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Angular integrations are not concerned with the principal quantum numbers of orbitals, only their angular momentum cou-

pling, although antisymmetry and normalization need to be considered. We show that by expressing wave function expansions

in terms of certain symbolic states, the angular data needed for a calculation becomes largely independent of problem size

under the assumption that one- and two-electron operators for matrix elements between two-electron states can be evaluated

when needed. Furthermore, for the Coulomb interaction, all many-electron matrix elements between symbolic states arising

from single and double excitations from a multireference set can be expressed in terms of a sum of contributions, each of which

is a product of three factors: a constant, a two-electron matrix element, and a factor depending on the orbital quantum numbers

of the interacting orbitals. The 1s2
2s2 1S beryllium ground state is considered in detail.
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1. Introduction

The complexity of the “Fock equations” (as Hartree

called them) presented too large a challenge for a nu-

merical solution at the time when they appeared in

1930. Instead, papers began to appear that used Slater’s

theory for energy expressions [1] along with Hartree’s

self-consistent field radial functions from which all the

needed integrals could be evaluated. It soon became

evident that such methods would not have the correct

ratios for energy differences between terms of a config-

uration. Theory predicted that for terms of p2 or p4 the

ratio (1D−1S)/(3P−1D) would have a value of 1.5 but

in O+2 the observed ratio is 1.04. Could it be the effect

of exchange on the wave function (which turned out to

be negligible) or the effect of what is now called config-

uration interaction (CI) but was referred to by Hartree

et al. [2] as superposition of configurations? In their

1939 paper, they explore the effect of exchange and the

superposition of 2s22pn and 2pn+2 on wave functions

for O, O+, and O+2. The ratios were still not in good

agreement with observation, partly because of an error

in a coefficient and partly because far more correlation

is needed to get this ratio of energy differences correct.

The main computational difficulty was associated

with the evaluation of the Slater integrals, particularly

the Y k function,

Y k(nl, n′l′; r) = r

∫

∞

0
P (nl; s)

rk
<

rk+1
>

P (n′l′; s) ds,

(1)

where r< and r> are the lesser or greater of r and s, re-

spectively, and P (nl; r) and P (n′l′; r) are radial func-

tions. If this function is known, then the Slater integral

Rk(ab, cd) is the simple one-dimensional integral

Rk(ab, cd) =

∫

∞

0
P (a; r)P (c; r)Y k(bd; r) dr. (2)

When Jucys visited Hartree in Manchester in the sum-

mer of 1938, Hartree suggested that he investigate

second-order differential equation methods and also

apply the superposition of configuration ideas to carbon

and its ions [3, 4]. A year later, Jucys too published a

paper with configuration interaction results for carbon

that became the foundation of his thesis.

This period (1930–1940) defines the beginning of

the computational atomic structure era. Calculations

generally were done by hand. Hartree’s student ex-

plored the application of Hartree’s differential analyser

to the solution of the Hartree equations without ex-
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change for chromium [5], but Hartree did not consider

the accuracy sufficient [4]. Furthermore, the analyser

was not suitable for equations with exchange.

Many changes have occurred since then that facili-

tate large scale computation. These changes were not

only better methods for solving radial equations but

also more powerful methods for evaluating expressions

for matrix elements. During World War II, Jucys con-

tinued his research in the application of quantum me-

chanics to atomic structure theory. When he submitted

his Doctoral thesis in 1952, one of his opponents drew

his attention to the papers Racah [6] had published dur-

ing the war. Jucys and his group immediately began to

study Racah’s theory [7]. Ultimately, it was in angular

theory that Jucys made his greatest contribution.

The early 1960s was a period when the solu-

tion of the Hartree–Fock (HF) and multiconfiguration

Hartree–Fock (MCHF) method using automatic elec-

tronic computers was the topic of research. By 1970,

Hibbert’s Weights program [8] was available for eval-

uating matrix elements as well as the first version of

MCHF [9]. In 1988, the NJGRAF recoupling program

by Bar-Shalom and Klapisch [10] based on Jucys di-

agrammatic method became available for speeding up

the evaluation of matrix elements. In 1997, further im-

provements were made by Gaigalas et al. [11], through

a code implementation that took advantage of several

concepts – second quantization, quasi-spin, reduced

coefficients of fractional parentage, and diagrammatic

methods [12]. It provided a further speed-up of a factor

of 2–6 depending on the case. But all these changes

still treat the evaluation of the interaction matrix, ele-

ment by element, though the NJGRAF implementation

has a feature in which recoupling information can be

reused. As a result, as wave function expansions grow

in size, the files of data also grow. Files of the size of

10–20 gigabytes have been encountered. Fortunately,

computer disks too have expanded so that the calcula-

tions are still possible, but cutting down on the angular

data could avoid the necessity of the reading of large

volumes of data and facilitate distributed computing on

many processors. Current codes often degrade in per-

formance to as low as a few percent of CPU usage (de-

pending on the size of available memory) when heavy

disk activity is needed for a large calculation. Thus, for

large cases, extra computation will not reduce the total

time.

In this paper, we propose a scheme that greatly re-

duces the data for large calculations, and eliminates

much of the redundancy in present methods for angular

computations. In fact, the data is largely independent

of the size of a calculation, so that systematic meth-

ods, where orbital sets of increasing size are used, can

readily be applied thereby facilitating the monitoring

of convergence. It also means that, when a series of

larger and larger calculations are performed, the angu-

lar integrations need not be repeated for each run. Our

presentation will be for nonrelativistic LS wave func-

tion and the only operator will be the nonrelativistic

Hamiltonian, H, but the ideas can be generalized to

LSJ (Breit–Pauli) or jj (Dirac–Hartree–Fock) Hamil-

tonian and other operators.

2. Systematic methods

In an MCHF calculation, the wave function for an

atomic state function (ASF) |ψ(γLS)〉 is expanded in

terms of a linear combination of configuration state

functions (CSFs) |(γLS)〉. Specifically,

|ψ(γLS)〉 =
M
∑

j

cj|(γjLS)〉. (3)

Here γLS is a label for the atomic state whereas for

the CSF it represents a configuration and its coupling,

not necessarily only the final term. The CSFs are con-

structed from spin-orbitals as antisymmetrized linear

combinations of products of spin-orbitals

φnlmlms
=

1

r
Pnl(r)Ylml

(θ, ϕ)ξms
(σ), (4)

where the radial functions Pnl(r) are represented by

their numerical values on a logarithmic grid, Ylml
(θ, ϕ)

is a spherical harmonic, and ξms
(σ) a spin-function.

The radial functions are required to be orthonormal

within each l symmetry. The multiconfiguration self-

consistent field (MC-SCF) procedure is used to opti-

mize both the orbitals and the expansion coefficients to

self-consistency.

In many calculations, orbitals can be divided into

two sets: occupied and unoccupied. The latter are

sometimes referred to as virtual or correlation orbitals.

The occupied orbitals are present in the Hartree–Fock

wave function or, more generally, in a zero-order ap-

proximation defined by a multireference set of CSFs.

