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The model of weak measurements is applied to various problems, related to the time problem in quantum mechanics. The
review and generalization of the theoretical analysis of the time problem in quantum mechanics based on the concept of weak
measurements are presented. A question of the time interval the system spends in the specified state, when the final state of the
system is given, is raised. Using the concept of weak measurements the expression for such time is obtained. The results are
applied to the tunnelling problem. A procedure for the calculation of the asymptotic tunnelling and reflection times is proposed.
Examples for δ-form and rectangular barrier illustrate the obtained results. Using the concept of weak measurements the arrival
time probability distribution is defined by analogy with the classical mechanics. The proposed procedure is suitable to the free
particles and to particles subjected to an external potential, as well. It is shown that such an approach imposes an inherent
limitation to the accuracy of the arrival time definition.
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1. Introduction

Time plays a special role in quantum mechan-
ics. Unlike other observables, time remains a clas-
sical variable. It cannot be simply quantized be-
cause, as it is well known, the self-adjoint operator
of time does not exist for the bounded Hamiltoni-
ans. The problems related to time also arise from
the fact that in quantum mechanics many quantities
cannot have definite values simultaneously. The ab-
sence of the time operator makes this problem even
more complicated. However, in practice time is of-
ten important for an experimenter. If quantum me-
chanics can correctly describe the outcomes of the ex-
periments, it must also give the method for the cal-
culation of the time the particle spends in some re-
gion.

The most-known problem of time in quantum me-
chanics is the so-called “tunnelling time problem”.
Tunnelling phenomena are inherent in numerous quan-
tum systems, ranging from an atom and condensed
matter to quantum fields. There have been many
attempts to define a physical time for tunnelling
processes, since this question has been raised by
MacColl [1] in 1932. This question is still a subject of

much controversy, since numerous theories contradict
each other in their predictions for the “tunnelling time”.
Some of these theories predict that the tunnelling pro-
cess is faster than light, whereas the others state that
it should be subluminal. This subject has been cov-
ered in a number of reviews (by Hauge and Støvneng
in 1989 [2], Olkholovsky and Recami in 1992 [3], Lan-
dauer and Martin in 1994 [4], and Chiao and Steinberg
in 1997 [5]). The fact that there is a time related to
the tunnelling process has been observed experimen-
tally [6–15]. However, the results of the experiments
are ambiguous.

Many problems with time in quantum mechanics
arise from the noncommutativity of the operators. The
noncommutativity of the operators in quantum me-
chanics can be circumvented by using the concept of
weak measurements. The concept of weak measure-
ment was proposed by Aharonov, Albert, and Vaidman
[16–21]. Such an approach has several advantages. It
gives, in principle, the procedure for measuring the
physical quantity. Second, since in the classical me-
chanics all quantities can have definite values simulta-
neously, weak measurements give the correct classical
limit. The concept of weak measurements has been al-
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ready applied to the time problem in quantum mechan-
ics [22–24].

Time in classical mechanics describes not a single
state of the system but the process of the evolution.
This property is an essential concept of time. We speak
about the time belonging to a certain evolution of the
system. If the measurement of the time disturbs the
evolution we cannot attribute this measured duration
to the undisturbed evolution. Therefore, we should re-
quire that the measurement of the time does not disturb
the motion of the system. This means that the inter-
action of the system with the measuring device must
be asymptotically weak. In quantum mechanics this
means that we cannot use the strong measurements de-
scribed by the von Neumann’s projection postulate. We
have to use the weak measurements of Aharonov, Al-
bert, and Vaidman [16–21], instead.

We proceed as follows. In Section 2 we present the
model of the weak measurements. Section 3 presents
the time on condition that the system is in the given
final state. In Section 4, our formalism is applied to
the tunnelling time problem. In Section 5 the weak
measurement of the quantum arrival time distribution
is presented. Section 6 summarizes our findings.

2. The concept of weak measurements

In this section we present the concept of weak mea-
surement, proposed by Aharonov, Albert, and Vaidman
[16–21]. We measure the quantity represented by the
operator Â.

We have the detector in the initial state |Φ〉. For a
weak measurement to provide the meaningful informa-
tion the measurements must be performed on an en-
semble of identical systems. It is supposed that each
system with its own detector is prepared in the same
initial state. After measurement the readings of the de-
tectors are collected and averaged.

Our model consists of the system S under consider-
ation and of the detector D. The total Hamiltonian is

Ĥ = ĤS + ĤD + ĤI, (1)

where ĤS and ĤD are the Hamiltonians of the sys-
tem and detector, respectively. We take the operator
describing the interaction between the particle and the
detector of the form [22, 23, 25–28]

ĤI = λq̂Â, (2)

where λ characterizes the strength of the interaction
between the system and detector. The small parame-
ter λ ensures the undisturbance of the system’s evolu-

tion. The measurement duration is τ . In this section we
assume that the interaction strength λ and the time τ
are small. The operator q̂ acts in the Hilbert space of
the detector. We require the spectrum of the operator q̂
to be continuous. For simplicity, we can consider this
operator to be the coordinate of the detector. The mo-
mentum conjugate to q is pq.

The interaction operator (2) only slightly differs
from the one used by Aharonov, Albert, and Vaidman
[17]. The similar interaction operator has been consid-
ered by von Neumann [29] and has been widely used in
the strong measurement models (e. g., [28, 30–34] and
many others).

Hamiltonian (2) represents a constant force acting
on the detector. This force results in the change of
momentum of the detector. From the classical point
of view, the change of the momentum is proportional
to the force acting on the detector. Since interaction
strength λ and the duration of the measurement τ are
small, the average 〈Â〉 should not change significantly
during the measurement. The action of the Hamilto-
nian (2) results in the small change of the mean de-
tector momentum 〈p̂q〉 − 〈p̂q〉0 = −λτ〈Â〉, where
〈p̂q〉0 = 〈Φ(0)|p̂q|Φ(0)〉 is the mean momentum of
the detector at the beginning of the measurement and
〈p̂q〉 = 〈Φ(τ)|p̂q|Φ(τ)〉 is the mean momentum of the
detector after the measurement. Therefore, in anal-
ogy to [17], we define the “weak value” of the aver-
age 〈Â〉,

〈Â〉 =
〈p̂q〉0 − 〈p̂q〉

λτ
. (3)

At the moment t = 0 the density matrix of the
whole system is ρ̂(0) = ρ̂S(0)⊗ ρ̂D(0), where ρ̂S(0) is
the density matrix of the system and ρ̂D(0) = |Φ〉〈Φ|
is the density matrix of the detector. After the inter-
action the density matrix of the detector is ρ̂D(t) =
Tr S{Û (t)(ρ̂S(0) ⊗ |Φ〉〈Φ|)Û †(t)}, where Û(t) is the
evolution operator. Later, for simplicity we shall ne-
glect the Hamiltonian of the detector. Then, the evolu-
tion operator in the first-order approximation is [22]

Û(t) ≈ ÛS(t)

(
1 +

λq̂

i~

∫ t

0
Ã(t1) dt1

)
, (4)

where ÛS(t) is the evolution operator of the unper-
turbed system and Ã(t) = Û †

S(t)ÂÛS(t). From Eq. (3)
we obtain that the weak value coincides with the usual
average 〈Â〉 = Tr {Âρ̂S(0)}.

The influence of the weak measurement on the evo-
lution of the measured system can be made arbitrary
small using the small parameter λ. Therefore, after the
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interaction of the measured system with the detector
we can try to measure the second observable B̂ using,
as usual, the strong measurement. As far as our model
gives the correct result for the value of A averaged over
the entire ensemble of the systems, now we can try to
take the average only over the subensemble of the sys-
tems with the given value of the quantity B. We mea-
sure the momenta pq of each measuring device after the
interaction with the system. Subsequently, we perform
the final, postselection measurement of B on the sys-
tems of our ensemble. Then we collect the outcomes pq

only of the systems which have a given value of B.
The joint probability that the system has the given

value of B and the detector has the momentum pq(t) at
the time moment t is

W (B, pq; t) = Tr
{
|B〉〈B|pq〉〈pq|ρ̂(t)

}
,

where |pq〉 is the eigenfunction of the momentum oper-
ator p̂q. In quantum mechanics the probability that two
quantities simultaneously have definite values does not
always exist. If the joint probability does not exist then
the concept of the conditional probability is meaning-
less. However, in our case operators B̂ and |pq〉〈pq| act
in different spaces and commute, therefore, the proba-
bility W (B, pq; t) exists.

Let us define the conditional probability, i. e. the
probability that the momentum of the detector is pq pro-
vided that the system has the given value of B. This
probability is given according to the Bayes theorem as

W (pq; t|B) =
W (B, pq; t)

W (B; t)
, (5)

where W (B; t) = Tr {|B〉〈B|ρ̂(t)} is the probability
that the system has the given value of B. The average
momentum of the detector on condition that the system
has the given value of B is

〈pq(t)〉 =

∫
pqW (pq; t|B) dpq. (6)

From Eqs. (3) and (6), in the first-order approxi-
mation we obtain the mean value of A on condition
that the system has the given value of B (for analogy,
see [22])

〈A〉B =
1

2〈B|ρ̂S|B〉
〈
|B〉〈B|Â + Â|B〉〈B|

〉

+
1

i~〈B|ρ̂S|B〉

×
(
〈q〉〈pq〉 − Re 〈q̂p̂q〉

)〈[
|B〉〈B|, Â

]〉
. (7)

If the commutator [|B〉〈B|, Â] in Eq. (7) is not zero
then, even in the limit of the very weak measurement,
the measured value depends on the particular detec-
tor. This fact means that in such a case we cannot
obtain the definite value. Moreover, the coefficient
(〈q〉〈pq〉−Re 〈q̂p̂q〉) may be zero for the specific initial
state of the detector, e. g., for the Gaussian distribution
of the coordinate q and momentum pq.

