1, . . . , jn, j

)
, which is ob-

tained by “closing” 1D1 with GCGC 1D3(a), i. e. the
diagram 1D2(a) is obtained by connecting the free lines
of the original diagram 1D1 with the corresponding
lines of 1D3(a) (see (a) of Fig. 3).

The theorem presented below was formulated in [30]
for slightly more general case than that given in [1].

Theorem 2 (Decomposition of a diagram). If the dia-
gram

1E1 ≡Gbb′

(
l1, . . . , lz

j1, . . . , jx, jx+1, . . . , jy

m1, . . . , my, mx+1, . . . , my

)

(12)

satisfies the requirements:

(a)
my =

y−1∑

i=1

mi, (13)

(b) at least one part of 1E1 is in the standard form after
cutting the lines l1, . . . , lz , and

(c) at least one part of 1E1 has a closed part of the dia-
gram after cutting the lines l1, . . . , lz ,
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Fig. 3. Jucys, Levinson, and Vanagas Theorems.

then

1E1 =
∑

a

1E2(a) 1E3(a), (14)

where the diagram 1E2(a) represents Rba(l1, . . . , lz ,
j1, . . . , jx) independent of jx+1, . . . , jy , whereas Ea

corresponds to the diagram (see (b) of Fig. 3)

1E3(a)

≡Ea

(
l1, . . . , lz

j1, . . . , jx, jx+1, . . . , jy

m1, . . . , my, mx+1, . . . , my

)
.

(15)

Theorem 3 (Summation of diagrams). The summa-
tion of diagrams over momenta a, j available in one
or several diagrams is based on the property of GCGC

(GCGC is a matrix element of the unitary transforma-
tion [9]):

∑

ajm

[
j1 j2 · · · j
m1 m2 · · ·m

]A

a

[
j1 j2 · · · j
m′

1 m′

2 · · ·m

]A

a

= δ(m1,m
′

1) · · · δ(mn,m′

n). (16)

Here we shall demonstrate the application of (16) for
the diagram 1G1 (see (c) of Fig. 3), i. e.

1G2 =
∑

aj

(2j + 1) 1G1(a). (17)

Note that Theorems 1 and 2 can be considered as spe-
cial cases of the summation when one of the diagrams
under summation is a recoupling coefficient.
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Fig. 4. Application of the Jucys, Levinson, and Vanagas Theorems (expansion of a diagram).

Consider some specific cases of Theorems 1–3. Sup-
pose that in Eq. (10) n = 1. Then we have the dia-
gram with two free lines and immediately obtain that
1D′

1 = 1D′

2
1D′

3. Here 1D′

1 is a special case of 1D1

when n = 1 and 1D′

3 = δ(j1m1, jm). In addition,
for example, when j1 = 0, from 1D′

1 it follows that

1D′′

1 = 1D′′

2
1D′′

3 (a diagram with one free line), where
1D′′

3 = δ(jm, 00) [31] and 1D′′

1 is obtained from 1D′

1 by
removing the line jm. In the case when 1D1 has only
three free lines (n = 2), we have

1D′′′

1 = 1D′′′

2
1D′′′

3 . (18)
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Fig. 5. Application of the Jucys, Levinson, and Vanagas Theorems (decomposition of a diagram).

The diagram 1D′′′

3 represents CGC while 1D′′′

2 is RC.
Finally, suppose that n = 3, then

1DIV

1 =
∑

j12

1DIV

2 (j12)
1DIV

3 (j12). (19)

Thus, when the diagram 1D1 has more than three free
lines, then in contrast to previous cases, the sum over
an intermediate momentum j12 arises. Consider the
special cases of Theorem 2. Suppose x = 0, then
the part of a diagram 1E1 with the coupling scheme B

is called a “closed” part and is usually denoted by
B. In Fig. 5 we present schematically the graphi-

cal relations (a)–(d) corresponding to the cases when
z = 1, 2, 3, 4.

Usually, the special cases of the Theorems 1–3 given
in Figs. 4 and 5 are referred to as Jucys, Levinson, and
Vanagas Theorems (JLV Theorems) (see, for example,
[43, 46, 48, 81]).

3. The graphs for the irreducible tensors and

submatrix elements

In the previous section we studied the construction
and reduction of the diagrams used for the recoupling
tasks of eigenstates |jm〉. The |jm〉 itself has not been
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involved explicitly in the graphical evaluations of [1].
It has been done later in the paper [32]. There the
graph 2A1 was introduced to denote the irreducible ten-

sorial operator T
(k)
q of rank k with the projection q. The

line of 2A1 was connected with k, q. Inside the semicir-
cle of 2A1 an additional information about the opera-

tor T
(k)
q was proposed for presentation. For example,

this could be the information about the variables on
which operator acts. In [32] it was also proposed an
irreducible tensorial product

T (k)
q ≡

[
T (k1) × T (k2)](k)

q

=
∑

q1 q2

[
k1 k2 k
q1 q2 q

]
T (k1)

q1
T (k2)

q2
(20)

of the irreducible tensors T (k1) and T (k2) associated
with the graph 2A2. Obviously, this graph is obtained
by using the graphs 1A3 and 2A1 assuming that the sums
over q1 and q2 graphically are performed by joining the
lines corresponding to the same ki, qi. Keeping in mind

that the eigenstates |jm〉 as well as the operators T
(k)
q

form the irreducible tensorial set [11], the graph 2A1

can also be attributed to |jm〉. Then, the graphical pro-
cedures and rules given in Section 1 can be considered
as a device for manipulation with the irreducible tenso-
rial products.

The next contribution of [32] in the development of
the graphical technique was related with the introduc-
ing of the graph for a submatrix element (SBE [31]) or
reduced matrix element (RME [11]) of T (k) and with
formulation of the diagrammatic way of obtaining the
expression for SBE for complex products of irreducible
tensorial operators. The Wigner–Eckart theorem (see,
for example, [11, 16])

[
α1j1m1

∣∣T (k)
q

∣∣α2j2m2
]

= (−1)ϕ
[

j2 k j1

m2 q m1

] [
α1j1

∥∥T (k)
∥∥α2j2

]
(21)

establishes the basis for this study. Let us emphasize
that ϕ = 0 is used in [31] and [32] whereas in SQR
studies it is convenient to choose ϕ = 2k [14, 16]).
In [32] a matrix element on the left of Eq. (21) was
proposed to associate with the graph 2A3 while the
reduced element [α1j1‖T (k)‖α2j2] was expressed by
symbol 2A4. Then the symbol 2A4 was obtained by
applying the SR to 2A3 and the graph for the CGC in
Eq. (21). Note that in the present paper we use the
convention that [α1j1‖I‖α2j2] = δ(α1j1, α2j2) but

(α1j1‖I‖α2j2) = δ(α1j1, α2j2)
√

[j], and [j] ≡ 2j +1
(see, e. g., [31]). Here I is the unit operator.

To understand the principles of graphical derivation
of expressions for the RME for the complicated cases,
consider the specific case

[
j1j2j

∥∥[A(k1) × B(k2)](k)
∥∥j′1j

′

2j
′
]

when the operators A(k1) and B(k2) act on |j1m1〉 and
|j2m2〉, respectively. The graphical derivation of ex-
pressions for the RME presented in [32] imitates the
algebraic manipulation while obtaining this expression.
Keeping in mind that

[
j1j2jm

∣∣[A(k1) × B(k2)](k)
q

∣∣j′1j′2j′m′
]

=
∑

m1 m2 m′

1 m′

2 q1 q2

[
j1 j2 j
m1 m2 m

] [
j′1 j′2 j′

m′

1 m′

2 m′

]

×
[
k1 k2 k
q1 q2 q

] [
j1m1

∣∣A(k1)
q1

∣∣j′1m′

1

]

×
[
j2m2

∣∣B(k2)
q2

∣∣j′2m′

2

]
(22)

and by using the symbols 2A3, 2A4 and the Wigner–
Eckart theorem as well as by applying the SR, the di-
agram 2A5 is obtained. After separation of the graphs
2A4(A

(k1)) (it corresponds to [α1j1‖A(k1)‖α′

1j
′

1]) and
2A4(B

(k2)) (it corresponds to [α2j2‖B(k2)‖α′

2j
′

2]) from
2A5, the final expression for the SBE was found:

[
j1j2j

∥∥[A(k1) × B(k2)](k)
∥∥j′1j

′

2j
′
]

= 2A5

= 1C4
2A4(A

(k1)) 2A4(B
(k2)). (23)

Here the diagram 1C4 represents RC 1C4, considered
in Section 1. To find the analytical expression for 1C4,
one has to replace the parameters of 1C4 with the corre-
sponding parameters of 1C4, keeping in mind that the
closed diagram does not change its value if all the signs
at the nodes are replaced by the opposite ones [31].
Generalizing the considered procedure, one can claim
that the SBE of arbitrary complexity can be given by
the sum of products of RC and the submatrix elements
of operators which make the original tensorial product.
In [30, 31] the comprehensive rules for the graphical
construction and evaluation of the expressions for re-
duced matrix elements are presented.