Wave function expansions can be generated by single

(S), double (D), triple (T), quadruple (Q) excitations

from the multireference set. In an excitation, an occu-

pied orbital is replaced by an unoccupied, virtual or-

bital. In an active space method, any number of oc-

cupied orbitals may be replaced in which case a single

reference configuration state is sufficient.
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The programs that generate expansions deal in terms

of subshells of configurations, without regard to cou-

pling [13, 14]. For a given case, electrons are assigned

to subshells. Electrons are then replaced by electrons

from a list of allowed subshells according to some

rule, and then all possible configuration states from

the resulting configurations are generated. Thus the

2s2 → 3p2 replacement, applied to the 1s22s22p boron

ground state configuration, generates all possible cou-

plings (three in total) of the configuration 1s22p3p2.

Only one of these interacts with the CSF of the ground

state. Restricting the expansion to only those CSFs that

interact with one or more CSFs of the multireference

set, in large cases may reduce the expansion by a factor

of two or more with only a small effect on the energy.

The distinction between occupied and unoccupied

applies readily to systems with filled shells, such as

neon. Often CSFs of the multireference set contain un-

filled subshells. For example, the ground state of boron

is 1s22s22p so one might say 1s, 2s, 2p are occupied

but the 2p subshell is not filled. We certainly would

like to replace 2s2 by 2p2 to get the 2p3 CSF but now

we have excited two electrons from an occupied sub-

shell to electrons in a partially filled subshell. For this

reason, the orbitals of unfilled subshells are included in

the virtual set, in practice. The replacement (or exci-

tation) process is first done at the configuration level:

one or more electrons in the initial configuration are

replaced by electrons from the unfilled or unoccupied

shells. Then antisymmetry rules are applied. Any dis-

tribution of electrons with an over-full subshell is re-

jected. Finally the angular momenta of the orbitals are

coupled and only those replacements that yield a CSF

of a given parity and term are accepted. Typically, the

coupling of orbitals is from left to right, with the vir-

tual orbitals that usually are assigned higher principal

quantum numbers, coupled last.

One way of reducing an expansion, provided a first-

order calculation is sufficient, is to select only those

CSFs that have a nonzero interaction matrix with one

or more CSFs of the reference set. In large expansions,

this may reduce the expansion size by as much as a half.

A program LSREDUCE [15] has this function.

Angular calculations for the variational MCHF me-

thod, for example, perform angular integrations of the

energy interaction matrix element by element. For an

M ×M matrix there are M2 matrix elements (exclud-

ing symmetry) to be evaluated and for large calcula-

tions, particularly when LSREDUCE has not been used

or when TQ excitations are present, many matrix ele-

ments are zero. Let Tz and Tnz be the time required to

determine that a matrix element is zero and the average

remaining time for an element that is nonzero, respec-

tively. Let f be the fraction of matrix elements that are

nonzero. This fraction is often in the range of 0.01–0.1.

Then the expected time for the angular integration for

a calculation is

Ttotal = M2{(1 − f)Tz + fTnz
}

. (5)

From this equation it readily follows that, if

Tz >
f

1 − f
Tnz, (6)

then more time will be spent on determining whether

matrix elements are zero than for determining nonzero

matrix elements. When f = 0.01, the time required

to detect a zero matrix element should be less than

Tnz/100. In the past, the CPU time for angular calcu-

lations could be significantly reduced simply by check-

ing that the two configurations did not differ by more

than two electrons before any angular integrations were

started. Clearly it is important to determine a zero ma-

trix element as quickly as possible.

It should also be remembered that, whereas there are

M diagonal matrix elements, there are M(M−1) non-

diagonal ones. Expressed another way, the fraction of

diagonal matrix elements is approximately 1/M of all

matrix elements. For M in the range of 105–106, this

gets to be a vanishingly small fraction. Thus the ef-

ficiency of the calculation of the off-diagonal matrix

elements is extremely important, more so than for the

diagonal elements. Such calculations may require ex-

tended recoupling, recoupling that may be repeated fre-

quently in the course of angular integrations for an ex-

pansion set. Grant and Quiney have some suggestions

for how recoupling may be reduced to a minimum [16].

Another idea, first proposed by Weiss [17], was the

use of a table look-up for interactions. The principal

quantum numbers of the orbitals are not significant in

angular calculations, except when electrons are equi-

valent: 1s22s22p and 1s22s3s(1S)2p differ because in

one case the s-electrons are equivalent whereas in the

other they are not, but the matrix elements,

〈

1s22s22p 2P
∣

∣ H
∣

∣1s22p3 2P
〉

,
〈

1s23s22p 2P
∣

∣ H
∣

∣1s22p3 2P
〉

,
〈

1s22s3s(1S)2p 2P
∣

∣ H
∣

∣1s22p3 2P
〉

,

are clearly related. All three have the same angular

coupling, but the first two have equivalent electrons

whereas the third does not and this affects the angu-

lar coefficient. More recently, a database idea has been
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suggested by Zatsarinny and Froese Fischer [18]. As-

suming the table of database entries have been com-

puted, both these methods replace the calculation of

matrix elements by a search of a database for M2 ma-

trix elements or a fraction thereof, depending on the

implementation and for large M the time could be ap-

preciable, particularly in an MCHF calculation where

the angular data is accessed twice per iteration.

3. Symbolic expansions

In the discussions above, the angular integrations

were always performed for a specific expansion with-

out any assumptions about the order of the CSFs. The

M2 matrix elements were expressed in terms of radial

integrals I(nl) arising from the one-electron part of the

Hamiltonian, and Slater integrals from the two-electron

part. One change that has occurred since the early days

of atomic structure calculations is that the angular inte-

grations for the two-electron Coulomb matrix element

between antisymmetrized states can readily be evalu-

ated as required from the well-known formula:

〈

(n1l1, n2l2)LS
∣

∣

1

r12

∣

∣(n3l3, n4l4)L
′S′

〉

= δLS,L′S′N
∑

k

[

ckR
k(n1l1, n2l2;n3l3, n4l4)

+ c′kR
k(n1l1, n2l2;n4l4, n3l3)

]

, (7)

where

ck = (−1)l1+l3−L[

l1, l2, l3, l4
]1/2

×
(

l1 k l3
0 0 0

) (

l2 k l4
0 0 0

) {

l1 l2 L
l4 l3 k

}

, (8)

c′k = (−1)l1+l3−S[

l1, l2, l4, l3
]1/2

×
(

l1 k l4
0 0 0

) (

l2 k l3
0 0 0

) {

l1 l2 L
l3 l4 k

}

, (9)

and N is a renormalization factor:

N =































1 if l1 6= l2 and l3 6= l4,

1√
2

if either l1 = l2 or l3 = l4
but not both,

1

2
if l1 = l2 and l3 = l4.

(10)

These angular integrations need not be repeated for the

different values of n1, n2, n3, n4. Depending on the

calculation, it may be that a table of expressions for

such interactions may be useful, but this is an imple-

mentation decision.

With this in mind, let us express the ASF of a two-

electron system by a symbolic state that represents a

linear combination of all possible two-electron config-

uration states, of given parity and LS, that can be con-

structed from a given orbital set, namely

∣

∣(nl, n′l′)LS
〉 ≡

∑

n

∑

l

∑

n′

∑

l′

( )
∣

∣(nl, n′l′)LS
〉

.