3. Definition of time under condition that the

system is in the given final state

The most-known problem related to time in quantum
mechanics is the so-called “tunnelling time problem”.
We can raise another, more general, question about the
time. Let us consider a system which evolves in time.
Let χ is one of the observables of the system. During
the evolution the value of χ changes. We are consider-
ing a subset Γ of possible values of χ. The question is
how long the values of χ belong to this subset.

There is another version of the question. If we know
the final state of the system, we may ask how long the
values of χ belong to the subset under consideration
when the system evolves from the initial to a final pre-
defined state. The question about the tunnelling time
belongs to such class of the problems. Really, in the
tunnelling time problem we ask about the duration the
particle spends in a specified region of the space, and
we know that the particle has tunnelled out, i. e. it is on
the other side of the barrier. We can expect that such
a question can not always be answered. Here our goal
is to obtain the conditions under which it is possible to
answer such question.

One of the possibilities to solve the time problem is
to answer what exactly the word “time” means. The
meaning of every physical quantity is determined by
the procedure of its measurement. Therefore, we have
to construct a scheme of an experiment (this can be
a gedanken experiment) which measures the quantity
with the properties corresponding to the classical time.

3.1. Model of the time measurement

We consider a system evolving with time. Let one of
the quantities describing the system be χ. Operator χ̂
corresponds to this quantity. For simplicity we assume
that the operator χ̂ has a continuous spectrum. The case
with discrete spectrum will be considered later.

The measuring device interacts with the system only
if χ is in some region near the point χD, the concrete
value of which depends on the detector only. If we want
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to measure the time when the system is in a large re-
gion of χ, one has to use many detectors. In the case
of tunnelling a similar model was introduced by Stein-
berg [35] and developed in our paper [23]. The strong
limit of such a model for analysis of the measurement
effect for the quantum jumps has been used in [25].

We shall use the weak measurement concept de-
scribed in Section 2. The operator Â will be repre-
sented by the operator

D̂(χD) = |χD〉〈χD| = δ(χ̂ − χD). (8)

It is assumed that after time t the readings of the detec-
tors are collected and averaged.

Hamiltonian (2) with Â given by Eq. (8) represents a
constant force acting on the detector D when the quan-
tity χ is very close to χD. This force induces the change
of the detector’s momentum. From the classical point
of view, the change of the momentum is proportional
to the time the particle spends in the region around χD,
and the coefficient of proportionality equals the force
acting on the detector. We assume that the change of
the mean momentum of the detector is proportional to
the time the constant force acts on the detector and that
the time the particle spends in the detector’s region co-
incides with the time the force acts on the detector.

We can replace the δ-function by the narrow rect-
angle of height 1/L and of width L in the χ space.
From Eq. (2) it follows that the force acting on the de-
tector when the particle is in the region around χD is
F = −λ/L. The time the particle spends until time
moment t in the unit-length region is

τ(t) = − 1

λ

(
〈pq(t)〉 − 〈pq〉

)
, (9)

where 〈pq〉 and 〈pq(t)〉 are the mean initial momentum
and the momentum after time t, respectively. If one
wants to find the period the system spends in the region
of the finite width, one must sum expressions of the
type (9) many times.

When the operator χ̂ has a discrete spectrum, one
may ask for how long the quantity χ has the value χD.
To answer this question the detector must interact with
the system only when χ = χD. If this is satisfied, the
operator D̂(χD) takes the form

D̂(χD) = |χD〉〈χD|. (10)

The force acting on the detector in this case equals
to −λ. The duration that the quantity χ has the value
χD is given by Eq. (9), too. Note that now the formulae
do not depend on the spectrum of the operator χ̂.

3.2. Dwell time

To shorten the notation, the operator

F̂ (χD, t) =

∫ t

0
D̃(χD, t1) dt1 (11)

is introduced, where

D̃(χD, t) = Û †
S(t)D̂(χD)ÛS(t). (12)

After measurement, from the density matrix of the
detector, in the first-order approximation we find that
the average change of the detector momentum in the
time interval t is −λ〈F̂ (χD, t)〉. From Eq. (9) we ob-
tain the dwell time until time moment t,

τ(χ, t) =
〈
F̂ (χ, t)

〉
. (13)

Then the time spent in the region Γ is

τ(Γ; t) =

∫

Γ
τ(χ, t) dχ =

∫ t

0
dt′

∫

Γ
dχP (χ, t′),

(14)
where P (χ, t′) = 〈D̃(χ, t)〉 is the probability for the
system to have the value χ at time moment t′.

When χ is the coordinate of the particle, Eq. (14)
yields the well-known expression for the dwell time
[3, 23]. This time is the average over the entire ensem-
ble of the systems, regardless of their final states.

A relationship between dwell, transmission, and re-
flection times has recently been analysed in paper [36]
while in paper [37] a relation between the group delay
and the dwell time for quantum tunnelling is derived.
It is shown that the group delay is equal to the dwell
time plus self-interference delay which depends on the
dispersion outside the barrier. The analysis shows that
there is nothing superluminal in quantum tunnelling
and the Hartman effect for tunnelling quantum parti-
cles can be explained by the saturation of the integrated
probability density under the barrier.

3.3. Definition of time under condition that the system

is in a given final state

Further, the case when the final state of the system
is known will be considered. We may ask how long the

values of χ belong to the subset under consideration,

Γ, on condition that the system evolves to the definite

final state f . More specifically, we might know that the
final state of the system belongs to a certain subspace
Hf of system’s Hilbert space. The projection opera-
tor that projects the vectors from the Hilbert space of
the system into the subspace Hf of the final states will
be denoted P̂f . As far as the considered model gives
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the correct result for the time averaged over the entire
ensemble of the systems, we can try to take the aver-
age only over the subensemble of the systems with the
given final states. At first, the momenta pq of each mea-
suring device after the interaction with the system are
measured. Subsequently, we perform the final, post-
selection measurement on the systems of the ensemble.
Then we collect the outcomes pq only of those systems
the final state of which turns out to belong to the sub-
space Hf .

Using Eq. (7) in Section 2 we obtain the duration,
on condition that the final state of the system belongs
to the subspace Hf [22],

τf (χ, t) =
1

2〈P̃f (t)〉
〈
P̃f (t)F̂ (χ, t) + F̂ (χ, t)P̃f (t)

〉

+
1

i~〈P̃f (t)〉
(
〈q〉〈pq〉 − Re 〈q̂p̂q〉

)

×
〈[

P̃f (t), F̂ (χ, t)
]〉

. (15)

Equation (15) consists of two terms, thus, we can
introduce two expressions with the dimension of time

τ
(1)
f (χ, t) =

1

2〈P̃f (t)〉
〈
P̃f (t)F̂ (χ, t) + F̂ (χ, t)P̃f (t)

〉
,

(16)

τ
(2)
f (χ, t) =

1

2i〈P̃f (t)〉
〈[

P̃f (t), F̂ (χ, t)
]〉

. (17)

Then, the time the system spends in the subset Γ on
condition that the final state of the system belongs to
the subspace Hf can be rewritten in the form

τf (χ, t)

= τ
(1)
f (χ, t) +

2

~

(
〈q〉〈pq〉 − Re 〈q̂p̂q〉

)
τ

(2)
f (χ, t).

(18)

The quantities τ
(1)
f (χ, t) and τ

(2)
f (χ, t) are related to

the real and imaginary parts of the complex time in-
troduced by Sokolovski et al. [38]. In our model the
quantity τf (χ, t) is real, contrary to the complex-time

approach. The components of time τ
(1)
f and τ

(2)
f are

real, too. Therefore, this time can be interpreted as the
duration of an event.

If the commutator [P̃f (t), F̂ (χ, t)] in Eq. (15) is not
zero then, even in the limit of very weak measurements,
the measured value depends on the particular detector
used. This means that in such a case we cannot obtain

a definite value for the conditional time. Moreover, the
coefficient (〈q〉〈pq〉−Re 〈q̂p̂q〉) can be zero for the spe-
cific initial state of the detector, e. g., for the Gaussian
distribution of the coordinate q and momentum pq.

The conditions to determine the time uniquely in a
case when the final state of the system is known takes,
thus, the form

[
P̃f (t), F̂ (χ, t)

]
= 0, (19)

which can be understood from the general principles of
quantum mechanics, too. Now, we ask how long the

values of χ belong to a certain subset when the system

evolves to the given final state under assumption that
the final state of the system is known with certainty.
In addition, we want to have some information about
the values of the quantity χ. However, if the final state
is known with certainty, we may not know the values
of χ in the past and, vice versa, if we know something
about χ, we may not definitely determine the final state.
Therefore, in such a case the question about the time
when the system evolves to the given final state cannot
be answered definitely and the conditional time has no
reasonable meaning.