At this point we have to stress that a brief discus-
sion connected with the fundamental rules and theo-
rems of [31] (and, of course, [1]) used for the graphi-
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cal manipulation with irreducible tensors could be fin-
ished. The specific feature of this approach consists of
avoiding the use of arrows in the diagrammatic manip-
ulations. This, of course, greatly simplifies the proce-
dures of derivation of expressions and the method con-
sidered is especially effective for the study of closed di-
agrams. However, the problems can occur when study-
ing the irreducible tensorial products with the result-
ing rank equal to zero (we are forced to draw the line
which moment j is equal to zero) or when applying this
method to the evaluation of N -electron operators or
matrix elements in SQR. In Section 1 we have already
discussed the modification of [31] approach through-
out introducing the arrows in the graphical representa-
tion of CGC. Here we shall concentrate on the exten-
sions applied to the graph 2A1 that enables one to rep-
resent graphically algebraic operations not considered
in [31].

Note that in a number of methods [42, 44, 49] the
graphs for bra 〈jm| and ket |jm〉 states, as well as the
scalar product 〈jm|j′m′〉 and projection operator Pj =∑

m |jm〉〈jm| are the crucial elements of the graphical
representation. For instance, in [44] the graphs 2B1 and
2B2 are associated with |jm〉 and 〈jm|, respectively.
Furthermore, |j−m〉 and 〈j−m| are given by 2B3 and
2B4. Then the graphical relation follows immediately
(see (a) of Fig. 6):

2B2 = (−1)j−m 2B3 (24)

of

〈jm| = |jm〉+ = (−1)j−m|j − m〉, (25)

which defines the standard phase system [31]. How-
ever, in [42] differently from the approach of [44],
|jm〉 and 〈jm| are associated with 2B5 and 2B6. The
scalar product 〈jm|j′m′〉 = δ(jm, j′m′) in these
methods is represented by the diagrams 2B7 and 2B8,
respectively. The projection operator Pj is given by
2B9 [44] and 2B10 [42].

In [59, 60] the extensions of the use of the tensors of
[31] to account for the properties just considered were
discussed. Here we have to emphasize that we explore
the phase system of [14] and [16] when

T (k)+
q = (−1)k+q T̃

(k)
−q , (26)

where T̃ (k) denotes the operator conjugated to T (k),
and T (k)+ is the tensor Hermitian conjugated to T (k).
To single out the graphical notations for the opera-

tors T
(k)
q and T̃

(k)
q in the CR, the graph 2C1 is asso-

ciated with the operator T̃
(k)
q . It was suggested that

the diagrams 2C2 and 2C3 represent the expressions

(−1)k+qA
(k)
−q and (−1)k−qA

(k)
−q , respectively. Here

A
(k)
q can be either T

(k)
q or T̃

(k)
q . In addition, the action

of the second arrow on the line k (when already one ar-
row exists) is easily understood from the graphical re-
lations (e) and (f) in Fig. 6. In [60] it was also assumed
that the graphical relation (g) (2A1)

+ = 2C4 represents
the operation of the Hermitian conjugation (26). The

modifications introduced for the graph 2A1 of T
(k)
q al-

lows the additional manipulations with the symbol for
irreducible tensor and are very useful in the construc-
tion of a graphical representation of the irreducible ten-
sorial products and SBEs. For example, keeping in
mind that an irreducible tensorial product of rank zero
of two tensors, for instance, Ã(1) and B(1), is given by
the diagram [53]

2C5 =
[
Ã(1) × B(1)](0) (27)

and by using the convention (g) of Fig. 6 when Ã = A,
the diagram 2C5 can be transformed into the graph 2C6

(here we suppose that the arrow is attributed to Ã).
Thus, 2C6 can be regarded as the graph which rep-
resents the scalar product (A[1] · B(1)) of two vec-
tors, when A[1] defines the contrastandard component
of A [31].

A very useful concept for graphical representation
of a reduced matrix element was introduced in [55] and
developed in [58, 59] by using the relation [16]

[
α1j1

∥∥T (k)
∥∥α2j2

]

= (−1)j2−k−j1
[
j1

]
−1/2

×
[
〈α̃1j1| ×

[
T (k) × |α2j2〉

](j1)](0)
. (28)

In Eq. (28) [〈α̃1j1| × [T (k) × |α2j2〉](j1)](0) is the ten-
sorial product with the resulting rank equal to zero.
Then the right-hand side of Eq. (28) can be given
by the diagram 2D1. The dashed line in 2D1 repre-
sents integration over the coordinates. This integra-
tion is completed when the semicircles associated with

〈α̃1j1m1|, T
(k)
q , and |α2j2m2〉 are joined into a cir-

cle, and we obtain the diagram 2D2 which represents
the SBE [α1j1‖T (k)‖α2j2]. The diagrams 2D2 and 2A4

for the SBE [α1j1‖T (k)‖α2j2] account for the differ-
ent phase factor used in [31] and [16] in the definition
of the Wigner–Eckart theorem (21). In the case when
k = 0, 2D2(k = 0) = 2D3 = δ(α1j1, α2j2).

Below we present the diagrams which will be used
in our further consideration. The diagram 2D4 is asso-
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Fig. 6. The graph for irreducible tensors and submatrix elements I.
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Fig. 7. The graph for irreducible tensors and submatrix elements II.

ciated with the matrix element [α1j1m1|T (k)
q |α2j2m2]

and for the specific case k = 0, we have 2D4(k = 0) =
2D5 = δ(j1m1, j2m2) = 1A9. Finally, the projection
operator Pj can be given by the diagram 2D6 or 2D7.
The diagram 2D7 is understood in the sense defined be-
low (27).

Now we shall illustrate the use of the definition
(28) in the considerations of complex SBE. For ex-
ample, after the adaptation of the diagram 2D1 to
[j1j2j‖[A(k1)B(k2)](k)‖j′1j′2j′], 2E1 (see Fig. 8) rep-
resents the original diagram for the SBE in inter-
est. The brackets 〈 〉 (it is an alternative notation of
a dashed line in 2D1) indicate the integration over
coordinates. The half-way diagram 2E2 is given to
demonstrate which operators (they are put side-by-
side) should be coupled in order to form the diagrams
for SBEs [α1j1‖A(k1)‖α′

1j
′

1] and [α2j2‖B(k2)‖α′

2j
′

2],
respectively. By using the rules of Section 1, we de-
compose the diagram 2E2 in the following form:

2E1 = 2E2 = 2E3
2E4

2E5. (29)

This equation coincides with Eq. (23) because after

the minor manipulations the diagram 2E3 transforms
to 1C4, while 2E4 and 2E5 correspond to 2A4(A

(k1))
and 2A4(B

(k2)), respectively. Here we have to point
out some features which make the present approach
different from that of [31]. First, in the present ap-
proach the diagram of a SBE is not a symbol, pre-
venting any further transformations with it, but it is
an element of a graphical technique with definite ten-
sorial structure. Second, the derivation of the ex-
pression for complex SBE is considered as the task
of recoupling the moments of an irreducible tenso-
rial product. In the derivation a graph for a ma-
trix element is not involved. This gives an ad-
vantage when treating complicated tensorial prod-
ucts.