(11)

The expression on the left is symbolic and sufficient

for angular integrations, where the four quantum num-

bers are treated as variables though triangle conditions

will be needed to assure that coupling conditions are

satisfied, and equivalent electrons need to be taken into

account. The sum on the right-hand side is explicit.

In practice, further conditions need to be considered

when using the explicit form. Wave functions are ex-

panded in terms of a basis of CSFs that are orthonor-

mal. Thus those combinations of (l, l′) that are not al-

lowed (whose CSFs are identically zero) must be elim-

inated and since CSFs are antisymmetric, |(nl, n′l)LS〉
will not be orthogonal to |(n′l, nl)LS〉. We define this

as not part of the angular problem, but rather as part of

the radial problem when symbolic states are used.

Let us express the ASF for the 1S ground state of

helium by the approximation

ψ(1s2 1S) ≈
∣

∣(nl, n′l) 1S
〉NL
1s . (12)

To indicate clearly the range of the orbital set, we have

added the first and the last orbital to the symbolic state.

The triangle condition now has required that l = l′ and

the orthonormality condition that n′ ≥ n so that the

symbolic state on the right represents a sum

∣

∣(nl, n′l) 1S
〉NL
1s =

N
∑

n=1

N
∑

n′=n

L
∑

0

( )
∣

∣(nl, n′l) 1S
〉

. (13)

Then no angular data would be needed for the eval-

uation of the matrix elements since all can be de-

rived from formulas. Notice that Eq. (13) represents

N(N+1)/2×(L+1) CSFs. “Systematic” calculations

are ones where the orbital basis is systematically in-

creased so that convergence of an atomic property can

be monitored.

Similarly,

ψ(1s2p 1,3P ◦) ≈
∣

∣(nl, n′(l + 1)) 1,3P ◦
〉NL
1s , (14)
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where the explicit form of the symbolic state is defined

as

∣

∣(nl, n′l′) 1,3P ◦
〉NL
1s

=
N

∑

n=1

L
∑

l=0

N
∑

n′=2

L
∑

l′=l+1

( )
∣

∣(nl, n′l′) 1,3P ◦
〉

. (15)

Expansions such as the above were used to study

the calculation of two-electron wave functions using

a B-spline basis [19]. In a configuration interaction

(CI) calculation, the radial functions are assumed to

be known, and only the eigenvalue and eigenvector of

an interaction matrix are to be determined. Given that

the calculation of the eigenvalue and eigenvector by the

Davidson method [20] depends solely on matrix-vector

multiplication, one could anticipate evaluating a part of

the matrix “on the fly”, immediately multiplying by the

appropriate components of the vector, and never storing

the matrix itself.

Since the Hamiltonian for a many-electron system

is always a two-electron operator, CSFs that differ by

more than two electrons will not interact. Thus sin-

gle (S) and double (D) excitations play a very special

role in atomic structure calculations. For simple struc-

tures, such as 1s22s22p6nl of Na, good results can be

obtained by such a process. But the situation can be

considerably more complex. For example, for the even

3s3p4 2P term in S II [21], there is strong mixing of

3s3p4 2P, 3s23p2(3P )4d 2P, 3s23p2(1D)3d 2P configu-

ration states, and the strong 3s2 → 3p2 interaction also

needs to be included in a good zero-order wave func-

tion. In order to get the levels of this spectrum correct

with an orthogonal orbital basis, the following refer-

ence set was needed:

{3s3p4, 3s3p34p, 3s23p23d,

3s23p24d, 3p43d, 3p44d} 2P. (16)

All possible couplings were included.

Though the general case may be extremely com-

plex, let us first consider a simple case, such as the

1s22s22p6 ground state of neon where subshells are ei-

ther filled or unoccupied. Then the wave function from

SD excitations may be expressed as

ψ = Ψref + ΨS + ΨD. (17)

The symbolic states for ψS are formed by remov-

ing an occupied electron and replacing it by one

from the virtual shells. From a coupling point of

view, this means we have a coupled subconfiguration

(Ψsubc
)LcSc and a virtual orbital vl. Then we get

ΨS =
∑

c

( )|{(Ψsubc
)LcSc, (vl)

2L}LS〉. (18)

In the case of neon, there are three symbolic states

that define ΨS, namely:

1. |{Ψ(1s22s22p5) 2P, (vp) 2P} 1S〉.
2. |{Ψ(1s22s2p6) 2S, (vs) 2S} 1S〉.
3. |{Ψ(1s2s22p6) 2S, (vs) 2S} 1S〉.
One of the properties of a Hartree–Fock approxima-

tion is that, in this case, the matrix element

〈Ψref |H|ΨS〉 = 0, but when the same functions are

used in a Breit–Pauli calculation this no longer holds

since the Hamiltonian has changed.

In the case of two excitations, two electrons are

“pulled out” and replaced by electrons from unoccu-

pied shells or, in terms of coupled configuration states,

two orbitals are uncoupled and replaced by virtual or-

bitals. Rather than couple the resulting configuration

from left to right, we first couple the two virtual or-

bitals to a resultant coupling and then couple the two

components from left to right. Hence

ΨD =
∑

c

|{(Ψsubc
)LcSc, (v1l1, v2l2)LvSv}LS〉,

(19)

where for emphasis we use the notation vl rather than

nl to designate a virtual orbital. In the case of neon

there are now eleven (11) symbolic states, namely:

1. |{Ψ(1s22s22p4) 3P, (v1l1, v2l2)
3P} 1S〉.

2. |{Ψ(1s22s22p4) 1D, (v1l1, v2l2)
1D} 1S〉.

3. |{Ψ(1s22s22p4) 1S, (v1l1, v2l2)
1S} 1S〉.

4. |{Ψ(1s22s2p5) 1P, (v1l1, v2l2)
1P} 1S〉.

5. |{Ψ(1s22s2p5) 3P, (v1l1, v2l2)
3P} 1S〉.

6. |{Ψ(1s22p6) 1S, (v1l1, v2l2)
1S} 1S〉.

7. |{Ψ(1s2s22p5) 1P, (v1l1, v2l2)
1P} 1S〉.

8. |{Ψ(1s2s22p5) 3P, (v1l1, v2l2)
3P} 1S〉.

9. |{Ψ(1s2s2p6) 1S, (v1l1, v2l2)
1S} 1S〉.

10. |{Ψ(1s2s2p6) 3S, (v1l1, v2l2)
3S} 1S〉.

11. |{Ψ(2s22p6) 1S, (v1l1, v2l2)
1S} 1S〉.

This form of coupling where the coupling of the virtual

orbitals is derived from the coupling of a configuration

state in the reference set was called “parent-coupling”

by Weiss [22] who claimed that it could reduce the ex-

pansion by as much as a factor of three. In the above

list, the first six symbolic states are a part of the valence

correlation, 7–10 are a part of the core–valence correla-

tion, and the last one is the core correlation, assuming

that the core is defined to be 1s2.
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4. Coulomb matrix elements between symbolic

states

Let us now generalize the above examples to

N -electron systems and consider expressions for

Coulomb matrix elements between states where one or

both may be symbolic states.