The quantity τf (t) according to Eqs. (15) and (16)
has many properties of the classical time. So, if the
final states {f} constitute the full set, then the cor-
responding projection operators obey the equality of
completeness

∑
f P̂f = 1. Then, from Eq. (15) we

obtain the expression
∑

f

〈P̃f (t)〉τf (χ, t) = τ(χ, t). (20)

The quantity 〈P̃f (t)〉 is the probability that the system
at the time t is in the state f . Equation (20) shows that
the full duration equals the average over all possible
final states, as it is a case in the classical physics. From
Eq. (20) and Eqs. (16), (17) it follows

∑

f

〈P̃f (t)〉τ (1)
f (χ, t) = τ(χ, t), (21)

∑

f

〈P̃f (t)〉τ (2)
f (χ, t) = 0. (22)

We suppose that the quantities τ
(1)
f (χ, t) and τ

(2)
f (χ, t)

can be useful even in the case when the time has no
definite value, since in the tunnelling time problem the
quantities (16) and (17) correspond to real and imagi-
nary parts of the complex time, respectively [23].

The eigenfunctions of the operator χ̂ constitute the
full set

∫
|χ〉〈χ|dχ = 1, where the integral must be

replaced by the sum for the discrete spectrum of the
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operator χ̂. From Eqs. (8), (11), (15) we obtain the
equality

∫
τf (χ, t) dχ = t, (23)

which shows that the time during which the quantity χ
has any value equals to t, as it is in the classical physics.

3.4. Example: Two-level system

The obtained formalism can be applied to the tun-
nelling time problem [23]. In this section, however, we
will consider a simpler system than the tunnelling par-
ticle, i. e. a two-level system. The system is forced by
the perturbation V that causes the jumps from one state
to another. The time the system is in a given state will
be calculated.

The Hamiltonian of this system is

Ĥ = Ĥ0 + V̂ , (24)

where Ĥ0 = ~ωσ̂3/2 is the Hamiltonian of the unper-
turbed system and V̂ = vσ̂+ + v∗σ̂− is the pertur-
bation. Here σ̂1, σ̂2, σ̂3 are Pauli matrices and σ± =
1
2 (σ̂1 ± iσ̂2). The Hamiltonian Ĥ0 has two eigen-
functions |0〉 and |1〉 with the eigenvalues −~ω/2 and
~ω/2, respectively. The initial state of the system as-
sumed to be |0〉.

From Eq. (13) we obtain the times the system spends
in the energy levels 0 and 1, respectively,

τ(0, t) =
1

2

(
1 +

ω2

Ω2

)
t +

1

2Ω
sin(Ωt)

(
1 − ω2

Ω2

)
, (25)

τ(1, t) =
1

2

(
1 − ω2

Ω2

)
t − 1

2Ω
sin(Ωt)

(
1 − ω2

Ω2

)
, (26)

where Ω =
√

ω2 + 4(|v|/~)2. From Eqs. (16) and
(17) we can obtain the conditional time. The compo-
nents (16) and (17) of the time the system spends in the
level 0 under condition that the final state after mea-
surement is |1〉 are

τ
(1)
1 (0, t) =

t

2
, (27)

τ
(2)
1 (0, t) =

ω

2Ω

[
1 − t cot

(
Ω

2
t

)]
. (28)

When Ωt = 2πn, where n ∈ Z, the quantity τ
(2)
1 (0, t)

tends to infinity. This happens because at these time
moments the system is in the state |1〉 with the prob-
ability 0, and one cannot consider the interaction with
the detector as very weak.

τ

1

2

−1

0

1

3

4

5

6

0 1 2 4 5 6

2

3

t

Fig. 1. The time the system spends in the energy level 0, τ (0, t)
(dashed line), and level 1, τ (1, t) (dotted line), according to
Eqs. (25) and (26), respectively. The quantity τ

(1)
1 (0, t), Eq. (27),

is shown as solid straight line. The quantities τ
(1)
0 (0, t) and

τ
(1)
0 (1, t), shown by curves 1 and 2, were calculated according to

Eqs. (30) and (31), respectively. The parameters are ω = 2, Ω = 4.

On the other hand, the components of the time the
system spends in level 0 under condition that the final
state is |0〉 are

τ
(1)
0 (0, t)

=

(
1 + 3ω2

Ω2

)
t +

(
1 − ω2

Ω2

)( 2
Ω sin(Ωt) + t cos(Ωt)

)

2
[(

1 + ω2

Ω2

)
+

(
1 − ω2

Ω2

)
cos(Ωt)

] ,

(29)

τ
(2)
0 (0, t)

=
ω
Ω

(
1 − ω2

Ω2

)
sin

(
Ω
2 t

)[
t cos

(
Ω
2 t

)
− 2

Ω sin
(

Ω
2 t

)]

2
[(

1 + ω2

Ω2

)
+

(
1 − ω2

Ω2

)
cos(Ωt)

] .

(30)

The time the system spends in level 1 under condi-
tion that the final state is |0〉 can be expressed as

τ
(1)
0 (1, t) =

(
1 − ω2

Ω2

)(
t + t cos(Ωt) − 2

Ω sin(Ωt)
)

2
[(

1 + ω2

Ω2

)
+

(
1 − ω2

Ω2

)
cos(Ωt)

] .

(31)
The quantities τ(0, t), τ(1, t), τ

(1)
1 (0, t), τ

(1)
0 (0, t),

and τ
(1)
0 (1, t) are shown in Fig. 1. The quantity

τ
(2)
0 (0, t) is shown in Fig. 2. Note that the partial dura-

tions at the given final state are not necessarily mono-
tonic as it is with the full duration, because the final
state at different time moments can be reached by dif-
ferent paths. We can interpret the quantity τ

(1)
0 (0, t) as

the time the system spends in the level 0 on condition
that the final state is |0〉, but at certain time moments
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Fig. 2. The quantity τ
(2)
0 (0, t), Eq. (30). The parameters are the

same as in Fig. 1.

this quantity is greater than t. In such cases the quan-

tity τ
(1)
0 (1, t) becomes negative at certain times. This

is a consequence of the fact that for the system under
consideration the condition (19) is not fulfilled. The
peculiarities of the behaviour of the conditional times
show that it is impossible to decompose the uncondi-
tional time into two components having all classical
properties of the time.

4. Tunnelling time

The best-known problem of time in quantum me-
chanics is the so-called “tunnelling time problem”.
This problem is still the subject of much controversy,
since numerous theories contradict each other in their
predictions for the “tunnelling time”. Many of the theo-
retical approaches can be divided into three categories.
First, one can study the evolution of the wave packets
through the barrier and get the phase time. However,
the correctness of the definition of this time is highly
questionable [39]. Another approach is based on the
determination of a set of dynamic paths, i. e. the calcu-
lation of the time the different paths spend in the bar-
rier and averaging over the set of the paths. The paths
can be found from the Feynman path integral formal-
ism [38], from the Bohm approach [40–45], or from
the Wigner distribution [46]. The third class uses a
physical clock which is used for determination of the
time elapsed during the tunnelling (Büttiker and Lan-
dauer used an oscillatory barrier [39], Baz’ suggested
the Larmor time [47]). One more approach is based on
a model for tunnelling based on stochastic interpreta-
tion of quantum mechanics [48–51].

The problems arise also from the fact that the ar-
rival time of a particle to a definite spatial point is a
classical concept. Its quantum counterpart is problem-
atic even for the free particle case. In classical me-
chanics, for the determination of the time the particle
spends moving along a certain trajectory, one has to
measure the position of the particle at two different mo-
ments of time. In quantum mechanics this procedure
does not work. From Heisenberg’s uncertainty princi-
ple it follows that we cannot measure the position of
a particle without alteration of its momentum. To de-
termine exactly the arrival time of a particle, one has
to measure the position of the particle with great pre-
cision. Because of the measurement, the momentum
of the particle will have a big uncertainty and the sec-
ond measurement will be indefinite. If we want to ask
about the time in quantum mechanics, we need to de-
fine the procedure of measurement. We can measure
the position of the particle only with a finite precision
and get a distribution of the possible positions. Apply-
ing such a measurement, we can expect to obtain not a
single value of the traversal time but a distribution of
times.

In the paper [52] the tunnelling time distribution for
photon tunnelling is analysed theoretically as a space–
time correlation phenomenon between the emission
and absorption of a photon on the two sides of a barrier.
The analysis is based on an appropriate counting rate
formula derived at first order in the photon–detector in-
teraction and used in treating space–time correlations
between photons.

There are two different but related questions con-
nected with the tunnelling time problem [53]:

(i) How much time does the tunnelling particle spend
under the barrier?

(ii) At what time does the particle arrive at the point
behind the barrier?

There have been many attempts to answer these
questions. However, there are several papers showing
that according to quantum mechanics the question (i)
makes no sense [53–56]. Our goal is to investigate the
possibility to determine the tunnelling time using weak
measurements.

4.1. Determination of the tunnelling time

To answer the question of how much time does the

tunnelling particle spend under the barrier, we need a
criterion of the tunnelling. The following criterion is
accepted: the particle had tunnelled in the case when



168 J. Ruseckas and B. Kaulakys / Lithuanian J. Phys. 44, 161–182 (2004)

it was in front of the barrier at first and later it was
found behind the barrier. We shall require that the mean
energy of the particle and the energy uncertainty should
be less than the height of the barrier. Following this
criterion, the operator corresponding to the “tunnelling-
flag” observable is introduced

f̂T (X) = Θ(x̂ − X), (32)

where Θ is the Heaviside unit step function and X is
a point behind the barrier. This operator projects the
wave function onto the subspace of functions localized
behind the barrier. The operator has two eigenvalues: 0
and 1. The eigenvalue 0 corresponds to the fact that the
particle has not tunnelled out, while the eigenvalue 1
corresponds to the appearance of particle behind the
barrier.