In our diagrammatic studies of PT expansion of
the effective operators [50, 53–55, 58, 59] the SQR for
many-electron states and operators reveals itself as a
very effective approach to study open-shell systems.
Here we present some results of those studies related
with the electron creation aλ mλ

and annihilation a+
λ mλ

operators considering them as irreducible tensorial op-
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Fig. 8. Graphical evaluation of the submatrix element of the operator [A(k1) × B(k2)](k).

erators [14, 16]. Namely, the operator a
(λ)
mλ = aλ mλ

is connected with the diagram 2F1 while the opera-
tor

ã(λ)
mλ

= (−1)λ−mλa+
λ−mλ

(30)

is presented by 2F2. Here we use the abbreviations:
λ ≡ ls, mλ ≡ mlms for LS-coupling and λ ≡ j,
mλ ≡ mji

for jj-coupling. By using the graph-
ical relation (g) of Fig. 6, we can depict the op-
eration of the Hermitian conjugation applied to the

operators a
(λ)
mλ and ã

(λ)
mλ (see the graphical relations

(a) and (b) of Fig. 7). For instance, the graphical

equation (b) represents the relationship (ã
(λ)
mλ)+ =

(−1)λ−mλ a
(λ)
−mλ

. Following the given definitions, the
Hermitian conjugation of complex tensorial products
can be easily found [59]. For example, referring to
(a) and (b) of Fig. 7 and the results of [53], we ob-
tain the graphical relation (c) which imitates the expres-
sion [16]

([
a(λ1) × ã(λ2)](γ)

mγ

)+

= (−1)λ1−λ2+mγ
[
a(λ2) × ã(λ1)](γ)

−mγ
. (31)

In [53] one can find the graphical formulation and prac-
tical application of the Wick’s theorem when electron
creation and annihilation operators are presented by the
irreducible tensorial products.

The above-listed conventions and definitions for the
irreducible tensors will be used in the next sections
for the graphical representation of N -electron opera-
tors and matrix elements.

4. Graphical representation of N -particle

operators

The interactions in an atom are described by one-
and two-particle operators. However, when applying
the perturbation theory (PT), the effective operators
corresponding to N -particle operators with N > 2
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appear. The generation of MBPT expansion terms is
considered as the task of construction of some “effec-
tive” operator instead of sums of the products of ma-
trix elements which appear in the expansions of PT
[14, 35, 36, 45–47]. In the present section we shall
briefly consider the ways of constructing and the forms
of one- and two-particle operators as well as particu-
lar effective operators used in graphical evaluation of
various quantities of atomic spectroscopy.

In MBPT considerations (e. g., [48]) the Goldstone
diagram 3A1 is associated with a one-particle operator

F =
N∑

α=1

fα =
N∑

α=1

f(rα)f (γ)
α . (32)

Suppose that for the LSJ coupling scheme

f =
∑

mkmκ

[
k κ Γ

mk mκ mΓ

]
f(r)f (kκ)

mkmκ
= f(r)f (γ)Γ

mΓ
,

(33)
and for the LS one

f = f(r)f (γ)
mγ

. (34)

Here f(r) is the radial part of the operator f . The f (kκ)

is an irreducible tensorial operator of ranks k and κ in
the l- and s-space. We have used the abbreviations
γ ≡ kκ, mγ ≡ mkmκ. In this paper we shall use f
in the form (34). Converting the obtained expression
into the case (33) is trivial [58]. Below in this sec-
tion, for brevity, we shall use the following notations:
i ≡ niλimi and i ≡ niλi. Then, the operator F in the
second quantization form is given by [14]

F =
∑

i,j

aia
+
j

(
i
∣∣f (γ)

∣∣j
)
, (35)

where (i|f (γ)|j) is a matrix element of f (γ). The di-
rected lines i and j of 3A1 are connected with ai and
a+

j
operators, respectively. The vertex of this dia-

gram describes the matrix element of f (γ). The di-
agram 3A1 gives each term of Eq. (35) and depends
on the magnetic quantum numbers mi, mj , and mγ .
When using the diagram 3A1 in regular evaluations
[14, 33, 36, 46, 48], the angular momentum part of 3A1

is associated with the graph 3A2 for the CGC which
appears after the application of the Wigner–Eckart the-
orem (21) to (i|f (γ)|j):

F =
∑

i,j

aia
+
j

[
i
∥∥f (γ)

∥∥j
] 3A2. (36)

The operators ai and a+
j

are not explicitly involved in

the graphical representation of F .

Similarly, the Goldstone diagram 3B1 is associated
with a two-particle operator given in SQR [14]

G =
1

2

∑

i,j,i′,j′

aiaja
+

j′
a+

i′

(
ij

∣∣g(γ1,γ2)(γ)
mΓ

∣∣i′j′
)

(37)

or in the CR [46] when the tensorial structure of g is
shown explicitly, i. e.

G =
N∑

α<β

gαβ =
N∑

α<β

g(rα, r
β
)
[
g(γ1)
α ×g

(γ2)
β

](γ)
mΓ

. (38)

Analogically to the one-particle operator, after the ap-
plication of the Wigner–Eckart theorem to the matrix
element (ij|g(γ1,γ2)(γ)

mΓ

∣∣i′j′), one can obtain

G =
1

2

∑

i,j,i′,j′

a
i
aja

+

j′
a+

i′

×
[
ij

∥∥g(γ1,γ2)(γ)
mΓ

∥∥i′j′
]3B2(i, j, i′, j′), (39)

where the diagram 3B2(i, j, i′, j′) represents a sum of
the products of three CGCs. Note that when treating G
in LSJ coupling, the GCG of (33) has to be involved
[58]. In PT studies of [14, 35, 36, 48] the operators F
and G are explored in the forms (36) and (39), how-
ever, only the graphs 3A2 and 3B2 are used to construct
the momentum part of a composite operator. The re-
maining quantities of Eqs. (36) and (39) were involved
in algebraic manipulations with F and G.

In the approach of [52, 53, 58, 59], the tensorial
properties of the electron creation and annihilation op-
erators are used to develop the diagrams which ex-
plicitly involve these operators in the representation of
N -electron operators and many-electron states. For in-
stance, the right-hand side of Eq. (35) is presented by
the sum of products of the diagrams 2F1, 2F3, and 2D4.
The matrix element (i|f (γ)|j) is associated with the di-
agram 2D4 while the operators a

i
and a+

j
are given by

2F1 and 2F3, respectively. Let us assume at the moment
that the radial integral (nili|f(r)|njlj) is included into
2D4. The sum of these diagrams over mi and mj gives
3A3 which can be decomposed in the following way
[59]:

F =
∑

ij

3A3 =
∑

ij

3A4MC(λi, λj , f
(γ)). (40)

The quantity MC(λi, λj , f
(γ)) (see the graphical rela-

tion (b) of Fig. 9) corresponds to the vertex of 3A3 and
is referred to as a “marking circle” (following [44]).
After elimination of MC(λi, λj , f

(γ)) from the dia-
gram 3A3 (this is described by (c) of Fig. 9) it trans-
forms to the diagram 3A4 which denotes the irreducible
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Fig. 9. Diagrams for one- and two-particle operators.

tensorial product [a(λi) × ã(λj

)
]
(γ)
mγ . The graph 3A5 de-

notes SBE [λi‖f (γ)‖λj ]. Thus, the diagram 3A3 repre-
sents the operator F with the rank γ and projection mγ

in the coupled form and is independent of the one-
electron magnetic quantum numbers mλi

.
Following the way just described, we can easily ob-

tain the following expression for the two-particle oper-
ator:

G =
∑

iji′j′

3B3. (41)

The diagram 3B3 yields the coupled form of a two-

particle operator G. Here we assume that the radial part
(nilinjlj|g(r1, r2)|n′

il
′

in
′

jl
′

j) is included in 3B3. The fi-
nal graphical representation for the operator G depends
not only on the coupling scheme for momenta but also
on the order in which the operators a(λ) and ã(λ) are
presented in an expression for G. The diagram 3B3 rep-
resents an expression where operators a(λ) and ã(λ) are
given in the order a(λi)a(λj )ã(λ′

j
)ã(λ′

i
) (normal order-

ing [48]). The coupling scheme is such that the ranks
λi (λj) and λ′

i (λ′

j) are coupled to the resultant rank
γ1 (γ2). To obtain the algebraic expression for the op-
erator G in the normal ordering, one needs to change
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the coupling scheme, where λi (λ′

j) is coupled with λj

(λ′

i) to Λ (Λ′). By using for this the GCGC 1B2 we
obtain

G =
∑

iji′j′

3B3

=
1

2

∑

iji′j′ΛΛ′

(−1)λ
′

i
+λ′

j
−Λ′

[
Λ

γ

]1/2
3B4

2E1. (42)

Here for 2E1 the following substitutions have to be
done: j = Λ, j′ = Λ′, γ = k and ji = λi,
ki = γi (i = 1, 2), j′1 = λ′

j and j′2 = λ′

i. The
diagram 3B4 represents the irreducible tensorial prod-
uct

3B4 =
[[

a(λi) × a(λj)
](Λ) ×

[
ã(λ′

j
) × ã(λ′

i
)](Λ′)

](γ)
.