Symbolic states are generated from single and dou-

ble excitations from members of the reference set. Let

us first consider double excitations. Let |Ψref〉 be an ar-

bitrary LS-coupled antisymmetric configuration state

function for N -electrons. A doubly excited symbolic

state |Ψ〉 is formed by uncoupling a pair of electrons,

leaving an (N − 2) subconfiguration, replacing the

“pulled out” electrons, say (nc1lc1, nc2lc2), by coupled

virtual orbitals (v1l1, v2l2)LvSv so that

|Ψ〉 =
∣

∣

{

(Ψsub)LcSc, (v1l1, v2l2)LvSv

}

LS
〉

. (20)

For brevity, we may refer to |(v1l1, v2l2)LvSv〉 as

|(ψv)LvSv〉 or simply as |(l1, l2)LvSv〉 when only an-

gular quantum numbers are relevant. By allowing

the virtual pairs (v1l1, v2l2) to range over all possi-

ble pairs, we can view these quantities as variables

and |{(Ψsub)LcSc, (v1l1, v2l2)LvSv}LS〉 as a sym-

bolic state. In subsequent expressions the principal

quantum numbers will be omitted in symbolic states.

It may happen that the same symbolic state can be gen-

erated from two different members of the reference set,

but every doubly excited symbolic state will differ by

two electrons from every member of the reference set.

Let us define the N -electron Coulomb operator to

be G and consider the interaction between any mem-

ber of the reference set and a doubly excited symbolic

state. Let (nc1lc1, nc2lc2) be the two electrons in the

reference configuration state that differ from those in

the symbolic state. Define

|Ψ′′〉 =
∣

∣

{

(Ψsub)LcSc, (nc1lc1, nc2lc2)LvSv
}

LS
〉

.
(21)

Then

〈Ψ|G|Ψref〉

=
〈

(l1, l2)LvSv

∣

∣G
∣

∣(lc1, lc2)LvSv
〉〈Ψ′′|Ψref〉. (22)

This result assumes that the one-electron orbitals are

orthogonal and that the virtual orbitals are orthogonal

to the occupied orbitals. For this matrix element to be

nonzero the triangle condition (lc1lc2Lv) needs to be

satisfied. Limiting the Lv for virtual orbitals to the an-

gular quantum number allowed for occupied orbitals is

what leads to “parent” coupling. The interaction may

also be zero if the overlap 〈Ψ′′|Ψref〉 is zero. However,

in practice, there should be at least one member of the

reference set for which this overlap is nonzero.

The matrix element between two symbolic states

〈Ψ′|G|Ψ〉 can be partitioned into three parts:

〈Ψ′|G|Ψ〉 = Mvv + Mcv + Mcc. (23)

Here

Mvv = 〈(Ψ′

sub)L′

cS
′

c|(Ψsub)LcSc〉
× 〈(ψ′

v)L
′

vS
′

v|G|(ψv)LvSv〉, (24)

Mcc = 〈(Ψ′

sub)L′

cS
′

c|G|(Ψsub)LcSc〉

× 〈(ψ′

v)L
′

vS
′

v|(ψv)LvSv〉, (25)

Mcv =
∑

l′c,lc

∑

l′v,lv

∑

LG,SG

Csym

× 〈(l′c, l′v)LGSG|G|(lc, lv)LGSG〉. (26)

Notice the overlap integral in the definition of Mvv and

also Mcc. There will be no contribution from the for-

mer if the subconfigurations or their coupling are differ-

ent whereas for the latter there will be no contribution

if the virtual pairs are different.

Contributions from Mcv arise when a virtual orbital

from the left symbolic state is the same as a virtual or-

bital on the right. This is the contribution where the

calculation of the matrix element requires extensive re-

coupling and the two-electron interaction involves an

orbital from the subconfiguration. In Eq. (26), lc, l
′

c

run over all subconfiguration orbitals, and lv, l
′

v over

the two correlation orbitals of the left and right sym-

bolic configuration states, respectively. The values

of LG, SG are limited by triangle relations (lvlcLG),
(l′vl

′

cLG), and
(1

2
1
2SG

)

. The coefficient Csym is ex-

pressed [23] as

Csym

= 2〈l′v |lv〉
(

lv, lv |}(l1l2)LvSv
)(

l′v, l
′

v|}(l′1l′2)L′

vS
′

v

)

×
∑

k,κ

Γkκ(Ψ′

sub, l
′

c; Ψsub, lc)[LG, SG, k, κ]

× [Lv, Sv, L
′

v, S
′

v]
1/2

× (−1)Lc+L+LG+l′v−lv+lv−lc+k(−1)Sc+S+SG+κ

×
{

Lv k L
′

v

L′

c L Lc

}

{

Lv k L
′

v

l′v lv lv

}

{

lc k l′c
l′v LG lv

}

×
{

Sv κ S
′

v

S′

c S Sc

} {

Sv κ S
′

v
1
2

1
2

1
2

}

{

1
2 κ 1

2
1
2 SG

1
2

}

. (27)



C. Froese Fischer and D. Ellis / Lithuanian J. Phys. 44, 121–134 (2004) 127

In this equation, 〈lv |l′v〉 is the overlap between the

virtual orbitals not involved in the interaction and
(

lv, lv |}(l1l2)LvSv
)

is the two-electron mixed-shell co-

efficient of fractional parentage:

(

lv, lv |}(l1l2)LvSv

)

=



































1

2

[

1 + (−1)Lv+Sv
]

if l1, l2 are equivalent,

1√
2

{

δlvl2 + δlv l1(−1)l1+l2+Lv+Sv
}

otherwise.

(28)

The quantity Γkκ(Ψ′

sub, l
′

c; Ψsub, lc) depends only

on the internal quantum numbers of the subconfigu-

rations and not on the virtual orbitals. It is conve-

niently expressed as the coefficient in the expansion of

an (N − 2)-electron matrix element of a general one-

body double-tensor operator,

W [kκ]
qτ =

N−2
∑

i=1

w[kκ]
qτ (i), (29)

in terms of one-electron matrix elements:

〈Ψ′

subL
′

cS
′

c‖W [kκ]‖ΨsubLcSc〉

=
∑

l′c,lc

Γkκ(Ψ′

sub, l
′

c; Ψsub, lc)〈l′c‖w[kκ]‖lc〉. (30)

Here, k is the tensor rank of the operator with respect

to the orbital angular momentum, and κ is the tensor

rank with respect to the spin angular momentum. The

possible values of k and κ in the sum of Eq. (23) are

limited by triangle relations (l′cklc) and
(

1
2κ

1
2

)

, so that

κ is either 0 (singlet) or 1 (triplet).

Thus, in general the coefficient Csym is a sum of

products of several factors: an overlap integral; fac-

tors that depend on orbital quantum numbers and would

need to be evaluated at run time when the quantum

numbers of the virtual orbitals are known; and other

factors, including the quantities Γkκ(Ψ′

sub, l
′

c; Ψsub, lc),
that could be evaluated as part of the angular integra-

tion process and treated as a set of constants for each

interacting pair of symbolic states.

Similar expressions can be derived for interactions

with symbolic states formed from single substitu-

tions.

Thus, all the matrix elements between the reference

and symbolic states (S or D) and between two symbolic

states can be expressed as a sum of terms, where each

term is a product of three factors:

(1) a quantity independent of the virtual orbitals,

(2) a quantity dependent on the angular quantum num-

bers of the virtual orbitals and whether they are

equivalent or nonequivalent,

(3) a two-electron matrix element.