We will work with the Heisenberg representation.
In this representation, the tunnelling-flag operator be-
comes

f̃T (t,X) = exp

(
i

~
Ĥt

)
f̂T (X) exp

(
− i

~
Ĥt

)
. (33)

To take into account all the tunnelled particles, the limit
t → +∞ must be taken. So, the “tunnelling-flag”
observable in the Heisenberg picture is represented
by the operator f̃T (∞,X) = limt→+∞ f̃T (t,X).
One can obtain the explicit expression for this opera-
tor.

The operator f̃T (t,X) obeys the standard equation

i~
∂

∂t
f̃T (t,X) =

[
f̃T (t,X), Ĥ

]
. (34)

The commutator in Eq. (34) can be expressed as
[
f̃T (t,X), Ĥ

]

= exp

(
i

~
Ĥt

)[
f̂T (X), Ĥ

]
exp

(
− i

~
Ĥt

)
.

If the Hamiltonian has the form

Ĥ =
1

2M
p̂2 + V (x̂),

then the commutator becomes
[
f̂T (X), Ĥ

]
= i~Ĵ(X), (35)

where Ĵ(X) is the probability flux operator,

Ĵ(x) =
1

2M

(
|x〉〈x|p̂ + p̂|x〉〈x|

)
. (36)

Therefore, the following equation for the commutator
can be written:

[
f̃T (t,X), Ĥ

]
= i~J̃(X, t). (37)

The initial condition for the function f̃(t,X) can be
defined as

f̃T (t = 0,X) = f̂T (X).

From Eqs. (34) and (37) we obtain the equation for the
evolution of the tunnelling-flag operator

i~
∂

∂t
f̃T (t,X) = i~J̃(X, t). (38)

From Eq. (38) and the initial condition, an explicit ex-
pression for the tunnelling-flag operator follows:

f̃T (t,X) = f̂T (X) +

∫ t

0
J̃(X, t1) dt1. (39)

In the already mentioned question of how much time

does the tunnelling particle spend under the barrier,
we shall be interested in those particles, which we
know with certainty have tunnelled out. In addition, we
want to have some information about the location of the
particle. However, one may ask whether the quantum
mechanics allows one to have the information about the
tunnelling and location simultaneously? The projection
operator

D̂(Γ) =

∫

Γ
|x〉〈x|dx (40)

represents the probability for the particle to be in the re-
gion Γ. Here |x〉 is the eigenfunction of the coordinate
operator. In the Heisenberg representation this operator
takes the form

D̃(Γ, t) = exp

(
i

~
Ĥt

)
D̂(Γ) exp

(
− i

~
Ĥt

)
. (41)

From Eqs. (36), (39), and (41) we see that the oper-
ators D̃(Γ, t) and f̃T (∞,X) in general do not com-
mute. This means that we cannot simultaneously have
the information about the tunnelling and location of the
particle. If we know with certainty that the particle has
tunnelled out then we can say nothing about its loca-
tion in the past, and if we know something about the
location of the particle, we cannot determine definitely
whether the particle has tunnelled out. Therefore, the
question of how much time does the tunnelling particle

spend under the barrier cannot have definite answer,
if the question is so posed that its precise definition
requires the existence of the joint probability that the
particle is found in Γ at time t and whether or not it is
found on the right side of the barrier at a sufficiently
later time. A similar analysis has been performed in
[56]. It has been shown that, due to noncommutativity
of operators, there exists no unique decomposition of
the dwell time.
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Fig. 3. The configuration of the measurement of the tunnelling
time. The particle P is tunnelling along x coordinate and weakly
interacts with detectors D. The barrier is represented by the hatched
rectangle. The interaction with the individual detectors occurs only
in the narrow region limited by the horizontal lines. The changes

of the momenta of the detectors are represented by arrows.

This conclusion is, however, not negative alto-
gether. We know that

∫ +∞
−∞ |x〉〈x|dx = 1 and

[1, f̃T (∞,X)] = 0. Therefore, if the region Γ is large
enough, one has a possibility to answer the question
about the tunnelling time.

From the fact that the operators D̃(Γ, t) and
f̃T (∞,X) do not commute we can predict that the
measurement of the tunnelling time will yield a value
dependent on the particular detection scheme. We shall
assume the detector is made so that it yields some
value. But if we try to measure noncommuting observ-
ables, the measured values depend on the interaction
between the detector and the measured system. So, in
the definition of the Larmor time there is a dependence
on the type of boundary attributed to the magnetic-field
region [3].

4.2. Model of the time measurement

We consider a model for the tunnelling time mea-
surement which is somewhat similar to the gedanken

experiment used to obtain the Larmor time but is sim-
pler and more transparent. This model was proposed
by Steinberg [35], however, it was treated in a nonstan-
dard way, introducing complex probabilities. Here we
shall use only the formalism of the standard quantum
mechanics.

Our system consists of a particle P and a number
of detectors D [23]. Each detector interacts with the
particle only in a narrow region of space. The config-
uration of the system is shown in Fig. 3. When the
interaction of the particle with the detectors is weak,
the detectors do not influence the state of the particle.
Therefore, we can analyse the action of the detectors
separately. This model is a particular case of time mea-
surement presented in Section 3.1, with χD being the
position of the detector xD. Similar calculations were
done for detector’s position rather than momentum by
Iannaccone [57].

At the moment t = 0 the particle is before the bar-
rier, therefore, 〈x|ρP(0)|x′〉 6= 0 only when x < 0 and
x′ < 0, where ρ̂P(0) is the density matrix of the parti-
cle P.

4.3. Measurement of the dwell time

As in Section 3.2 we obtain the time the parti-
cle spends in the unit length region between time in-
stances 0 and t:

τDw(x, t) = 〈F̂ (x, t)〉. (42)

The time spent in the space region restricted by the co-
ordinates x1 and x2 is

tDw(x2, x1) =

∫ x2

x1

τDw(x, t → ∞) dx

=

∫ x2

x1

dx

∫ ∞

0
ρ(x, t) dt, (43)

which is a well-known expression for the dwell time [3]:
the dwell time is the average over an entire ensemble of
particles regardless whether they tunnelled or not. The
expression for the dwell time obtained in our model
is the same as the well-known expression obtained by
other authors. Therefore, we can expect that our model
can yield a reasonable expression for the tunnelling
time as well.

4.4. Conditional probabilities and the tunnelling time

Having seen that our model is capable to give the
time averaged over entire ensemble of the particles, let
us now take the average over the subensemble of the
tunnelled particles only. This will be done similarly
to Section 3.3 with P̂f replaced by the tunnelling-flag
operator f̂T (X) defined by Eq. (32). From Eq. (15) we
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obtain the duration the tunnelled particle spends in the
unit length region around x until time t [23]

τ(x, t) =
1

2〈f̃T (t,X)〉

×
〈
f̃T (t,X)F̂ (x, t) + F̂ (x, t)f̃T (t,X)

〉

+
1

i~〈f̃T (t,X)〉
(
〈q〉〈pq〉 − Re 〈q̂p̂q〉

)

×
〈[

f̃T (t,X), F̂ (x, t)
]〉

. (44)

The obtained expression (44) for the tunnelling time is
real, contrary to the complex-time approach. It should
be noted that this expression, even in the limit of the
weak measurement, depends on a particular detector.
If the commutator [f̃T (t,X), F̂ (x, t)] is zero, the time
has a well-defined value. If the commutator is not zero,
only the integral of this expression over a large region
has meaning of an asymptotic time related to the large
region as we will see in Section 4.7.

Equation (44) can be rewritten as a sum of two
terms, the first term being independent and the second
dependent on the detector, i. e.

τ(x, t)

= τTun(x, t) +
2

~

(
〈q〉〈pq〉 − Re 〈q̂p̂q〉

)
τTun
corr (x, t),

(45)

where

τTun(x, t) =
1

2〈f̃T (t,X)〉

×
〈
f̃T (t,X)F̂ (x, t) + F̂ (x, t)f̃T (t,X)

〉
,

(46)

τTun
corr (x, t) =

1

2 i〈f̃T (t,X)〉
〈[

f̃T (t,X), F̂ (x, t)
]〉

. (47)

The quantities τTun(x, t) and τTun
corr (x, t) are indepen-

dent of the detector.
In order to separate the tunnelled and reflected par-

ticles, the limit t → ∞ should be taken. Otherwise,
the particles that tunnelled after the time t will not con-
tribute. If we introduce the operators

F̂ (x) =

∫ ∞

0
D̃(x, t1) dt1, (48)

N̂(x) =

∫ ∞

0
J̃(x, t1) dt1, (49)

then from Eq. (39) it follows that the operator f̃T (∞,X)

is f̂T (X) + N̂(X). If the particle is initially before the
barrier, then

f̂T (X)ρ̂P (0) = ρ̂P (0)f̂T (X) = 0.

In the limit t → ∞ the tunnelling times become

τTun(x) =
1

2〈N̂(X)〉
〈
N̂(X)F̂ (x) + F̂ (x)N̂ (X)

〉
,

(50)

τTun
corr (x) =

1

2 i〈N̂ (X)〉
〈[

N̂(X), F̂ (x)
]〉

. (51)

Let us define an “asymptotic time” as the integral
of τ(x,∞) over a wide region containing the barrier.
Since the integral of τTun

corr (x) is very small compared
to that of τTun(x) as we shall see later, the asymptotic
time is effectively the integral of τTun(x) only. This
allows us to identify τTun(x) as the “density of the tun-
nelling time”.