(43)
Frequently, the operator G is used with the antisym-
metric amplitude [14], i. e. when the matrix element
(ij|g(γ1,γ2)(γ)

mΓ
|i′j′) in Eq. (37) is determined by the

antisymmetric two-electron wave functions. Note that
even in earlier times a general expression of the matrix
element for the scalar operator g(γ1,γ2)(γ) in the case of
the antisymmetric two-electron wave fuctions was ob-
tained in [26] by using the graphical approach of [1].
In SQR one can write [60]

G =
1

4

∑

iji′j′ΛΛ′

(−1)λ
′

i
+λ′

j
−Λ′

[
Λ

γ

]1/2

× 3B4
{[

1 − (−1)λ
′

i+λ′

j−Λ′

P (λ′

i, λ
′

j)
]} 2E1, (44)

where P (a, b) is the operator or permutation of quanti-
ties a and b.

Let us return now to the study of diagrammatic ap-
proach of PT considering this problem as the task of
obtaining the product of operators given in SQR. The
Wick’s theorem is used for this purpose [48]. We do not
go into details of PT, but restrict our interest to a con-
struction of angular-momentum part of the Goldstone
diagram. For example, consider the diagram 3C1 of the
second-order stationary PT [48]. The diagram 3C1 is
obtained as a particular term of the Wick’s product of
two diagrams of the type 3B1, when two pairs of elec-
tron creation and annihilation operators are contracted.
In the diagrammatic language these contractions are
presented by directed t and p lines in 3C1. By using
regular rules of PT to write an algebraic expression for

the Goldstone diagram (see, for example, [48]), it is
obtained

Θ≡
∑

i,j,i′,j′,t,p

3C1

=
1

2

∑

i,j,i′,j′,t,p

aiaja
+

j′
a+

i′

〈ij|C2|tp〉〈tp|C1|i′j′〉
εj′ + εi′ − εt − εp

.

(45)

In Eq. (45) 〈ij|Cu|tp〉 represents the matrix element
of a scalar two-particle operator G when γ = 0. εi de-
notes the single-particle eigenvalue associated with the
orbital |niλimi). We now follow the way of [14] and
[48] to detect the momentum part of 3C1. Note that in
the mentioned papers only the case of one open shell
(i = j = i′ = j′) for the Coulomb interaction is dis-
cussed. By using the operator G in the form (39) and
by applying the summation rule, it was found

Θ =
1

2

∑

i,j,i′,j′t,p,k1,k2

aiaja
+
j′
a+

i′

× X(k2, i, j, t, p)X(k1 , t, p, i′, j′)

εj′ + εi′ − εt − εp

3C2, (46)

where

X(k, i, j, i′ , j′)

= (−1)k
(
li
∥∥C(k)

∥∥l′i
)(

lj
∥∥C(k)

∥∥ l′j
)

× Rk(nilinj lj, n
′

il
′

in
′

jl
′

j). (47)

Here Rk(nili njlj , n
′

il
′

in
′

jl
′

j) is the general radial inte-

gral for the Coulomb interaction, (li‖C(k)
∥∥l′i) is the re-

duced matrix element of the spherical function C(k).
In the approach of [48], the diagram 3C2 is composed
from the WC. Let us emphasize that the topological
equivalence between the diagrams 3C1 and 3C2 was the
cardinal result of [33] which encouraged researchers
for the subsequent investigations in this direction. Note
that in [33] only the closed-shell case for the Coulomb
interaction was considered. By using the JLV Theo-
rem 2, 3C2 was transformed into the form [48]:

3C2 =
∑

k

EE(k) 3C3(i, j, i′, j′), (48)

where the RC is

EE (k) = (−1)k[k]

{
l l k
k1 k2 lt

} {
l l k
k1 k2 lp

}
. (49)
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The special coupling scheme of 3C3(i, j, i′, j′) and the
relation [48]

N∑

α<β

(
u(k0)(α)u(k0)(β)

)

=
1

2

∑

iji′j′

(−1)ka
i
aja

+
j′
a+

i′
3C3(i,j,i′, j′) (50)

allow one to replace the operator given in SQR in the
right-hand side of Eq. (46) to the one expressed in CR.
Here u(k0) is the operator with the orbital rank equal to
k whereas the rank of s-space is zero [14]. Then,

Θ =
N∑

α < β,

k1k2ktpiji′j′

[(
u(k0)(α)u(k0)(β)

)
EE (k)

]

× X(k2, i, j, t, p)X(k1 , t, p, i′, j′)

εj′ + εi′ − εt − εp
. (51)

Thus, to obtain the final form for a PT expansion term
in addition to graphical procedures one has to use some
algebraic manipulations (of the type (50)) which allow
one to form the effective operator in the CR. However,
this is not a trivial task when treating atoms with several
open shells and searching for optimal expressions.

The approach of [52, 58, 59] gives additional pos-
sibilities while the formation of the expressions for
PT expansion terms and the derivation are carried out
purely graphically. To illustrate this, again consider
the diagram 3C1. In contrast to the previous studies
suppose that 3C1 can operate on several shells of equi-
valent electrons and g(γ1 ,γ2)(γ) is a scalar operator but
not necessarily the operator of the Coulomb interaction.
Then we can write

Θ =
1

2

∑

iji′j′tpγ1γ2

3D1. (52)

The diagram 3D1 is obtained in a very simple way from
the Goldstone diagram 3C1 by using the following rules
[58, 59]:

(1) the free lines of the diagram 3C1 associated with
creation and annihilation operators are to be re-
placed by the corresponding graphical elements
2F1 and 2F2, respectively;

(2) the internal electronic line t of 3C1 has to be re-
placed by the momentum line λt of the same direc-
tion as the line t;

(3) each node of 3C1 has to be replaced by the marking
circle associated with the corresponding operator
g(γu) of g(γ1,γ2)(γ);

(4) each dotted line has to be replaced by GCGC which
represents the coupling scheme of g(γ1,γ2)(γ).