Note that the first two quantities involve no radial

functions, while the third includes both angular and ra-

dial integrals. This factorization is seen clearly in the

equations above for Mvv and Mcc, but the situation

for Mcv is more complicated. To see this case more

explicitly, we can write

Csym =
∑

k

Dk Ak

with

Dk =
∑

κ

Γkκ(Ψ′

sub, l
′

c; Ψsub, lc)

× [SG, k, κ] [Lv, Sv, L
′

v, S
′

v]
1/2

× (−1)Lc+L−lc+k(−1)Sc+S+SG+κ

×
{

Lv k L
′

v

L′

c L Lc

} {

Sv κ S
′

v

S′

c S Sc

}

×
{

Sv κ S
′

v
1
2

1
2

1
2

}

{

1
2 κ 1

2
1
2 SG

1
2

}

, (31)

and

Ak = 2
(

lv, lv |}(l1l2)LvSv

)(

l′v, l
′

v|}(l′1l′2)L′

vS
′

v

)

× 〈l′v|lv〉[LG](−1)lv+LG+l′v−lv

×
{

Lv k L
′

v

l′v lv lv

}

{

lc k l′c
l′v LG lv

}

. (32)

Now we see that the set of coefficients Ak must be com-

puted as part of the “radial” calculation for each choice

of virtual orbitals, while the set of coefficients Dk can

be computed at the beginning as part of the “angular”

segment of the problem.

These results have been derived [23] under the as-

sumption that the virtual (or correlation) orbitals were

distinct from the occupied orbitals. The extent to which

this separation of occupied and virtual orbitals is nec-

essary requires further investigation. Clearly the sub-

configurations consist only of occupied orbitals.

Of course, in a subsequent radial calculation, a sym-

bolic state function will need to be expanded into the

usual CSFs, by allowing the virtual orbitals to run over
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the set of all possible values and the required coupling.

This defines a block of CSFs, all with similar angular

properties. The angular data now is an expression for

the interaction of one block either with itself or with

another block: i. e. the interaction of one set of CSFs

with another. This has imposed an order on the CSFs

but with this order, the angular information is indepen-

dent of the size of the virtual orbital set. The basic

element for the evaluation of an interaction matrix is

the two-electron matrix element. Whereas in existing

codes, a calculation starts with the evaluation of all pos-

sible Slater integrals that can be derived from a set of

orbitals, in the present scheme two-electron matrix el-

ements will be needed. Many possibilities exist as to

how this can be implemented.

5. A symbolic expansion for 1s22s2 1S of beryllium

Let us now consider the beryllium ground state with

a two-configuration reference set, namely

{1s22s2, 1s22p2} 1S.

Then the zero-order wave function is

Ψ0 = c1|1s22s2 1S〉 + c2|1s22p2 1S〉. (33)

For simplicity, let us consider only symbolic states for

double excitations and omitting excitations from 1s2.

Then we get the following symbolic states:

1. |{(1s, 1s) 1S, (v1l1, v2l2)
1S} 1S〉.

2. |{(1s, 2s) 1S, (v1l1, v2l2)
1S} 1S〉.

3. |{(1s, 2s) 3S, (v1l1, v2l2)
3S} 1S〉.

4. |{(1s, 2p) 1P, (v1l1, v2l2)
1P} 1S〉.

5. |{(1s, 2p) 3P, (v1l1, v2l2)
3P} 1S〉.

Note that the first symbolic state could be derived

from either member of the reference set. It is part

of “valence correlation” whereas the remaining sym-

bolic states are part of core–valence correlation. Not

included are contributions from the core–core correla-

tion.

Appendix A shows the angular coefficient file for

the beryllium example. The numerical coefficients are

obtained by evaluating all the quantities in Eqs. (23)–

(27) that are independent of the quantum numbers of

the correlation orbitals. LS coupling has been used

throughout.

The data includes the minimum information needed

to derive the expression for a matrix element. Terms

that depend on A(k) do not include the sum over the

two possible orderings on the left and the two possi-

ble orders on the right. For antisymmetric functions, it

needs to be remembered that
∣

∣(n1l1, n2l2)LS
〉

=−(−1)l1+l2−L+1/2+1/2−S
∣

∣(n2l2, n1l1)LS
〉

or
∣

∣(n1l1, n2l2)LS
〉

= (−1)l1+l2−L+2−S
∣

∣(n2l2, n1l1)LS
〉

. (34)

Thus the contribution

<(1s,v1)3L |G| (1s,v3)3L> <v2|v4>

found in Appendix A must be expanded (in the same
notation) to

<(1s,v1)3L |G| (1s,v3)3L> <v2|v4>

+ <(1s,v1)3L |G| (1s,v4)3L> <v2|v3>

x (-1)^(l3+l4-L+1)

+ <(1s,v2)3L |G| (1s,v3)3L> <v1|v4>

x (-1)^(l1+l2-L+1)

+ <(1s,v2)3L |G| (1s,v4)3L> <v1|v3>

x (-1)^(l1+l2+l3+l4)

In Appendix B we show the expressions for inter-

actions within the first symbolic state (representing va-

lence correlation) when orbitals are restricted to s-, p-,

or d-orbitals. Notice now the extensive enumeration

of cases and the increase of data. All CSFs associ-

ated with this symbolic state interact, and so this block

of the interaction matrix is dense. In general, at this

level of expansion of the energy expressions, the spar-

sity structure of the interaction matrix can be evalu-

ated.

Figure 1 shows the structure of the interaction ma-

trix between the symbolic states when the virtual or-

bitals are from the set nl with n in the range from 3 to

8, and l ≤ 3. Not included in this figure is the contribu-

tion from single substitutions nor the interaction with

the reference set. The number of nonzero matrix ele-

ments is 33.3% and all interact with one or more of the

elements of the reference set. In the present scheme, by

coupling a subconfiguration with a two-electron state,

the zero matrix elements can readily be identified from

overlap integrals and selection rules.

6. Conclusion

Existing large scale atomic structure calculations

produce many gigabytes of angular data, that can re-

duce CPU performance dramatically, to a few percent
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Fig. 1. Structure of the interaction between the valence and core-polarization symbolic states in the Be ground state with the multireference

set of {1s2
2s2, 1s2

2p2} 1S. (Courtesy of R. Matulionienė [23].)

if not enough memory is available and in extreme cases,

the calculation may simply be impossible. By express-

ing a wave function in terms of an expansion of sym-

bolic states consisting of two components – a subcon-

figuration and a coupled pair of virtuals – the angular

data is greatly reduced without affecting the accuracy

of the wave function. A further reduction is achieved

by expressing the interaction in terms of interactions

between two-electron configuration states without the

necessity of knowing the angular quantum numbers of

the interacting electrons. But most important is the fact

that the data is independent of the orbital set. During

an application of this approach, the symbolic states in

an expansions will need to be expanded into a block of

configuration states. The size of this block will depend

on the size of the orbital set. The angular data for an

interaction between two symbolic states is sufficient to

generate all the interactions between the two blocks of

configuration states. It is conceivable that large calcu-

lations can be performed in memory without the need

for large volumes of data on disk.