In many cases for the simplification of mathemat-
ics it is common to write the integrals over time
as the integrals from −∞ to +∞. In our model
we cannot, without additional assumptions, integrate
Eqs. (48), (49) from −∞ because the negative time
means the motion of the particle to the initial posi-
tion. If some particle in the initial wave packet had
a negative momentum then in the limit t → −∞ it
was behind the barrier and contributed to the tunnelling
time.

4.5. Properties of the tunnelling time

As stated, the question of how much time does

a tunnelling particle spend under the barrier has
no exact answer. We can determine only the time
the tunnelling particle spends in a large region con-
taining the barrier. In our model this time is ex-
pressed as an integral of quantity (50) over this re-
gion. In order to determine the properties of this in-
tegral it is useful to determine the properties of the in-
tegrand.

To be able to expand the range of integration over
time to −∞, it is necessary to have the initial wave
packet far to the left from the points under the inves-
tigation and this wave packet must consist only of the
waves moving in the positive direction.

It is convenient to perform calculations in the energy
representation. Eigenfunctions of the Hamiltonian ĤP
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are |E,α〉, where α = ±1. The sign + or − corre-
sponds to the positive or negative initial direction of
the wave, respectively. Outside the barrier these eigen-
functions are

〈x|E,+〉=





√
M

2π~pE

[
exp

(
i

~
pEx

)

+ r(E) exp

(
− i

~
pEx

)]
,

x < 0,

√
M

2π~pE
t(E) exp

(
i

~
pEx

)
,

x > L,

(52)

〈x|E,−〉=





√
M

2π~pE
t(E) exp

(
− i

~
pEx

)
,

x < 0,

√
M

2π~pE

[
exp

(
− i

~
pEx

)

− t(E)

t∗(E)
r∗(E) exp

(
i

~
pEx

)]
,

x > L,

(53)

where t(E) and r(E) are transmission and reflection
amplitudes, respectively, and

pE =
√

2ME. (54)

Here M is the mass of the particle. The barrier is in the
region between x = 0 and x = L. These eigenfunc-
tions are orthonormal, i. e.

〈E,α|E′, α′〉 = δα,α′δ(E − E′). (55)

The evolution operator is

ÛP(t) =
∑

α

∫ ∞

0
|E,α〉〈E,α| exp

(
− i

~
Et

)
dE.

Then the operator F̂ (x) assumes the form

F̂ (x) =

∫ ∞

−∞
dt1

∑

α,α′

∫∫
dE dE′ |E,α〉〈E,α|x〉

× 〈x|E′, α′〉〈E′, α′| exp

[
i

~
(E − E′)t1

]
,

where the integral over the time yields 2π~δ(E − E′),
and therefore,

F̂ (x)

= 2π~

∑

α,α′

∫
dE |E,α〉〈E,α|x〉〈x|E,α′〉〈E,α′|.

Similarly, we find

N̂(x)

= 2π~

∑

α,α′

∫
dE |E,α〉〈E,α|Ĵ (x)|E,α′〉〈E,α′|.

If the initial wave packet consisting only of the waves
moving in the positive direction is assumed, then one
has

〈N̂(x)〉

= 2π~

∫
dE

〈
|E,+〉〈E,+|Ĵ(x)|E,+〉〈E,+|

〉
,

〈F̂ (x)N̂ (X)〉

= 4π2
~

2
∑

α

∫
dE

〈
|E,+〉〈E,+|x〉〈x|E,α〉

× 〈E,α|Ĵ(X)|E,+〉〈E,+|
〉
.

From the condition X > L it follows that

〈N̂ (X)〉 =

∫
dE

〈
|E,+〉|t(E)|2〈E,+|

〉
. (56)

For x < 0 we obtain the following expressions for the
quantities τTun(x, t) and τTun

corr (x, t):

τTun(
x, t

)
=

M

〈N̂(X)〉

∫
dE

〈
|E,+〉 1

2pE
|t(E)|2

×
[
2 + r(E) exp

(
−2

i

~
pEx

)

+ r∗(E) exp

(
2

i

~
pEx

)]
〈E,+|

〉
, (57)

τTun
corr

(
x, t

)
=

M

2〈N̂ (X)〉

∫
dE

〈
|E,+〉 1

ipE
|t(E)|2

×
[
r(E) exp

(
−2

i

~
pEx

)

− r∗(E) exp

(
2

i

~
pEx

)]
〈E,+|

〉
. (58)
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Fig. 4. Asymptotic time density for a δ-function barrier with the
parameter Ω = 2. The barrier is located at the point x = 0. The
units are such that ~ = 1, M = 1, and the average momentum of
the Gaussian wave packet 〈p〉 = 1. In these units length and time
are dimensionless. The width of the wave packet in the momentum

space is σ = 0.001.

For x > L these expressions take the form

τTun(x, t)

=
M

〈N̂(X)〉

∫
dE

〈
|E,+〉 1

2pE
|t(E)|2

×
[
2 − t(E)

t∗(E)
r∗(E) exp

(
2

i

~
pEx

)

− t∗(E)

t(E)
r(E) exp

(
−2

i

~
pEx

)]
〈E,+|

〉
, (59)

τTun
corr (x, t)

=
M

2〈N̂(X)〉

∫
dE

〈
|E,+〉 i

pE
|t(E)|2

×
[

t(E)

t∗(E)
r∗(E) exp

(
2

i

~
pEx

)

− t∗(E)

t(E)
r(E) exp

(
−2

i

~
pEx

)]
〈E,+|

〉
. (60)

To illustrate the obtained formulae, the δ-function
barrier

V (x) = Ωδ(x)

and the rectangular barrier will be used. The Gaussian
incident wave packet initially is far to the left of the
barrier.

�� ��� � �  �� �����������������
����

�
Fig. 5. Asymptotic time density for a rectangular barrier. The bar-
rier is localized between the points x = 0 and x = 5 and the height
of the barrier is V0 = 2. The used units and parameters of the initial

wave packet are the same as in Fig. 4.

In Figs. 4 and 5, we see interference-like oscilla-
tions near the barrier. Oscillations are present not only
in the front of the barrier but also behind the bar-
rier. When x is far from the barrier the “time den-
sity” tends to a value close to 1. This is in agree-
ment with classical mechanics because in the cho-
sen units the mean velocity of the particle is 1. Fig-
ure 5 shows additional property of “tunnelling time
density”: it is almost zero in the barrier region. This
explains the Hartmann and Fletcher effect [58, 59]: for
opaque barriers the effective tunnelling velocity is very
large.

4.6. Reflection time

We can easily adapt our model for the reflection, too.
In doing this, one should replace the tunnelling-flag
operator f̂T by the reflection-flag operator

f̂R = 1 − f̂T . (61)

Replacement of f̂T by f̂R in Eqs. (50) and (51) gives

〈f̃R(t = ∞,X)〉τRefl(x)

= τDw(x) − 〈f̃T (t = ∞,X)〉τTun(x). (62)

We see that in our model the important condition

τDw = TτTun + RτRefl, (63)

where T and R are the transmission and reflection
probabilities, is satisfied automatically.
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If the wave packet consists of waves moving in the
positive direction, the density of dwell time becomes

τDw(x, t)

= 2π~

∫
dE

〈
|E,+〉〈E,+|x〉〈x|E,+〉〈E,+|

〉
.

(64)

For x < 0 we have

τDw(x, t) = M

∫
dE

〈
|E,+〉 1

pE

×
[
1 + |r(E)|2 + r(E) exp

(
−2

i

~
pEx

)

+ r∗(E) exp

(
2

i

~
pEx

)]
〈E,+|

〉
, (65)

and for the reflection time we obtain the “time density”

τRefl(x) =
M

1 − 〈N̂(X)〉

∫
dE

〈
|E,+〉 1

pE

×
[
2|r(E)|2 +

1

2

(
1 + |r(E)|2

)

× r(E) exp

(
−2

i

~
pEx

)

+ r∗(E) exp

(
2

i

~
pEx

)]
〈E,+|

〉
. (66)

For x > L the density of the dwell time is

τDw(x, t) = M

∫
dE

〈
|E,+〉 1

pE
|t(E)|2〈E,+|

〉
,

(67)
and the “density of the reflection time” can be ex-
pressed as

τRefl(x) =
M

2

∫
dE

〈
|E,+〉 1

pE
|t(E)|2

×
[

t(E)

t∗(E)
r∗(E) exp

(
2

i

~
pEx

)

+
t∗(E)

t(E)
r(E) exp

(
−2

i

~
pEx

)]
〈E,+|

〉
.

(68)

We will illustrate the properties of the reflection
time for the same barriers and Gaussian incident wave
packet initially localized far to the left from the bar-
rier. In Figs. 6 and 7, one can see the interference-like
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Fig. 6. Reflection time density under the same conditions as in
Fig. 4.
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Fig. 7. Reflection time density under the same conditions as in

Fig. 5.
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Fig. 8. Reflection time density for a rectangular barrier in the region
behind the barrier. The parameters and the initial conditions are the

same as in Fig. 5.
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oscillations at both sides of the barrier. Since for the
rectangular barrier the “time density” behind the bar-
rier is very small, this part is presented in Fig. 8. Be-
hind the barrier, the “time density” at certain points be-
comes negative. This is because the quantity τRefl(x)
is not positive definite. Nonpositivity is the direct
consequence of noncommutativity of the operators in
Eqs. (50) and (51). There is nothing strange in the neg-
ativity of τRefl(x) because this quantity has no physical
meaning. Only the integral over a large region has the
meaning of time. When x is far to the left from the
barrier the “time density” tends to a value close to 2
and when x is far to the right from the barrier the “time
density” tends to 0. This is in agreement with classi-
cal mechanics because in the chosen units, the velocity
of the particle is 1 and the reflected particle crosses the
area before the barrier two times.