The rules given above are valid for the construction
of an angular-momentum diagram for an arbitrary dia-
gram of PT not only for the diagram 3C1. The weight,
phase, and radial factors of the diagram 3C1 are deter-
mined by the rules given in the textbooks of PT (see,
for instance, [48]). Thus, the MBPT diagram 3C1 is
connected with the graph 3D1 which represents the PT
expansion term as an effective operator of a coupled
form, i. e. this term does not depend on the one-electron
magnetic quantum numbers m. By using the rules for
transformation of irreducible tensorial products given
in Sections 1 and 2, the diagram 3D1 can be given in
the following form [57]:

3D1 =
∑

x

3D2(x) 3D3(x)

× X(γ2, i, j, t, p)X(γ1, t, p, i′, j′)

εj
′ + εi

′ − εt − εp
, (53)

where

X(γ, i, j, i′, j′)

= MC (λi, λi′ , g
(γ))MC (λj , λj′ , g

(γ))

×
(
nilinjlj

∣∣g(r1, r2)
∣∣n′

il
′

in
′

jl
′

j

)
, (54)

and the RC

3D3(x) =
∑

x

(−1)γ1+γ2+λj−λ′

j
+λt+λp+x[γ1, γ2, x]1/2

×
{

λt λi γ2

λj λp x

} {
λt λ′

i γ1

λ′

j λp x

}
. (55)

The diagram 3D2 represents the irreducible tensorial
product with the resulting rank equal to zero, i. e.
3D2(x) = 3B4 when γ = 0. While formatting this
diagram, the graph 1B7 was used. When the op-
erator 3D1 acts on one shell of the equivalent elec-
trons and γ = k0, the expression (53) for 3D1 cor-
responds to (51). Note that when 3D1 acts on sev-
eral shells, the tensorial structure 3D2 of the opera-
tor 3D1 is not the most optimal. Assume that 3D1

acts on two open shells, for example, i = j′ =
n1λ1 and j = i′ = n2λ2. Then the expression
for the SBE of 3D2 contains the sum over the quan-
tum numbers of the intermediate angular momenta.
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The operator of the desired form (then the expres-
sion for SBE is given without intermediate summation)
can be very easily obtained from 3D1 in the graph-
ical way as it has been done by deriving 3D2. For
this one should choose the coupling scheme B =

{ij′(x), ji′(x), 0} of Section 1. In this case the ten-
sor

[[
a(λi) × ã(λ′

j
)](x) ×

[
a(λj) × ã(λ′

i
)](x)

](0)

is obtained. The expression of the SBE for this tensor
can be found from Eq. (29) by using [a(λi) × ã(λ′

j)](x)

and [a(λj ) × ã(λ′

i
)](x) instead of A(k1) and B(k2), re-

spectively, and by putting k = 0 in Eq. (29). For
more details of such derivation, see the following sec-
tion.

Generalizing the study of the diagram 3C1 we can
conclude that the sum of an arbitrary Goldstone di-
agram over the one-electron magnetic quantum num-
bers m is carried out in a very simple way: one has
to replace each element of the Goldstone diagram by
the corresponding element of the graphical approach
discussed by using the rules given below (52). Actu-
ally, the obtained diagram is topologically equivalent
to the Goldstone diagram. The operators of atomic
interactions and the perturbation expansion terms are
given by diagrams which correspond to the irreducible
tensorial products composed of a(λ) and ã(λ). By us-
ing the graphical procedures of Sections 1 and 2, these
diagrams can be expressed by other diagrams (corre-
sponding to the operators with the less complex ex-
pressions for matrix elements) prior to the study of
matrix elements. Thus, we have the possibility to
reduce the composed operator by singling out from
it the operators of the type N , L2, S2, etc. which
have very simple expressions for the matrix elements
[59, 60]. All manipulations are done in a purely graph-
ical way.

The method of the construction of an effective op-
erator of PT can also be applied not only to MBPT
but to some other problems of atomic spectroscopy
[60, 67]. For instance, the transition probabilities or
cross-sections of scattering problems are described

by the quantities of type |[α1j1m1|T (k)
q |α2j2m2]|2

summed over some of the quantum numbers αi, ji, mi

and k, q depending on the problem considered. The
underlying relation

∑

α2j2m2

[
α1j1m1

∣∣T (k1)
q1

∣∣α2j2m2
]

×
[
α2j2m2

∣∣T (k2)
q2

∣∣α3j3m3
]

=
∑

α2j2m2

3E1
3E2 =

∑

α2j2

3E3 = 3E4

=
[
α1j1m1

∣∣T (k1)
q1

T (k2)
q2

∣∣α3j3m3
]

=
[
α1j1m1

∣∣Teff

∣∣α3j3m3

]
(56)

is used to determine an effective operator. The prod-
uct of the matrix elements of the operators T

(k1)
q1 and

T
(k2)
q2 can be represented by the product of the cor-

responding diagrams 3E1 and 3E2 (see graphical rela-
tion (a) of Fig. 10). The summation over m2 yields
3E3. Finally, the diagram 3E4 gives the matrix ele-

ment of the product of T
(k1)
q1 and T

(k2)
q2 . Suppose we

study the parts sT
(k1)
q1 and sT

(k2)
q2 of T

(k1)
q1 and T

(k2)
q2

which have a nonzero matrix element only between
the states of the selected wave functions |α1j1m1],
|α2j2m2], and |α3j3m3] with fixed αiji and arbi-

trary mi, namely [α1j1m1|sT (k1)
q1 |α2j2m2] 6= 0 and

[α2j2m2|sT (k2)
q2 |α3j3m3] 6= 0. In this case the effec-

tive operator

Teff = sT
(k1)
q1 sT

(k2)
q2

(57)

instead of T
(k1)
q1 T

(k2)
q2 can be used (see, for exam-

ple, [14]). For the specific case of Eq. (56) we can
write [60]:

∑

α2j2m2q

∣∣[α1j1m1

∣∣T (k)
q

∣∣α2j2m2
]∣∣2

=
∑

α2j2q

3E3 = (−1)2k[k]1/2 3E6

= (−1)2k[k]1/2[
λ1mλ1

∣∣[
sT

(k)
sT̃

(k)](0)
0

∣∣λ2mλ2

]
.

(58)

The diagram 3E6 gives the matrix element of the ir-
reducible tensorial product [sT

(k)
sT̃

(k)](0). In [60]
the graphical way for the construction of the ef-
fective operators was described and some illustra-
tions of such construction were presented: for the
Coulomb interaction when α1j1 = λN1

1 λN2
2 λN3

3 and
α2j2 = λN1+1

1 λN2−2
2 λN3+1

3 and for the spin–orbit
interactions when α1j1 = λN1

1 λN2
2 and α2j2 =

λN1−1
1 λN2+1

2 . The general expression for the width
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Fig. 10. Diagrammatic representation of effective operators.

of an energy level of an atom due to the Auger tran-
sitions was derived in [61] by using this graphical tech-
nique.

In the series of papers [71, 72] the graphical ap-
proach of [31] was used to derive the expressions for
the cross-sections of interaction of the polarized atoms
with the polarized photons and electrons. The re-

lations of the type (56), (58) were used when T
(k)
q

was the operator of the multipole radiation or the
Coulomb interaction. The peculiarity of the study
is to construct the general angular momentum dia-
gram of the process considered which takes into ac-
count polarization and the angular dependence of the
constituents of the process. Later on, the obtained
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complex diagram is decomposed in the way that po-
larization and angular dependence properties are de-
scribed by the scalar tensorial product. The rest
part of the diagram is presented as a multiple sum
of products of RC and SBE characterizing interac-
tions.

In [67, 68] the diagrammatic method for the cal-
culation of vacuum expectation values for the prod-
ucts of operators was developed. The operators F and
G were associated with the diagrams which were ob-
tained by removing the wavy (interaction) line from
3A1 and 3B1. The vacuum expectation value is de-
termined by the definite system of the contractions of
aλmλ

and a+
λmλ

which is presented by the diagram. We
do not go into details of generation and classification
of these diagrams but indicate the way the angular-
momentum part of the diagram is obtained. The ver-
tex of a diagram connected to the operator F is re-
placed by the right-hand side of Eq. (36). The ver-
tex of the diagram connected to the operator G is re-
placed by the GCGC which is obtained when 3B4 is
written in an uncoupled form in (44). The remain-
ing quantities of (44) are considered as factors. In
this way a closed diagram for orbital and spin mo-
menta is constructed. Later on, these diagrams are
reduced by using the JLV Theorems. The devel-
oped diagrammatic method was used to study global
characteristics of energy levels and the Auger transi-
tions [67].

5. N -electron reduced matrix elements

The graphical evaluation of matrix elements for
many-electron case in addition to standard elements
and rules of angular momentum theory needs the
graphical elements and rules which reflect the antisym-
metric properties of an N -electron wave function. In
the algebraic approach when a shell of equivalent elec-
trons is considered, the coefficient of fractional parent-
age is used for this purpose. The antisymmetrization
operator ensures antisymmetry of the wave function be-
tween shells (see, for example, [69, 70]). These two
aspects were explored slightly differently in various
graphical techniques [35–37, 39–42, 44, 47].