The new scheme requires a reformulation of the an-

gular integrations, involving recouplings and fractional

parentage in different ways. Derivations of these new

expressions were greatly facilitated by Jucys’ diagram-

matic methods [24].

Appendix A. Angular coefficients for the Be 1s22s2 1S example: minimum data

For the case of Be there are 5 sub-CSFs:

SUB1: | (1s2)1Se >

SUB2: | (1s1,2s1)1Se >

SUB3: | (1s1,2s1)3Se >

SUB4: | (1s1,2p1)1Po >

SUB5: | (1s1,2p1)3Po >

For term 1Se there are 5 symbolic CSFs:
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Symbolic CSF1: | { (1s2)1Se, (vl,v’l’)1Se } 1Se > =

Symbolic CSF2: | { (1s1,2s1)1Se, (vl,v’l’)1Se } 1Se > =

Symbolic CSF3: | { (1s1,2s1)3Se, (vl,v’l’)3Se } 1Se > =

Symbolic CSF4: | { (1s1,2p1)1Po, (vl,v’l’)1Po } 1Se > =

Symbolic CSF5: | { (1s1,2p1)3Po, (vl,v’l’)3Po } 1Se > =

INTERACTION BLOCKS FOR G CONSERVING L, S

Block(1X1): < {(Sub1)1Se,(v1,v2)1Se} 1Se | G | {(Sub1)1Se,(v3,v4)1Se} 1Se > =

<(v1,v2)1Se |G| (v3,v4)1Se> + <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(v1,v2)1Se|(v3,v4)1Se> +

1/2 A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

3/2 A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4>

Block(2X1): < {(Sub2)1Se,(v1,v2)1Se} 1Se | G | {(Sub1)1Se,(v3,v4)1Se} 1Se > =

<(v1,v2)1Se |G| (v3,v4)1Se> + <(Sub2)1Se | (Sub1)1Se> +

< (Sub2)1Se |G| (Sub1)1Se > <(v1,v2)1Se|(v3,v4)1Se> +

SQRT(1/8) A(k=0) <(2s,v1)1L |G| (1s,v3)1L> <v2|v4> +

SQRT(9/8) A(k=0) <(2s,v1)3L |G| (1s,v3)3L> <v2|v4>

Block(3X1): < {(Sub3)3Se,(v1,v2)3Se} 1Se | G | {(Sub1)1Se,(v3,v4)1Se} 1Se > =

SQRT(3/8) A(k=0) <(2s,v1)1L |G| (1s,v3)1L> <v2|v4> +

-SQRT(3/8) A(k=0) <(2s,v1)3L |G| (1s,v3)3L> <v2|v4>

Block(4X1): < {(Sub4)1Po,(v1,v2)1Po} 1Se | G | {(Sub1)1Se,(v3,v4)1Se} 1Se > =

-SQRT(9/8) A(k=1) <(2p,v1)1L |G| (1s,v3)1L> <v2|v4> +

-SQRT(81/8) A(k=1) <(2p,v1)3L |G| (1s,v3)3L> <v2|v4>

Block(5X1): < {(Sub5)3Po,(v1,v2)3Po} 1Se | G | {(Sub1)1Se,(v3,v4)1Se} 1Se > =

-SQRT(27/8) A(k=1) <(2p,v1)1L |G| (1s,v3)1L> <v2|v4> +

SQRT(27/8) A(k=1) <(2p,v1)3L |G| (1s,v3)3L> <v2|v4>

Block(2X2): < {(Sub2)1Se,(v1,v2)1Se} 1Se | G | {(Sub2)1Se,(v3,v4)1Se} 1Se > =

<(v1,v2)1Se |G| (v3,v4)1Se> + <(Sub2)1Se | (Sub2)1Se> +

< (Sub2)1Se |G| (Sub2)1Se > <(v1,v2)1Se|(v3,v4)1Se> +

1/4 A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

3/4 A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4> +

1/4 A(k=0) <(2s,v1)1L |G| (2s,v3)1L> <v2|v4> +

3/4 A(k=0) <(2s,v1)3L |G| (2s,v3)3L> <v2|v4>

Block(3X2): < {(Sub3)3Se,(v1,v2)3Se} 1Se | G | {(Sub2)1Se,(v3,v4)1Se} 1Se > =

-SQRT(3/16) A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

SQRT(3/16) A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4> +

SQRT(3/16) A(k=0) <(2s,v1)1L |G| (2s,v3)1L> <v2|v4> +

-SQRT(3/16) A(k=0) <(2s,v1)3L |G| (2s,v3)3L> <v2|v4>

Block(4X2): < {(Sub4)1Po,(v1,v2)1Po} 1Se | G | {(Sub2)1Se,(v3,v4)1Se} 1Se > =

-3/4 A(k=1) <(2p,v1)1L |G| (2s,v3)1L> <v2|v4> +

-9/4 A(k=1) <(2p,v1)3L |G| (2s,v3)3L> <v2|v4>

Block(5X2): < {(Sub5)3Po,(v1,v2)3Po} 1Se | G | {(Sub2)1Se,(v3,v4)1Se} 1Se > =

-SQRT(27/16) A(k=1) <(2p,v1)1L |G| (2s,v3)1L> <v2|v4> +

SQRT(27/16) A(k=1) <(2p,v1)3L |G| (2s,v3)3L> <v2|v4>

Block(3X3): < {(Sub3)3Se,(v1,v2)3Se} 1Se | G | {(Sub3)3Se,(v3,v4)3Se} 1Se > =

<(v1,v2)3Se |G| (v3,v4)3Se> <(Sub3)3Se | (Sub3)3Se> +

< (Sub3)3Se |G| (Sub3)3Se > <(v1,v2)3Se|(v3,v4)3Se> +

3/4 A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

1/4 A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4> +

3/4 A(k=0) <(2s,v1)1L |G| (2s,v3)1L> <v2|v4> +

1/4 A(k=0) <(2s,v1)3L |G| (2s,v3)3L> <v2|v4>
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Block(4X3): < {(Sub4)1Po,(v1,v2)1Po} 1Se | G | {(Sub3)3Se,(v3,v4)3Se} 1Se > =