4.7. Asymptotic time

As mentioned above, we can determine only the time
that the tunnelling particle spends in a large region con-
taining the barrier, i. e. the asymptotic time. In our
model this time is expressed as an integral of quan-
tity (50) over this region. We can do the integration
explicitly.

The continuity equation yields

∂

∂t
D̃(xD, t) +

∂

∂xD
J̃(xD, t) = 0. (69)

The integration can be performed by parts:
∫ t

0
D̃(xD, t1) dt1

= tD̃(xD, t) +
∂

∂x

∫ t

0
t1J̃(xD, t1) dt1.

If the density matrix ρ̂P(0) represents a localized par-
ticle then limt→∞(D̃(x, t)ρ̂P(0)) = 0. Therefore, we
can write an effective equality

∫ ∞

0
D̃(xD, t1) dt1 =

∂

∂x

∫ ∞

0
t1J̃(xD, t1) dt1. (70)

We introduce the operator

T̂ (x) =

∫ ∞

0
t1J̃(x, t1) dt1. (71)

We consider the asymptotic time, i. e. the time the parti-
cle spends between points x1 and x2 when x1 → −∞,
x2 → +∞,

tTun(x2, x1) =

∫ x2

x1

τTun(x) dx.

After the integration we have

tTun(x2, x1) = tTun(x2) − tTun(x1), (72)

where

tTun(x) =
1

2〈N̂(x)〉
〈
N̂(x)T̂ (x) + T̂ (x)N̂(x)

〉
. (73)

If we assume that the initial wave packet is far to the
left from the points under the investigation and consists
only of the waves moving in the positive direction, then
Eq. (72) can be simplified.

In the energy representation the operator (71) is

T̂ (x) =

∫ ∞

−∞
t1 dt1

∑

α,α′

∫∫
dE dE′ |E,α〉

× 〈E,α|Ĵ(x)|E′, α′〉〈E′, α′|

× exp

(
i

~
(E − E′)t1

)
.

The integration over time yields

2 iπ~
2 ∂

∂E′
δ(E − E′)

and we obtain

T̂ (x) =−i~2π~

∑

α,α′

∫
dE |E,α〉

×
[

∂

∂E′
〈E,α|Ĵ(x)|E′, α′〉

∣∣
E′=E〈E,α′|

+ 〈E,α|Ĵ(x)|E,α′〉 ∂

∂E
〈E,α′|

]
,

〈N̂(X)T̂ (x)〉

=−i~4π2
~

2

×
∑

α

∫
dE 〈Ψ|E,+〉〈E,+|Ĵ (X)|E,α〉

×
[

∂

∂E′
〈E,α|Ĵ(x)|E′,+〉

∣∣
E′=E

+ 〈E,α|Ĵ(x)|E,+〉 ∂

∂E

]
〈E,+|Ψ〉.

Substituting expressions for the matrix elements of the
probability flux operator we obtain the equation
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〈N̂ (X)T̂ (x)〉

=

∫
dE 〈Ψ|E,+〉t∗(E)

~

i

∂

∂E
t(E)〈E,+|Ψ〉

+ Mx

∫
dE 〈Ψ|E,+〉 1

pE

∣∣t(E)
∣∣2〈E,+|Ψ〉

+ i~
M

2

∫
dE 〈Ψ|E,+〉

× 1

p2
E

r∗(E)t2(E) exp

(
2

i

~
pEx

)
〈E,+|Ψ〉.

When x → +∞, the last term vanishes and we have

〈N̂(X)T̂ (x)〉

=

∫
dE 〈Ψ|E,+〉t∗(E)

~

i

∂

∂E
t(E)〈E,+|Ψ〉

+ Mx

∫
dE 〈Ψ|E,+〉 1

pE

∣∣t(E)
∣∣2〈E,+|Ψ〉,

x → +∞. (74)

This expression is equal to 〈T̂ (x)〉,

〈N̂ (X)T̂ (x)〉 → 〈T̂ (x)〉, x → +∞. (75)

When the point with coordinate x is in front of the
barrier, Eq. (74) becomes

〈N̂(X)T̂ (x)〉

=−i~

∫
dE 〈Ψ|E,+〉|t(E)|2

×
[

i

~

M

pE
x − M

2p2
E

r(E) exp

(
− i

~
2pEx

)
+

∂

∂E

]

× 〈E,+|Ψ〉.

When |x| is large, the second term vanishes and we
have

〈N̂(X)T̂ (x)〉

→Mx

∫
dE 〈Ψ|E,+〉 1

pE

∣∣t(E)
∣∣2〈E,+|Ψ〉

+

∫
dE 〈Ψ|E,+〉

∣∣t(E)
∣∣2 ~

i

∂

∂E
〈E,+|Ψ〉. (76)

The imaginary part of Eq. (76) is not zero. This means
that for determination of the asymptotic time it is in-
sufficient to integrate only in the region containing the

barrier. For quasi-monochromatic wave packets from
Eqs. (71)–(74) and (76) we obtain the limits

tTun(x2, x1)→ tPh
T +

1

pE
M(x2 − x1), (77)

tTun
corr(x2, x1)→−tImT , (78)

where

tPh
T = ~

d

dE

(
arg t(E)

)
(79)

is the phase time and

tImT = ~
d

dE

(
ln

∣∣t
(
E

)∣∣) (80)

is the imaginary part of the complex time.
In order to take the limit x → −∞ we have to per-

form more accurate calculations. The range of integra-
tion over time cannot be extended to −∞ because such
extension corresponds to the initial wave packet being
infinitely far from the barrier. We can extend the range
of the integration over the time to −∞ only in N̂(X).
For x < 0 we obtain the following equation:

〈N̂(X)T̂ (x)〉

=
1

4πM i

∫ ∞

0
t dt

×
[
I∗1 (x, t)

∂

∂x
I2(x, t) − I2(x, t)

∂

∂x
I∗1 (x, t)

]
,

(81)

where

I1(x, t) =

∫
dE

1√
pE

∣∣t(E)
∣∣2

× exp

[
i

~
(pEx − Et)

]
〈E,+|Ψ〉, (82)

I2(x, t) =

∫
dE

1√
pE

×
[
exp

(
i

~
pEx

)
+ r(E) exp

(
− i

~
pEx

)]

× exp

(
− i

~
Et

)
〈E,+|Ψ〉. (83)

Here I1(x, t) is equal to the wave function at the point x
and the time moment t, when the propagation is in the
free space and the initial wave function in the energy
representation is |t(E)|2〈E,+|Ψ〉. When t ≥ 0 and
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Fig. 9. The quantity τTun
corr (x) for the δ-function barrier with the

parameters and initial conditions as in Fig. 4. The initial packet is
shown by dashed line.

x → −∞, then I1(x, t) → 0. That is why the ini-
tial wave packet contains only the waves moving in the
positive direction. Therefore, 〈N̂ (X)T̂ (x)〉 → 0 when
x → −∞. From this analysis it follows that the re-
gion in which the asymptotic time is well determined
has to include not only the barrier but also the initial
wave packet region.

In such a case from Eqs. (72) and (73) we obtain
expression for the asymptotic time

tTun(x2, x1 → −∞)

=
1

〈N̂(X)〉

∫
dE 〈Ψ|E,+〉t∗(E)

×
(

M

pE
x2 − i~

∂

∂E

)
t(E)〈E,+|Ψ〉. (84)

From Eq. (75) it follows that

tTun(x2, x1 → −∞) =
1

〈N̂(X)〉
〈T̂ (x2)〉, (85)

where T̂ (x2) is defined as the probability flux inte-
gral (71). Equations (84) and (85) give the same value
for tunnelling time as does an approach in [60, 61].

The integral of the quantity τTun
corr (x) over a large re-

gion is zero. We have seen that it is not enough to
choose the region around the barrier – this region has to
include also the initial wave packet location. This fact
will be illustrated by numerical calculations.

The quantity τTun
corr (x) for δ-function barrier is repre-

sented in Fig. 9. We see that τTun
corr (x) is not equal to

zero not only in the region around the barrier but also it
is not zero in the location of the initial wave packet. For

ABC ADC AEC AFC AGC AHC CCICCIGCIECIBCIJHICHIGHIE
τ

Tun

x

Fig. 10. Tunnelling time density for the same conditions and pa-
rameters as in Fig. 9.

comparison, the quantity τTun(x) for the same condi-
tions is presented in Fig. 10.

5. Arrival time

The detection of the particles in time-of-flight and
coincidence experiments are common, and quantum
mechanics should give a method for the calculation of
the arrival time. The arrival time distribution may be
useful in solving the tunnelling time problem as well.
Therefore, the quantum description of arrival time has
attracted much attention [62–77].

Aharonov and Bohm introduced the arrival time op-
erator [62]

T̂AB =
m

2

[
(X − x̂)

1

p̂
+

1

p̂
(X − x̂)

]
. (86)

By imposing several conditions (normalization, posi-
tivity, minimum variance, and symmetry with respect
to the arrival point X) a quantum arrival time distribu-
tion for a free particle was obtained by Kijowski [63].
Kijowski’s distribution may be associated with the pos-
itive valued operator measure generated by the eigen-
states of T̂AB. However, Kijowski’s set of conditions
cannot be applied in a general case [63]. Neverthe-
less, arrival time operators can be constructed even if
the particle is not free [73, 78].