The regular way of the consideration is based on the
following relations for one- and two-electron coeffi-
cients of fractional parentage [12]. One-particle CFP
(λNαΛ‖λN−1(α′Λ′)λ) is defined by

|nλNαΛMΛ〉

=
∑

α′Λ′M ′

Λ
mλ

|nλN−1α′Λ′M ′

Λ〉
∣∣nλmλ

〉

×
(
λNαΛ‖λN−1(α′Λ′)λ

) [
Λ′ λ Λ
M ′

Λ mλ MΛ

]
. (59)

|nλNαΛMΛ〉 denotes the bra-state for the shell nλ of
N equivalent electrons. Similarly, a two-particle CFP
(λNαΛ‖λN−2(α′Λ′), λ2(Λ0)) is defined by

|nλNαΛMΛ〉

=
∑

α′Λ′M ′

Λ
Λ0MΛ0

|nλN−2α′Λ′M ′

Λ〉
∣∣nλ2Λ0MΛ0

〉

×
(
λNαΛ‖λN−2(α′Λ′)λ2(Λ0)

)

×
[

Λ′ Λ0 Λ
M ′

Λ MΛ0 MΛ

]
. (60)

The many-electron ket-state
∣∣ΨEΛMΛ

〉

≡
∣∣(n1λ

N1
1 α1Λ1, . . . , nkλ

Nk

k αkΛk

)E
ΛMΛ

〉

= 4A1 (61)

and the bra-state
〈
ΨE′ΛMΛ

∣∣

≡
〈(

n1λ
N1
1 α1Λ1, . . . , nkλ

Nk

k αkΛk

)E′′

ΛMΛ

∣∣

= 4A2 (62)

with k shells are presented by block diagrams 4A1 and
4A2, respectively. Each free line except the last one of
4A1 and 4A2 are associated with a shell niλ

N
i αiΛiMΛi

.
The remaining free lines describe the resulting mo-
menta ΛMΛ of the bra- and ket-states. An arbitrary

N -electron operator T
(γ)
mγ is schematically given by a

block diagram 4A3. The γ,mγ line represents the
rank γ and its projection mγ . The remaining lines of
4A3 indicate the coordinates on which the operator acts.
E, E′′, and Θ denote the coupling schemes of angular
momenta of states and operators. The above-mentioned
block diagrams, when specifying the data of the task
considered, describe the starting positions of graphical
evaluation of the N -electron matrix element

〈
ΨE′′Λ′′

EM ′′

E

∣∣T (γ)
mγ

∣∣ΨEΛEME
〉
.
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Due to the symmetry properties of the wave function
the one-electron F (32) and two-electron G (38) oper-
ators in the ordinary CR are given in the form [12, 48]

F
.
= NfN , (63)

and

G
.
=

1

2
N(N − 1)gN−1N . (64)

Here the symbol .
= indicates that the relations (63) and

(64) are used only when considering the matrix ele-
ments of these operators. It is assumed that the oper-
ator fN acts on the N th electron whereas the operator
gN−1N acts on the (N − 1)th and N th electrons of the
bra- and ket-states, respectively.

The common feature of all approaches of CR con-
sists of the need to decouple the electrons (referred to
as active electrons) from the wave function in order to
form the matrix elements for fN or gN−1N [39, 42, 43].
For example, consider the case of one-electron op-
erator F . Then the block diagram 4A3 is replaced
by 3A1 which is connected with the matrix element

(niλimi|f (γ)
mγ |njλjmj). More precisely, 4A3 is re-

placed by (4A4[i‖f (γ)‖j](nili|f(r)|njlj)), where 4A4

represents CGC. Let us consider the position when fN

operates on the ket-state |nλNαΛMΛ〉. To describe
this action one can use the diagram 4A5 obtained on
the ground of Eq. (59). The rectangular e is associ-
ated with (λNαΛ‖λN−1(α′Λ′)λ). In the same way,
the action of fN on the bra-state is considered keep-
ing in mind that 〈nλNαΛMΛ| = |nλNαΛMΛ〉+. Af-
ter the summations over α′Λ′, mi, mj that are car-
ried out by joining the corresponding lines of the block
diagrams 4A1, 4A2, 4A3 and after the application of
the Wigner–Eckart theorem, we obtain the diagram
4B1 which represents SBE of F . The rectangulars e1
and e2 are associated with (λNαΛ‖λN−1(α′Λ′)λ) and
(λN−1(α′Λ′)λ‖λNα′′Λ′′), respectively. The symbolic
expression for 4B1 can be written as

[
ΨE′′Λ′′

E

∥∥F (k)
∥∥ΨEΛE

]

=
∑

α′Λ′

K
(
λN−1(α′Λ′)λ‖λNα′′Λ′′

)

×
(
λNαΛ‖λN−1(α′Λ′)λ

)[
λ
∥∥f (γ)

∥∥λ
]

× (nili|f(r)|njlj)
4B2. (65)

The diagram 4B2 (this diagram is not presented explic-
itly) is obtained when the factors presented in Eq. (65)
are removed from 4B1. In Eq. (65) the product of phase

and weight factors is denoted by K . The phase fac-
tor is connected with antisymmetrization of the state
function [41]. The weight factor describes equal con-
tributions of different electron distributions in the state
functions. Both factors are described by different alge-
braic formulas for F and G operators (see, for example,
[41, 42]).

It is easy to notice that by cutting the lines Λ′′, Λ,
and γ (using JLV Theorems), we can decompose the
diagram 4B1 into two separate diagrams. Suppose we
consider f (γ) with γ = k0. Then one diagram rep-
resents the RC (it is connected with 6j symbol) and
jointly with CFP of Eq. (65) forms the expression of
SBE for the double-tensor W (k0) [10, 12]:
[
nλNα′′L′′S′′‖W (k0)‖nλNαLS

]

= N
∑

α′L′S′

(
λN−1(α′L′S′)λ‖λNα′′Λ′′

)

×
(
λNαLS‖λN−1(α′L′S′)λ

)

× (−1)l+k+L′+L′′

[L, l]1/2
{

L′ l L
k L′′ l

}
δ(S′′, S).

(66)

The left diagram 4B3 is also connected with the RC
whose structure depends on the coupling schema E and
E′′. Usually, 4B3 is designated as a block of spectator
(inactive) electrons [42]. Finally, it is obtained that

[
ΨE′′ Λ′′

E

∥∥F (k)
∥∥ΨEΛE

]

= K
[
nλNα′′L′′S′′‖W (k0)‖nλNαLS

]

×
[
λ
∥∥f (γ)

∥∥λ
]
(nili|f(r)|njlj)

4B3. (67)

The diagram for the SBE when F acts between
shells can be easily generated following the way just
described. Note that in this case the CFP has to be at-
tributed to different shells.

The graphical evaluation for the two-electron op-
erator G has a burden of the variety of ways the
operator acts on the shells of many-shell bra- and
ket-states. According to 4A5 each of four lines of
3B1 generates the node in 4B1. The situation can
be simplified (by saving the inclusion of extra nodes
and sums in 4B1) when gN−1N operates on the same
shell of bra- and/or ket-state. For this, the rela-
tion (60) has to be employed. Then, the wave func-
tions |nλN−2α′Λ′M ′

Λ〉 and |nλ2Λ0MΛ0〉 instead of
|nλN−1α′Λ′M ′

Λ〉 and |nλmλ〉 have to be used in 4A5
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and now the node of 4A5 is associated with a two-
particle CFP (λNαΛ‖λN−2(α′Λ′)λ2(Λ0)). Further-
more, in the case when G acts in the space of states of
one shell of equivalent electrons, the structure of SBE
of G is similar to that of (67), where SBE of W (k0) has
to be replaced by SBE of the two-electron operator of
the left of Eq. (50). In addition, the matrix element of
gαβ is defined with antisymmetric two-electron func-
tions |nλ2Λ0MΛ0〉.

In general, the graphical procedures of the reduction
of a complex diagram for SBE in CR give the expres-
sion in terms of CFP, two-electron CFP, and 3nj coef-
ficients. Later on, from those quantities one is seeking
to organize the SBEs of standard operators (of the type
W (kk′)) in order to use numerical tables or computer
codes.