-SQRT(27/16) A(k=1) <(2p,v1)1L |G| (2s,v3)1L> <v2|v4> +

SQRT(27/16) A(k=1) <(2p,v1)3L |G| (2s,v3)3L> <v2|v4>

Block(5X3): < {(Sub5)3Po,(v1,v2)3Po} 1Se | G | {(Sub3)3Se,(v3,v4)3Se} 1Se > =

-9/4 A(k=1) <(2p,v1)1L |G| (2s,v3)1L> <v2|v4> +

-3/4 A(k=1) <(2p,v1)3L |G| (2s,v3)3L> <v2|v4>

Block(4X4): < {(Sub4)1Po,(v1,v2)1Po} 1Se | G | {(Sub4)1Po,(v3,v4)1Po} 1Se > =

<(v1,v2)1Po |G| (v3,v4)1Po><(Sub4)1Po | (Sub4)1Po> +

< (Sub4)1Po |G| (Sub4)1Po ><(v1,v2)1Po|(v3,v4)1Po> +

-SQRT(3/16) A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

-SQRT(27/16) A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4> +

1/4 A(k=0) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

3/4 A(k=1) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

5/4 A(k=2) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

3/4 A(k=0) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4> +

9/4 A(k=1) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4> +

15/4 A(k=2) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4>

Block(5X4): < {(Sub5)3Po,(v1,v2)3Po} 1Se | G | {(Sub4)1Po,(v3,v4)1Po} 1Se > =

3/4 A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

-3/4 A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4> +

SQRT(3/16) A(k=0) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

SQRT(27/16) A(k=1) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

SQRT(75/16) A(k=2) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

-SQRT(3/16) A(k=0) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4> +

-SQRT(27/16) A(k=1) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4> +

-SQRT(75/16) A(k=2) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4>

Block(5X5): < {(Sub5)3Po,(v1,v2)3Po} 1Se | G | {(Sub5)3Po,(v3,v4)3Po} 1Se > =

<(v1,v2)3Po |G| (v3,v4)3Po> <(Sub5)3Po | (Sub5)3Po> +

< (Sub5)3Po |G| (Sub5)3Po > <(v1,v2)3Po|(v3,v4)3Po> +

-SQRT(27/16) A(k=0) <(1s,v1)1L |G| (1s,v3)1L> <v2|v4> +

-SQRT(3/16) A(k=0) <(1s,v1)3L |G| (1s,v3)3L> <v2|v4> +

3/4 A(k=0) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

9/4 A(k=1) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

15/4 A(k=2) <(2p,v1)1L |G| (2p,v3)1L> <v2|v4> +

1/4 A(k=0) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4> +

3/4 A(k=1) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4> +

5/4 A(k=2) <(2p,v1)3L |G| (2p,v3)3L> <v2|v4>

Appendix B. Expanded expressions for the interactions within the |{(1s, 1s) 1S, (v1l1, v2l2)
1S} 1S〉 symbolic

block

INTERACTION BLOCKS FOR G CONSERVING L, S

Block(1X1): < {(Sub1)1Se,(v1,v2)1Se} 1Se | G | {(Sub1)1Se,(v3,v4)1Se} 1Se >

1. < {(Sub1)1Se,(xs2)1Se} 1Se | G | {(Sub1)1Se,(ys2)1Se} 1Se > =

< (xs2)1Se |G| (ys2)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xs2)1Se|(ys2)1Se> +

1/1 <(1s,xs)1Se |G| (1s,ys)1Se> <xs|ys> +

3/1 <(1s,xs)3Se |G| (1s,ys)3Se> <xs|ys>

2. < {(Sub1)1Se,(xs2)1Se} 1Se | G | {(Sub1)1Se,(vs,ws)1Se} 1Se > =

< (xs2)1Se |G| (vs,ws)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xs2)1Se|(vs,ws)1Se> +

SQRT(1/2) <(1s,xs)1Se |G| (1s,vs)1Se> <xs|ws> +
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SQRT(9/2) <(1s,xs)3Se |G| (1s,vs)3Se> <xs|ws>

3. < {(Sub1)1Se,(xs,ys)1Se} 1Se | G | {(Sub1)1Se,(vs2)1Se} 1Se > =

< (xs,ys)1Se |G| (vs2)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xs,ys)1Se|(vs2)1Se> +

SQRT(1/2) <(1s,xs)1Se |G| (1s,vs)1Se> <ys|vs> +

SQRT(9/2) <(1s,xs)3Se |G| (1s,vs)3Se> <ys|vs>

4. < {(Sub1)1Se,(xs,ys)1Se} 1Se | G | {(Sub1)1Se,(vs,ws)1Se} 1Se > =

<(xs,ys)1Se |G| (vs,ws)1Se> <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xs,ys)1Se|(vs,ws)1Se> +

1/2 <(1s,xs)1Se |G| (1s,vs)1Se> <ys|ws> +

3/2 <(1s,xs)3Se |G| (1s,vs)3Se> <ys|ws>

5. < {(Sub1)1Se,(xs2)1Se} 1Se | G | {(Sub1)1Se,(yp2)1Se} 1Se > =

< (xs2)1Se |G| (yp2)1Se > <(Sub1)1Se | (Sub1)1Se>

6. < {(Sub1)1Se,(xs2)1Se} 1Se | G | {(Sub1)1Se,(vp,wp)1Se} 1Se > =

< (xs2)1Se |G| (vp,wp)1Se > <(Sub1)1Se | (Sub1)1Se>

7. < {(Sub1)1Se,(xs,ys)1Se} 1Se | G | {(Sub1)1Se,(vp2)1Se} 1Se > =

< (xs,ys)1Se |G| (vp2)1Se > <(Sub1)1Se | (Sub1)1Se>

8. < {(Sub1)1Se,(xs,ys)1Se} 1Se | G | {(Sub1)1Se,(vp,wp)1Se} 1Se > =

<(xs,ys)1Se |G| (vp,wp)1Se> <(Sub1)1Se | (Sub1)1Se>

9. < {(Sub1)1Se,(xs2)1Se} 1Se | G | {(Sub1)1Se,(yd2)1Se} 1Se > =

< (xs2)1Se |G| (yd2)1Se > <(Sub1)1Se | (Sub1)1Se>

10. < {(Sub1)1Se,(xs2)1Se} 1Se | G | {(Sub1)1Se,(vd,wd)1Se} 1Se > =

< (xs2)1Se |G| (vd,wd)1Se > <(Sub1)1Se | (Sub1)1Se>

11. < {(Sub1)1Se,(xs,ys)1Se} 1Se | G | {(Sub1)1Se,(vd2)1Se} 1Se > =

< (xs,ys)1Se |G| (vd2)1Se > <(Sub1)1Se | (Sub1)1Se>

12. < {(Sub1)1Se,(xs,ys)1Se} 1Se | G | {(Sub1)1Se,(vd,wd)1Se} 1Se > =

<(xs,ys)1Se |G| (vd,wd)1Se> <(Sub1)1Se | (Sub1)1Se>

13. < {(Sub1)1Se,(xp2)1Se} 1Se | G | {(Sub1)1Se,(ys2)1Se} 1Se > =

< (xp2)1Se |G| (ys2)1Se > <(Sub1)1Se | (Sub1)1Se>

14. < {(Sub1)1Se,(xp2)1Se} 1Se | G | {(Sub1)1Se,(vs,ws)1Se} 1Se > =

< (xp2)1Se |G| (vs,ws)1Se > <(Sub1)1Se | (Sub1)1Se>

15. < {(Sub1)1Se,(xp,yp)1Se} 1Se | G | {(Sub1)1Se,(vs2)1Se} 1Se > =

< (xp,yp)1Se |G| (vs2)1Se > <(Sub1)1Se | (Sub1)1Se>

16. < {(Sub1)1Se,(xp,yp)1Se} 1Se | G | {(Sub1)1Se,(vs,ws)1Se} 1Se > =

<(xp,yp)1Se |G| (vs,ws)1Se> <(Sub1)1Se | (Sub1)1Se>

17. < {(Sub1)1Se,(xp2)1Se} 1Se | G | {(Sub1)1Se,(yp2)1Se} 1Se > =

< (xp2)1Se |G| (yp2)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xp2)1Se|(yp2)1Se> +