Since the mean arrival time even in classical me-
chanics can be infinite or the particle may not arrive
at all, it is convenient to deal not with the mean arrival
time and the corresponding operator T̂ , but with the
probability distribution of the arrival times [24]. The
probability distribution of the arrival times can be ob-
tained from a suitable classical definition. The non-
commutativity of the operators in quantum mechanics
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is circumvented by using the concept of weak measure-
ments.

5.1. Arrival time in classical mechanics

In classical mechanics the particle moves along the
trajectory H(x, p) = const as t increases. This al-
lows us to work out the time of arrival at the point
x(t) = X, by identifying the point (x0, p0) of the phase
space where the particle is at t = 0, and then follow-
ing the trajectory that passes by this point, up to arrival
at the point X. If multiple crossings are possible, one
may define a distribution of arrival times with contri-
butions from all crossings, when no distinction is made
between first, second, and nth arrivals. In this article
we will consider such a distribution.

We can ask whether there is a definition of the ar-
rival time that is valid in both classical and quantum
mechanics. In our opinion, the words “the particle ar-
rives from the left at the point X at the time t” mean
that:

(i) at time t the particle was in the region x < X and
(ii) at time t + ∆t (∆t → 0) the particle is found in

the region x > X.

Now we apply the definition given by (i) and (ii) to the
time of arrival in the classical case.

Since quantum mechanics deals with probabilities,
it is convenient to use probabilistic description of the
classical mechanics, as well. Therefore, we will con-
sider an ensemble of noninteracting classical particles.
The probability density in the phase space is ρ(x, p; t).

Let us denote the region x < X as Γ1 and the region
x > X as Γ2. The probability that the particle arrives
from region Γ1 to region Γ2 at a time between t and
t+∆t is proportional to the probability that the particle
is in region Γ1 at time t and in region Γ2 at time t+∆t.
This probability is

Π+(t)∆t =
1

N+

∫

Ω
dp dx ρ(x, p; t), (87)

where N+ is the constant of normalization and the re-
gion of phase space Ω has the following properties:
(i) the coordinates of the points in Ω are in the space
region Γ1 and (ii) if the phase trajectory goes through
a point of the region Ω at time t then the particle at
time t + ∆t is in the space region Γ2. Since ∆t is in-
finitesimal, the change of coordinate during the time in-
terval ∆t is equal to (p/m)∆t. Therefore, the particle
arrives from region Γ1 to region Γ2 only if the momen-
tum of the particle at the point X is positive. The phase

space region Ω consists of the points with positive mo-
mentum p and with coordinates between X−(p/m)∆t
and X. Then from Eq. (87) we have the probability of
arrival time

Π+(t)∆t =
1

N+

∫ ∞

0
dp

∫ X

X−(p/m)∆t
dx ρ(x, p; t).

(88)
Since ∆t is infinitesimal and the momentum of every
particle is finite, we can replace x in Eq. (88) by X and
obtain the equality

Π+(t,X) =
1

N+

∫ ∞

0

p

m
ρ(X, p; t) dp. (89)

The obtained arrival time distribution Π+(t,X) is well
known and has appeared quite often in the literature
(see, e. g., the review [73] and references therein).

The probability current in classical mechanics is

J(x; t) =

∫ +∞

−∞

p

m
ρ(x, p; t) dp. (90)

From Eqs. (89) and (90) it is clear that the time of ar-
rival is related to the probability current. This relation,
however, is not straightforward. We can introduce the
“positive probability current”

J+(x; t) =

∫ ∞

0

p

m
ρ(x, p; t) dp (91)

and rewrite Eq. (89) as

Π+(t,X) =
1

N+
J+(X; t). (92)

The proposed [79–81] various quantum versions of J+

even in the case of the free particle can be negative (the
so-called backflow effect). Therefore, the classical ex-
pression (92) for the time of arrival becomes problem-
atic in quantum mechanics.

Similarly, for arrival from the right we obtain the
probability density

Π−(t,X) =
1

N−
J−(X; t), (93)

where the negative probability current is

J−(x; t) =

∫ 0

−∞

|p|
m

ρ(x, p; t) dp. (94)

We see that our definition given at the beginning of
this section leads to the proper result in classical me-
chanics. The conditions (i) and (ii) do not involve the
concept of the trajectories. We can try to use this defi-
nition also in quantum mechanics.
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5.2. Weak measurement of the arrival time

The proposed definition of the arrival time proba-
bility distribution can be used in quantum mechanics
only if the determination of the region in which the
particle is does not disturb the motion of the particle.
This can be achieved using the weak measurements of
Aharonov, Albert, and Vaidman [16–21].

We use the weak measurement, described in Sec-
tion 2. The detector interacts with the particle only
in region Γ1. As regards the operator Â we take the
projection operator P̂1 which projects into region Γ1.
In analogy to [17], we define the “weak value” of the
probability of finding the particle in the region Γ1,

W (1) ≡ 〈P̂1〉 =
〈p̂q〉0 − 〈p̂q〉

λτ
. (95)

In order to obtain the arrival time probability using
the definition from Section 5.1, we measure the mo-
menta pq of each detector after the interaction with the
particle. After time ∆t we perform the final, postselec-
tion measurement on the particles of our ensemble and
measure if the particle is found in region Γ2. Then we
collect the outcomes pq only for the particles found in
region Γ2.

The projection operator projecting into the region Γ2

is P̂2. In the Heisenberg representation this operator is

P̃2(t) = Û(t)†P̂2Û(t), (96)

where Û is the evolution operator of the free particle.
Taking the operator B from Section 2 as P̃2(∆t) and
using Eq. (95) we can introduce a weak value W (1|2)
of probability to find the particle in the region Γ1 on
condition that the particle after time ∆t is in the re-
gion Γ2. The probability that the particle is in region Γ1

and after time ∆t it is in region Γ2 then equals

W (1, 2) = W (2)W (1|2). (97)

When the measurement time τ is sufficiently small, the
influence of the Hamiltonian of the particle can be ne-
glected. Using Eq. (7) from Section 2 we obtain

W (1, 2)≈ 1

2
〈P̃2(∆t)P̂1 + P̂1P̃2(∆t)〉

+
i

~

(
〈p̂q〉〈q̂〉 − Re 〈q̂p̂q〉

)
〈[P̂1, P̃2(∆t)]〉.

(98)

The probability W (1, 2) is constructed using condi-
tions (i) and (ii) from Section 5.1: the weak measure-
ment is performed to determine if the particle is in the
region Γ1 and after time ∆t the strong measurement

determines if the particle is in the region Γ2. There-
fore, according to Section 5.1, the quantity W (1, 2) af-
ter normalization can be considered as the weak value
of the arrival time probability distribution.

Equation (98) consists of two terms and we accord-
ingly can introduce two quantities

Π(1) =
1

2∆t

〈
P̂1P̃2(∆t) + P̃2(∆t)P̂1

〉
, (99)

Π(2) =
1

2 i∆t

〈[
P̂1, P̃2(∆t)

]〉
. (100)

Then

W (1, 2) = Π(1)∆t − 2∆t

~

(
〈p̂q〉〈q̂〉 − Re 〈q̂p̂q〉

)
Π(2).

(101)
If the commutator [P̂1, P̃2(∆t)] in Eqs. (99)–(101) is

not zero, then, even in the limit of the very weak mea-
surement, the measured value depends on the particular
detector. This fact means that in such a case we cannot
obtain a definite value for the arrival time probability.
Moreover, the coefficient (〈p̂q〉〈q̂〉 − Re 〈q̂p̂q〉) may be
zero for a specific initial state of the detector, e. g., for a
Gaussian distribution of the coordinate q and momen-
tum pq.

The quantities W (1, 2), Π(1), and Π(2) are real.
However, it is convenient to consider the complex
quantity

ΠC = Π(1) + iΠ(2) =
1

∆t
〈P̂1P̃2(∆t)〉. (102)

We call it the “complex arrival probability”. We can
introduce the corresponding operator

Π̂+ =
1

∆t
P̂1P̃2(∆t). (103)

By analogy, the operator

Π̂− =
1

∆t
P̂2P̃1(∆t) (104)

corresponds to arrival from the right.
The introduced operator Π̂+ has some of the proper-

ties of the classical positive probability current. From
the conditions P̂1 + P̂2 = 1 and P̃1(∆t) + P̃2(∆t) = 1
we have

Π̂+ − Π̂− =
1

∆t
(P̃2(∆t) − P̂2).

In the limit ∆t → 0 we obtain the probability current
Ĵ = lim∆t→0(Π̂+ − Π̂−), as in classical mechanics.
However, the quantity 〈Π̂+〉 is complex and the real
part can be negative, in contrast to the classical quan-
tity J+. The reason for this is the noncommutativity of
the operators P̂1 and P̃2(∆t). When the imaginary part
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is small, the quantity 〈Π̂+〉 after normalization can be
considered as the approximate probability distribution
of the arrival time.

5.3. Arrival time probability

The operator Π̂+ was obtained without specification
of the Hamiltonian of the particle and is suitable for
free particles and for particles subjected to an external
potential as well. In this section we consider the arrival
time of the free particle.

The calculation of the “weak arrival time distribu-
tion” W (1, 2) involves the average value 〈Π̂+〉. There-
fore, it is useful to have the matrix elements of the op-
erator Π̂+. It should be noted that the matrix elements
of the operator Π̂+, as well as the operator itself, are
only auxiliary quantities and do not have an indepen-
dent meaning.

