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Following the creation of inner-shell vacancy in an atom, the cascade of radiative and nonradiative transitions takes place.
It can be analysed employing the final charge distribution of ions, the electron and characteristic emission spectra. The de-
velopment of the experimental and theoretical investigation of cascades is shortly reviewed. The main attention is paid to the
description of a cascade using the global characteristics of spectra, especially in the cases of transitions between close-lying
and overlapping configurations. Some applications of the global characteristics method are given.
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1. Introduction

One of the perspective directions in the inner-shell
physics is the investigation of the cascades of elemen-
tary processes in atoms and of various spectra excited
in such a way. It enables considering the specific fea-
tures of inner electronic shells, the dynamics of the de-
cay of highly excited states, the anomalous population
of some configurations.

Such cascades start after the creation of one or sev-
eral vacancies in the inner shells of an atom. Dur-
ing the radiative transition a vacancy is shifted from
one electronic shell to another. As a result of the
nonradiative Auger transition, two vacancies appear,
thus the charge of the ion increases. At the effective
nuclear charge Zeff ≤ 30 the Auger transitions are
the dominating way of deexcitation (if they are not
forbidden energetically). Only the innermost vacan-
cies in the heavy atoms decay mainly by the radia-
tive transitions. Thus, the role of Auger transitions in-
creases during the cascade. At the fluorescence yield
ω ≈ 10−2−10−3 the contribution of radiative transi-
tions can be practically neglected and the cascade is
considered only as an Auger cascade. Due to the en-
ergetic constraints for Auger transitions their different
paths end at different ionization stages, therefore, ions
with various charges are obtained. The many-electron
transitions during the excitation and the processes that

follow also increase a number of ions with the higher
charge.

The first measurements of the charge state distribu-
tions were made for the vacancies created by the nu-
clear processes – electron capture and internal conver-
sion in the radioactive isotopes of rare gases [1, 2]. The
charge spectrometry was used for this purpose. In the
middle of the sixties, a magnetic mass spectrometer
was applied to detect photoions of various charges fol-
lowing irradiation of atomic gases by X-rays [3–6].

The accuracy of measurements essentially increased,
when monochromatized synchrotron radiation was
used to prepare the initial state with inner vacancies
and the time-of-flight mass spectrometer to detect ions
[7–9]. By changing the wavelength of the radiation
in a certain interval, the photoion-yield spectra are
recorded [8]. They give the dependence of the inten-
sities of various ions on the photon energy. The more
refined data are obtained when using the coincidence
technique [10–16]. The photoelectron–photoion coin-
cidence experiment enables one to separate the charge
state distribution corresponding to the creation of a
vacancy in a given subshell. The Auger electron–
photoion coincidence measurements specify the Auger
transitions for various multiply charged ions.

Very complicated cascades take place after atom–ion
collisions [17–19]. The specific case is the cascades
in the hollow atoms, created in collision processes be-
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tween highly charged ions and solid surfaces or other
targets [20–22].

Cascades involve many configurations with several
open shells, such configurations have thousands and
millions of levels. Thus, the detailed level-by-level cal-
culations of a cascade are very complicated and prac-
tically possible only for light atoms or for the initial
vacancies in subvalent shells. On performing such cal-
culations the theory of many-electron atom with several
open shells must be used. It is necessary to note that
considerable contribution to the development of such
theory was given by the works of A. Jucys [23–25], to
whose centenary this collection of papers is devoted.

As far as we know, the first detailed calculation of
the Auger cascade was performed for Al in [26] and
the theoretical analysis of the emission spectrum taking
into account the population of levels by a cascade of
processes in [27]. Up to now such calculations even for
the main part of the cascade are not numerous: in such a
way the radiative decay of vacancies in subvalent shells
of Kr [28], the Auger transitions following deep core
ionization in Ar [29, 30], the 3d5/2−5p excitation in Kr
and 4d5/2 − 6p in Xe [31], the 3d ionization in Xe [32]
are studied.