In [37] following the algebraic approach of [38], the
graphical evaluation of matrix elements was carried out
by using the diagrammatic representation of general-
ized CFP. In this approach the electrons of the state
function of |ΨE ΛMΛ〉 is ordered in the way that the
n separated (active) electrons are considered as the lat-
est nth particles of the of N -electron wave function.
Then the generalized CFP are expressed as products of
CFP and the RC. In [35] and [36] as well as in [47] the
N -electron state function |ΨE ΛMΛ〉 is generated by
using the recursive relations.

Let us consider the graphical approach [55, 58, 59]
which allows the evaluation of the SBE in SQR. Below
we follow the paper [59] to describe this method. In
SQR a ket-state of equivalent electrons can be given by
[16]

|nλNαΛMΛ〉 = ϕ(nλNα)
(Λ)
MΛ

|0〉 = 4C1

∣∣0
〉
, (68)

where ϕ(nλNα)
(Λ)
MΛ

is an irreducible tensorial operator

of the rank Λ composed of N creation operators a(λ)

and is connected with the diagram 4C1. |0〉 denotes a
vacuum state function. The bra-state 〈nλNαΛMΛ| =
|nλNαΛMΛ〉+ has the expression

〈nλNαΛMΛ|

= 〈0|(−1)N(N−1)/2+Λ+MΛ ϕ̃(nλNα)
(Λ)
−MΛ

. (69)

In (69), ϕ̃(nλNα)
(Λ)
MΛ

is an irreducible tensorial opera-

tor obtained from ϕ(nλNα)
(Λ)
MΛ

by replacing a(λ) with

ã(λ) [16]. The diagram 4C2 is associated with the op-

erator (−1)N(N−1)/2ϕ̃(nλNα)
(Λ)
MΛ

. Furthermore, the
many-electron ket-state is given by [59]

∣∣ΨEΛMΛ
〉

= ΨE
(Λ)
MΛ

∣∣0
〉

= 4C3

∣∣0
〉
, (70)

where the diagram 4C3 represents a tensorial prod-
uct Ψ

E
(Λ)
MΛ

composed of the operators ϕ(niλ
Ni
i αi)

(Λi).

Similarly, the bra-state
〈
ΨEΛMΛ

∣∣ = 〈0|(−1)
∑

i>j
NiNj+Λ+MΛΨ̃

(Λ)
E−MΛ

= 〈0|(−1)
∑

i>j
NiNj 4C4 (71)

is connected with 4C4. According to Eqs. (28) and
(68)–(71), an SBE for many-electron states has the ex-
pression

[
ΛE′′

∥∥T (γ)
∥∥ΛE

]

= (−1)
∑

i>j
NiNj(−1)ΛE−γ−Λ′′

E
[
ΛE′′

]
−1/2

× 〈0|
[
Ψ̃

(ΛE′′)
E′′ ×

[
T (γ) × ΨE

(ΛE)](Λ)
](0)

|0〉

= 〈0|(−1)
∑

i>j
NiNj 4C5|0〉. (72)

Here it is assumed that T (γ) is an N -electron opera-
tor given in SQR of a coupled form. The diagram 4C5

is associated with a reduced matrix element for many-
electron case and is obtained keeping in mind the di-
agram 2D1. We have to point out that in this section
the order of the second quantization operators in an al-
gebraic expression is associated with the order that the
graphical elements have appeared in a diagram.

In order to carry out the consideration of complex
RME, the standard graphs were defined in [59]. When
an operator T (γ) is the electron creation operator a(λ),
it follows from Eq. (72) that

[
nλNαΛ‖a(λ)‖nλN−1α′Λ′

]
= 〈0| 4D1|0〉

= 4D2. (73)

The diagram 4D1 describes the irreducible tensorial
product of three tensors: ϕ̃(nλNα)(Λ), T (γ) = a(λ),
and ϕ(nλN−1α′)(Λ

′). After the “integration” in the
SQR (graphically, as in CR, such an integration is
carried out by joining the semicircles associated with
ϕ̃(nλNα)(Λ), T (γ), and ϕ(nλN−1α′)(Λ

′) and skipping
the 〈0| and |0〉), we obtain the diagram 4D2 which gives
the graphical definition of the SBE. Furthermore, the
relationship [14]

[
nλNαΛ‖a(λ)‖nλN−1α′Λ′

]

= (−1)N
√

N
(
λNαΛ‖λN−1(α′Λ′)λ

)
(74)

allows the conversion of the expression obtained in
SQR to the ones in CR. 4D3 represents SBE of the op-
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Fig. 11. Graphical evaluation of N -electron matrix elements in the coordinate representation.

erator ã(λ) which is also proportional to the CFP of
Eq. (74). The diagram 4D4 shows SBE of the opera-
tor W (γ) = −[a(λ) × ã(λ)](γ). W (γ) is a one-particle
operator (40) with [λi‖f (γ)‖λj ] = [λi‖w(γ)‖λj ] =
δ(λi, λj)[γ/λi]

1/2 (e. g., [14] or [16]). The expression
of SBE of W (γ) when γ = k0 was defined by Eq. (66).
The SBE of the irreducible tensorial product of two-
electron creation operators can be written as [14]

[
nλNαΛ‖

[
a(λ) × a(λ)](Λ0)‖nλN−2α′Λ′

]

=
[
N(N − 1)

]1/2(
λNαΛ‖λN−2(α′Λ′), λ2(Λ0)

)
.

(75)

The graph of SBE for this operator is immediately ob-
tained from 4D4, by replacing ã(λ) (2F2) with a(λ) (2F1)
and the marking circle with the node CGC. According
to 2D3, when T (γ) = I the diagram 4D5 is associated

with δ(NαΛ, N ′α′Λ′). The projection operator onto a
space of states of a shell nλN is given by

∑

αΛMΛ

∣∣nλNαΛMΛ

〉〈
nλNαΛMΛ

∣∣ =
∑

αΛΛ′

4D6 (76)

according to 2D6.
Let us study the case of many open shells. The

graphical evaluation of an arbitrary matrix element of
the operator T (γ) consists of decomposition of the gen-
eral diagram 4C5 (Fig. 12) into the diagrams whose al-
gebraic expressions are known. This procedure gener-
ates a phase factor, a RC, and SBEs. In most cases, the
decomposition is performed in the way when the oper-
ators a(λ) and ã(λ), acting on the same shell of equi-
valent electrons, are placed side-by-side. Of course,
the ordering just discussed is not obligatory for the
method developed. The phase factor arises due to the
change of the ordering of creation and annihilation
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Fig. 12. Graphical evaluation of N -electron matrix elements in the second quantization representation.
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operators in 4C5 in order to form graphical elements
(diagrams) which represent SBE. When changing the
ordering, the crossings of the lines corresponding to the
second quantization operators which are placed side-
by-side occur. Then the phase factor is determined by

simple formulae (−1)
∑

p
apbp . Here a and b denote the

number of creation and annihilation operators associ-
ated with the crossing lines. The sum over p is car-
ried out over all possible crossings (more details can be
found in [59]).

Now we shall consider the two typical Situations (a)
and (b) which can appear in the construction of a RC
and SBE (see (a) of Fig. 12).

Situation (a). Suppose that one of the operators a(λ)

and ã(λ) in T (γ) acts on the shell n1λ
N1
1 . Then we

transform the diagram 4C5 in the way that the opera-

tors ϕ̃(n1λ
N1
1 α1)

(Λ1), a(λ1), and ϕ(n1λ
N ′

1
1 α′

1)
(Λ′

1) have
to be placed side-by-side. Later on, by using JLV The-
orems (we cut the lines Λ1, λ1, and Λ′

1) we decompose
the diagram 4C5 and obtain 4E1 which is associated
with [n1λ

N1
1 α1Λ1‖a(λ1)‖n1λ

N ′

1 α′

1Λ
′

1].

Situation (b). Suppose that the operator T (γ) does
not act on some shell of equivalent electrons, say,
nkλk. Then we place the operators ϕ̃(nkλ

Nk

k αk)
(Λk)

and ϕ(nkλ
N ′

k

k α′

k)
(Λ′

k
) side-by-side and cut the lines Λk

and Λ′

k to form 4E2 (see also 2D3 and 4D5) which is
associated with δ(NkαkΛk, N

′

kα
′

kΛ
′

k). In this way we
examine the operator T (γ) and all shells in the bra- and
ket-functions. At the end of this procedure, we obtain
the graphical expression for SBE in terms of the prod-
uct of RC 4E2 and SBEs of the types 4E1 and 4E3.