1/1 <(1s,xp)1Po |G| (1s,yp)1Po> <xp|yp> +

3/1 <(1s,xp)3Po |G| (1s,yp)3Po> <xp|yp>

18. < {(Sub1)1Se,(xp2)1Se} 1Se | G | {(Sub1)1Se,(vp,wp)1Se} 1Se > =

< (xp2)1Se |G| (vp,wp)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xp2)1Se|(vp,wp)1Se> +

SQRT(1/2) <(1s,xp)1Po |G| (1s,vp)1Po> <xp|wp> +

SQRT(9/2) <(1s,xp)3Po |G| (1s,vp)3Po> <xp|wp>
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19. < {(Sub1)1Se,(xp,yp)1Se} 1Se | G | {(Sub1)1Se,(vp2)1Se} 1Se > =

< (xp,yp)1Se |G| (vp2)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xp,yp)1Se|(vp2)1Se> +

SQRT(1/2) <(1s,xp)1Po |G| (1s,vp)1Po> <yp|vp> +

SQRT(9/2) <(1s,xp)3Po |G| (1s,vp)3Po> <yp|vp>

20. < {(Sub1)1Se,(xp,yp)1Se} 1Se | G | {(Sub1)1Se,(vp,wp)1Se} 1Se > =

<(xp,yp)1Se |G| (vp,wp)1Se> <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xp,yp)1Se|(vp,wp)1Se> +

1/2 <(1s,xp)1Po |G| (1s,vp)1Po> <yp|wp> +

3/2 <(1s,xp)3Po |G| (1s,vp)3Po> <yp|wp>

21. < {(Sub1)1Se,(xp2)1Se} 1Se | G | {(Sub1)1Se,(yd2)1Se} 1Se > =

< (xp2)1Se |G| (yd2)1Se > <(Sub1)1Se | (Sub1)1Se>

22. < {(Sub1)1Se,(xp2)1Se} 1Se | G | {(Sub1)1Se,(vd,wd)1Se} 1Se > =

< (xp2)1Se |G| (vd,wd)1Se > <(Sub1)1Se | (Sub1)1Se>

23. < {(Sub1)1Se,(xp,yp)1Se} 1Se | G | {(Sub1)1Se,(vd2)1Se} 1Se > =

< (xp,yp)1Se |G| (vd2)1Se > <(Sub1)1Se | (Sub1)1Se>

24. < {(Sub1)1Se,(xp,yp)1Se} 1Se | G | {(Sub1)1Se,(vd,wd)1Se} 1Se > =

<(xp,yp)1Se |G| (vd,wd)1Se> <(Sub1)1Se | (Sub1)1Se>

25. < {(Sub1)1Se,(xd2)1Se} 1Se | G | {(Sub1)1Se,(ys2)1Se} 1Se > =

< (xd2)1Se |G| (ys2)1Se > <(Sub1)1Se | (Sub1)1Se>

26. < {(Sub1)1Se,(xd2)1Se} 1Se | G | {(Sub1)1Se,(vs,ws)1Se} 1Se > =

< (xd2)1Se |G| (vs,ws)1Se > <(Sub1)1Se | (Sub1)1Se>

27. < {(Sub1)1Se,(xd,yd)1Se} 1Se | G | {(Sub1)1Se,(vs2)1Se} 1Se > =

< (xd,yd)1Se |G| (vs2)1Se > <(Sub1)1Se | (Sub1)1Se>

28. < {(Sub1)1Se,(xd,yd)1Se} 1Se | G | {(Sub1)1Se,(vs,ws)1Se} 1Se > =

<(xd,yd)1Se |G| (vs,ws)1Se> <(Sub1)1Se | (Sub1)1Se>

29. < {(Sub1)1Se,(xd2)1Se} 1Se | G | {(Sub1)1Se,(yp2)1Se} 1Se > =

< (xd2)1Se |G| (yp2)1Se > <(Sub1)1Se | (Sub1)1Se>

30. < {(Sub1)1Se,(xd2)1Se} 1Se | G | {(Sub1)1Se,(vp,wp)1Se} 1Se > =

< (xd2)1Se |G| (vp,wp)1Se > <(Sub1)1Se | (Sub1)1Se>

31. < {(Sub1)1Se,(xd,yd)1Se} 1Se | G | {(Sub1)1Se,(vp2)1Se} 1Se > =

< (xd,yd)1Se |G| (vp2)1Se > <(Sub1)1Se | (Sub1)1Se>

32. < {(Sub1)1Se,(xd,yd)1Se} 1Se | G | {(Sub1)1Se,(vp,wp)1Se} 1Se > =

<(xd,yd)1Se |G| (vp,wp)1Se> <(Sub1)1Se | (Sub1)1Se>

33. < {(Sub1)1Se,(xd2)1Se} 1Se | G | {(Sub1)1Se,(yd2)1Se} 1Se > =

< (xd2)1Se |G| (yd2)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xd2)1Se|(yd2)1Se> +

1/1 <(1s,xd)1De |G| (1s,yd)1De> <xd|yd> +

3/1 <(1s,xd)3De |G| (1s,yd)3De> <xd|yd>

34. < {(Sub1)1Se,(xd2)1Se} 1Se | G | {(Sub1)1Se,(vd,wd)1Se} 1Se > =

< (xd2)1Se |G| (vd,wd)1Se > <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xd2)1Se|(vd,wd)1Se> +

SQRT(1/2) <(1s,xd)1De |G| (1s,vd)1De> <xd|wd> +

SQRT(9/2) <(1s,xd)3De |G| (1s,vd)3De> <xd|wd>

35. < {(Sub1)1Se,(xd,yd)1Se} 1Se | G | {(Sub1)1Se,(vd2)1Se} 1Se > =

< (xd,yd)1Se |G| (vd2)1Se > <(Sub1)1Se | (Sub1)1Se> +
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< (Sub1)1Se |G| (Sub1)1Se > <(xd,yd)1Se|(vd2)1Se> +

SQRT(1/2) <(1s,xd)1De |G| (1s,vd)1De> <yd|vd> +

SQRT(9/2) <(1s,xd)3De |G| (1s,vd)3De> <yd|vd>

36. < {(Sub1)1Se,(xd,yd)1Se} 1Se | G | {(Sub1)1Se,(vd,wd)1Se} 1Se > =

<(xd,yd)1Se |G| (vd,wd)1Se> <(Sub1)1Se | (Sub1)1Se> +

< (Sub1)1Se |G| (Sub1)1Se > <(xd,yd)1Se|(vd,wd)1Se> +

1/2 <(1s,xd)1De |G| (1s,vd)1De> <yd|wd> +

3/2 <(1s,xd)3De |G| (1s,vd)3De> <yd|wd>
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Santrauka

Pateiktas bendras algoritmas atomo banginės funkcijos skleidi-

niui gauti ir įvairių atominių dydžių operatorių matriciniams ele-

mentams skaičiuoti. Elektrostatinės sąveikos operatoriaus matri-

cinis elementas yra išreiškiamas kaip trijų daugiklių – konstantos,

dvielektronio matricinio elemento ir daugiklio, priklausančio nuo

sąveikaujančių elektronų orbitinių kvantinių skaičių, – sandauga.

Išsamiai aprašyta berilio 1s2
2s2 1S pagrindinė būsena.