In the basis of the momentum eigenstates |p〉,
normalized according to the condition 〈p1|p2〉 =
2π~δ(p1 − p2), the matrix elements of the operator Π̂+

are

〈p1|Π̂+|p2〉

=
1

∆t
〈p1|P̂1Û(∆t)†P̂2Û(∆t)|p2〉

=
1

∆t

∫ X

−∞
dx1

∫ ∞

X
dx2 exp

(
− i

~
p1x1

)

× 〈x1|Û(∆t)†|x2〉 exp

(
i

~
p2x2 −

i

~

p2
2

2m
∆t

)
.

(105)

After performing the integration one obtains

〈p1|Π̂+|p2〉

=
i~

2∆t(p2 − p1)
exp

[
i

~
(p2 − p1)X

]

×
[
exp

(
i

~

∆t

2m
(p2

1 − p2
2)

)
erfc

(
−p1

√
i∆t

2~m

)

− erfc

(
−p2

√
i∆t

2~m

)]
, (106)

where
√

i = exp(iπ/4). When

1

~

∆t

2m
(p2

1 − p2
2)≪ 1,

p1

√
∆t

2~m
> 1,

p2

√
∆t

2~m
> 1,

the matrix elements of the operator Π̂+ are

〈p1|Π̂+|p2〉 ≈
p1 + p2

2m
exp

[
i

~
(p2 − p1)X

]
. (107)

This equation coincides with the expression for the ma-
trix elements of the probability current operator.

From Eq. (106) we obtain the diagonal matrix ele-
ments of the operator Π̂+,

〈p|Π̂+|p〉=
p

2m
erfc

(
−p

√
i∆t

2~m

)

+
~√

i2π~m∆t
exp

(
− i

~

p2

2m
∆t

)
. (108)

The real part of the quantity 〈p|Π̂+|p〉 is shown in
Fig. 11 and the imaginary part in Fig. 12.

Using the asymptotic expressions for the error func-
tion erfc we obtain from Eq. (108) that

lim
p→+∞

〈p|Π̂+|p〉 →
p

m

and 〈p|Π̂+|p〉 → 0, when p → −∞, i. e. the imaginary
part tends to zero and the real part approaches the cor-
responding classical value as the modulus of the mo-
mentum |p| increases. Such behaviour is evident from
Figs. 11 and 12 also.

The asymptotic expressions for the function erfc are
valid when its argument is large, i. e.

|p|
√

∆t

(2~m)
> 1 or ∆t >

~

Ek
. (109)

Here Ek is the kinetic energy of the particle.
The dependence of the quantity Re 〈p|Π̂+|p〉 on ∆t

is shown in Fig. 13. For small ∆t the quantity 〈p|Π̂+|p〉
is proportional to 1/

√
∆t. Therefore, unlike in clas-

sical mechanics, in quantum mechanics ∆t cannot be
zero. Equation (109) imposes the lower bound on
the resolution time ∆t. It follows that our model
does not permit determination of the arrival time with
resolution greater than ~/Ek. A relation similar to
Eq. (109) based on measurement models was obtained
by Aharonov et al. [30]. The time–energy uncertainty
relations associated with the time of arrival distribution
are also discussed in [69, 82].
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Fig. 11. The real part of the quantity 〈p|Π̂+|p〉, according to
Eq. (108). The corresponding classical positive probability current
is shown with the dashed line. The parameters used are ~ = 1,
m = 1, and ∆t = 1. In this system of units, the momentum p is

dimensionless.
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Fig. 12. The imaginary part of the quantity 〈p|Π̂+|p〉. The param-
eters used are the same as in Fig. 11.

6. Summary

The review and generalization of the theoretical
analysis of the time problem in quantum mechanics
and weak measurements are presented. The tunnelling
time problem is part of this more general problem. The
problem of time is solved adapting the weak measure-
ment theory to the measurement of time. In this model
the expression (13) for the duration, when the arbitrary
observable χ has a certain value, is obtained. This re-
sult is in agreement with the known results for the dwell
time in the tunnelling time problem.

Further we consider the problem of the duration
when the observable χ has a certain value on condition
that the system is in a given final state. Our model of
measurement allows us to obtain the expression (15) of

0.5
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Fig. 13. The dependence of the quantity Re 〈p|Π̂+|p〉 according to
Eq. (108) on the resolution time ∆t. The corresponding classical
positive probability current is shown with the dashed line. The pa-
rameters used are ~ = 1, m = 1, and p = 1. In these units, the

time ∆t is dimensionless.

this duration as well. This expression has many prop-
erties of the corresponding classical time. However,
such a duration not always has reasonable meaning. It
is possible to obtain the duration that the quantity χ
has a certain value on condition that the system is in
a given final state only when the condition (19) is ful-
filled. In the opposite case, there is a dependence in
the outcome of the measurements on particular detec-
tor even in an ideal case, and therefore, it is impossible
to obtain the definite value of the duration. When the
condition (19) is not fulfilled, we introduce two quanti-
ties (16) and (17), characterizing the conditional time.
These quantities are useful in the case of tunnelling and
we suppose that they can be useful also for other prob-
lems.

In order to investigate the tunnelling time problem,
we consider a procedure of time measurement, pro-
posed by Steinberg [35]. This procedure shows clearly
the consequences of noncommutativity of the opera-
tors and the possibility of determination of the asymp-
totic time. Our model also reveals the Hartmann and
Fletcher effect, i. e. for opaque barriers the effective ve-
locity is very large because the contribution of the bar-
rier region to the time is almost zero. We cannot deter-
mine whether this velocity can be larger than c because
for this purpose one has to use a relativistic equation
(e. g., the Dirac equation).

The definition of density of one-sided arrivals is pro-
posed. This definition is extended to quantum me-
chanics, using the concept of weak measurements by
Aharonov et al. [16–21]. The proposed procedure is
suitable for free particles and for the particles sub-
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jected to an external potential as well. It gives not only
a mathematical expression for the arrival time prob-
ability distribution but also a way of measuring the
quantity obtained. However, this procedure gives no
unique expression for the arrival time probability dis-
tribution.

In analogy with the complex tunnelling time, the
complex arrival time “probability distribution” is intro-
duced (Eq. (102)). It is shown that the proposed ap-
proach imposes an inherent limitation, Eq. (109), on
the resolution time of the arrival time determination.
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LAIKO PROBLEMA KVANTINĖJE MECHANIKOJE IR JOS ANALIZĖ NAUDOJANT SILPNUS

MATAVIMUS

J. Ruseckas, B. Kaulakys

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Pateikta laiko problemos kvantinėje mechanikoje analizės silpnų
matavimų teoriniu pagrindu apžvalga. Tuneliavimo trukmės prob-
lema yra bendresnės laiko problemos kvantinėje mechanikoje at-
skiras atvejis. Problema spręsta laikui matuoti naudojant silpnų
matavimų teoriją. Tokiam matavimo modeliui rasta trukmės
išraiška (13), kai fizikinis dydis turi konkrečią vertę arba yra tam
tikroje verčių srityje. Tos išraiškos atskiras atvejis yra tuneliavimo
trukmė, t. y. trukmė, kurią tuneliuojanti dalelė praleidžia po poten-
cialiniu barjeru.

Nagrinėjama trukmė, kuriai esant fizikinis dydis turi konkrečią
vertę su sąlyga, kad sistema yra tam tikroje galinėje būsenoje. Nau-
dojamu matavimo modeliu galima gauti šios trukmės išraišką (15).
Taip apibrėžta trukmė turi daug trukmės klasikinėje mechanikoje
savybių, tačiau ne visuomet turi prasmę. Galima rasti trukmę, ku-
riai esant fizikinis dydis turi konkrečią vertę su sąlyga, kad sistema
yra konkrečioje galinėje būsenoje, tik kai yra patenkinama (19) sa-
lyga. Priešingu atveju matavimo rezultatas priklauso nuo konk-
retaus matavimo būdo, ir vienareikšmis atsakymas yra negalimas.
Kai (19) salyga yra netenkinama, galima apibrėžti du trukmę api-

būdinančius dydžius (16) ir (17). Šie dydžiai gali būti taikomi ir
tuneliavimo trukmės problemai nagrinėti.

Tuneliavimo trukmei nagrinėti naudojome Steinberg’o [34] pa-
siūlytą būdą, kuris parodo operatorių nekomutatyvumo pasekmes
ir asimptotinės trukmės vertinimo galimybę. Mūsų modelyje taip
pat pasireiškia Hartmann’o ir Fletcher’io efektas: platiems barje-
rams efektyvus greitis yra labai didelis, nes barjero srities indėlis į
trukmę yra labai mažas. Ar šis greitis didesnis už šviesos greitį
c, įvertinti nepavyksta. Tam reikėtų spręsti reliatyvistines lyg-
tis.

Pasiūlytas atvykimo laiko iš vienos pusės pasiskirstymo tankio
apibrėžimas. Šis apibrėžimas yra išplėstas į kvantinę mechaniką,
naudojant silpnus matavimus. Pasiūlytas būdas yra tinkamas tiek
laisvoms dalelėms, tiek ir dalelėms, esančioms išoriniame poten-
ciale. Randama ne tik atvykimo laiko pasiskirstymo tankio išraiška,
bet ir būdas jam išmatuoti. Tačiau šis būdas neduoda vienareikšmio
atsakymo. Analogiškai kompleksinei tuneliavimo trukmei, yra api-
brėžtas kompleksinis atvykimo laiko pasiskirstymo tankis. Paro-
dyta, kad taikant pasiūlytą metodą, atvykimo laiko nustatymo tiks-
lumas kvantinėje mechanikoje yra ribotas.