Let us return now to the case studied in the CR at
the beginning of this section, i. e. when T (γ) represents
a one-particle operator F which operates only on one
shell (say, n1λ

N1
1 ) of equivalent electrons. In SQR the

expression for the RME is immediately obtained re-
ferring to procedures of Situations (a) and (b) and the
graphs 3A3 and 4D4:

[
ΨE′′Λ′′

E

∥∥F (k)
∥∥ΨE ΛE

]

= (−1)ϕa
[
n1λ

N1
1 α1Λ1‖W (γ)‖n1λ

N1
1 α′

1Λ
′

1

]

× MC(λ1, λ1, f
(γ)) 4E2. (77)

The phase factor (−1)ϕa can be determined by the rule
described above. When γ = k0 the formula (77) agrees
with (67). The diagram 4E2 corresponds to 4B3.

For further illustration of the use of the technique
developed, consider the operator [a(λ1)× ã(λ2)](γ). Ac-

tually, this is the case when F acts on the states of two
shells. Assume also that |ΨEΛMΛ〉 is formed from two
open shells. The diagram 4C5 for this problem corre-
sponds to 2E1. Then the expression for RME can be
found by directly applying the formulae (23) or (29)
when j = Λ, j′ = Λ′, γ = k and ji = Λi, j′i = Λ′

i,
ki = λi (i = 1, 2):

[
n1λ

N1
1 α1Λ1n2λ

N2
2 α2Λ2Λ

∥∥[
a(λ1) × ã(λ2)](γ)

×
∥∥n1λ

N ′

1
1 α′

1Λ
′

1n2λ
N ′

2
2 α′

2Λ
′

2Λ
′
]

= (−1)N1−1 1C4
4D2

4D3. (78)

So, in order to obtain the SBE for the many-electron
case, we have simply to replace the SBE 2A4(A

(k1))
and 2A4(B

(k2)) in (23) with the SBE of a(λ1) (4D2) and
ã(λ2) (4D3), respectively. The phase factor (−1)N1−1

is obtained keeping in mind the phase factor (−1)N1N2

from Eq. (72) and the phase factor (−1)
∑

p
apbp due

to three crossings of the lines j′1, k1, j2, k2 (see the
diagram 2E2).

To illustrate the derivation of expressions for a two-
particle operator, consider the diagram 3D1 (53). When
this operator acts on one shell of equivalent electrons,
we have to determine the expression for SBE of 3D2.
Such an expression can be easily given in terms of
CFP by using Eqs. (74) and (76). As discussed in Sec-
tion 3, the case when 3D1 operated on two shells gave
the scalar operator [W (x)(n1λ1) × W (x)(n2λ2)]

(0) as
a result. The expression for SBE of this operator is ob-
tained from Eq. (78) by replacing a(λ1) and ã(λ2) with
W (x)(n1λ1) and W (x)(n2λ2), respectively. Then the
phase factor in (78) is equal to one. The detailed study
of SBE for a two-particle operator G in the approach
discussed can be found in [59, 64].

Generalizing the discussion of evaluation of SBE in
SQR one could conclude that the important advantage
of the method considered is that all calculations are car-
ried out in SQR, and therefore, antisymmetric condi-
tions are ensured automatically. It is also significant
that in the SQR approach unlike to that of CR first of
all the operator with suitable tensorial structure and or-
dering of a(λ) and ã(λ) is formed by putting the oper-
ators of the second quantization side-by-side and only
later the expression for SBE is derived if necessary. In
addition, we express SBE in terms of the irreducible
tensorial product of the second quantization operators,
and therefore, the angular momentum and antisymmet-
ric features of the quantity studied are comprised by the
same graph. In CR, CFP is introduced into the graphi-
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cal evaluations in an artificial way by symbolically de-
noting it as a square or rectangular [41, 42, 48] on the
nodes of angular momentum diagrams.

As mentioned in the introduction, the solution of
many recent atomic spectroscopy problems required
very extensive calculations and the graphical methods
could be used for improving the algorithm for computer
codes. Already in the middle of the sixties in [73–75]
the computers have been used to generate 3nj coef-
ficients, to perform their classification as well as de-
composition. Recently there are a number of computer
codes which derive expressions for recoupling coeffi-
cients by using the JLV Theorems (see e. g., [76–81]).
The programs [82, 83] which use the graphical meth-
ods described in the present section to derive the ex-
pressions for matrix elements can be singled out. The
computer code [84] to calculate the energy spectra of
open-shell atoms by using MBPT was coded by using
the graphical method in SQR described in Sections 4
and 5.

6. Concluding remarks

The graphical method of angular momentum theory
proposed by A. Jucys and co-workers is an efficient and
widely used tool in the theoretical spectroscopy investi-
gations. The pioneering studies in the developing of the
principles of the method as well as pioneering works in
the application of the method in perturbation theory,
graphical evaluation of matrix elements of the opera-
tors stimulated numerous researchers for further devel-
opments of the graphical methods and techniques.

The graphical method developed in the second quan-
tization representation is supplied by new features in
comparison to the method elaborated in the coordinate
representation. In the second quantization approach,
the introduced diagrams for the operators, wave func-
tions, and matrix elements not only describe the mo-
mentum properties of these quantities, but also the an-
tisymmetry conditions are ensured automatically be-
cause the creation and annihilation operators are in-
cluded into diagrams explicitly. The submatrix ele-
ment is associated with the diagram representing the
scalar tensorial product of three tensors (expressed
in the second quantization representation) linked with
N -electron bra- and ket-wavefunctions and the oper-
ator under investigation. The method developed is
very efficient and flexible while treating many-electron
open-shell atoms.

Many researchers associate Jucys graphs (or Jucys,
Levinson, and Vanagas graphs) associate with the di-

agrams constructed from the Wigner coefficients (see
Section 1). However, as it was pointed out in the
present paper, Prof. A. Jucys and his co-workers have
also proposed the graphs for the irreducible tensors and
their submatrix elements as well as introduced the ef-
fective graphical method based on the Clebsch–Gordan
coefficients. Later on the basis of this method the
graphical approach in the second quantization repre-
sentation was developed. Therefore, the author of the
paper would like to suggest to expend the concept of
“Jucys graphs” by accumulating into it the diagrams
for the operators and submatrix elements generated
in the second quantization representation (Sections 4
and 5).
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JUDĖJIMO KIEKIO MOMENTO TEORIJOS JUCIO DIAGRAMOS

G. Merkelis

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Darbas skirtas prof. A. Jucio 100-osioms gimimo metinėms pa-
minėti ir apžvelgia judėjimo kiekio momento teorijos grafinio me-
todo pagrindinių principų, plėtros bei taikymo darbų, atliktų Vil-
niuje, rezultatus. Supažindinama su pagrindiniais A. Jucio, J. Le-
vinsono ir V. Vanago grafinio metodo elementais, teoremomis bei
taisyklėmis. Aptariami A. Jucio ir A. Bandzaičio išplėtoto grafi-
nio metodo privalumai ir trūkumai. Nurodomos kitų autorių pa-
siūlytos šių metodų atmainos, įgalinančios išplėsti grafiškai vaiz-

duojamų dydžių ir veiksmų ratą. Žymi darbo dalis skirta grafinei
technikai antrinio kvantavimo metodu aprašyti. Ji remiasi A. Jucio
ir A. Bandzaičio grafiniu metodu. Jos diagramos atspindi tiek ju-
dėjimo kiekio momento teorijos savybes, tiek ir fermionų dalelių
sistemos antisimetriškumo savybes, todėl tai ypač efektyvus būdas
teoriškai tirti įvairius daugiaelektronių atomų ir jonų su neužpil-
dytais sluoksniais dydžius. Aptariami grafiniai būdai atomo sąvei-
kas nusakančių operatorių N -elektronių matricinių elementų išraiš-
koms koordinatinio ir antrinio kvantavimo vaizdavimais gauti.