The natural width of the lines corresponding to the
transitions between configurations with inner vacancies
exceeds the energetic distances between the lines in
complex spectra. Then the separate lines coalesce into
broad maxima and the detailed calculation of the cas-
cade is even inexpedient, at least of its all processes.

Two theoretical methods were proposed for the ap-
proximate description of a cascade: the statistical
Monte Carlo simulation and the construction of deex-
citation tree using the global characteristics of spectra
(its earliest simpler variant is the average configuration
method).

The Monte Carlo method is based on the accidental
choice of the deexcitation path development with the
account for the relative probabilities of various transi-
tions. Such simulation is repeated about 105 times and
the final distribution of vacancies or charge distribution
of the ions is found. Already in the first applications of
this method [3–6] not only the radiative and Auger tran-
sitions, but also many-electron transitions in the shake-
off model were taken into account. During the develop-
ment of the cascade some of the Auger transitions be-
came energy forbidden: it was checked in [33] by com-
puting the average energies equal to the differences of
the average energies of initial and final configurations.
The Monte Carlo method did not gain much popular-
ity [34–36], because it required more computation time

than the average configuration method. By applying
the latter method, the cascade is calculated only once
using the same atomic data.

The average configuration method for the investiga-
tion of cascades was elaborated in [37]. The main idea
of this method is to calculate the development of the
cascade considering the transitions between vacancy
states or configurations with the rate equal to the to-
tal transition rate and energy equal to the difference of
the average energies of configurations. It was proposed
in [28] to apply this method for the preliminary anal-
ysis of the cascade, to determine its main part, giving
the essential contribution to the considered emission or
Auger spectrum, and then to perform the detailed cal-
culations of the main processes.

The total transition rate and the average energy of
configuration are the simplest global characteristics of
spectra. Using such other characteristics and taking
into account the distribution of intensities in the spec-
tra (characteristics of zones, variance of spectra etc.)
the more accurate description of the cascade and its
effects on the spectra can be obtained. The algebraic
expressions for the main global characteristics of en-
ergy level [38–40], emission [38, 41], and Auger [42]
spectra are known. For the derivation of these charac-
teristics the general group diagrammatic method was
elaborated [43–45].

The method of global characteristics is very useful
for the description of transitions between close-lying
or overlapping configurations. On using the density
of states the coefficient for the diminishing of tran-
sition rate for overlapping configurations was intro-
duced [46]. More accurately such transitions can be
described in the terms of zones of configurations and
their global characteristics [47, 48].

The preferable object for the study of cascades are
inert gas atoms. The charge state and photoion spec-
tra were studied for Ne [3, 49], Ar [4, 11, 12, 50–53],
Kr [5, 6, 33, 53–56], Xe [6, 9, 16, 34, 35, 46, 57–60],
and for all of them [61–63]. Also such spectra were in-
vestigated for lanthanides [7–9, 15, 32, 64–66], Mg [50,
67], Al, Si, S, Ca, Fe [50], Cu [18], Sr [68], Ba [69],
Au [70], Re [71], and Ta [71]. In [36] the ion charge
distribution due to vacancy cascades following the K ,
L1, L2, and L3 shell ionization were calculated by
the Monte Carlo method for the atomic numbers Z =
10−60. The Auger cascade spectra were mostly stud-
ied for Ar [13, 29, 30, 72–77]; also several works were
devoted to Kr [31, 73], Xe [31, 32, 78], Al [26], Ni [79],
and Eu [66]. Because the X-ray transitions accompa-
nying the cascade decay of inner-shell vacancies are
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less probable than the Auger transitions, the cascade af-
fected emission spectra are less investigated, the results
are mainly obtained for inert gases [27, 33, 80–84] as
well as for Fe [37], Ag [80], and Pb, Th, U [85]. During
the last years some angle resolved studies of the Auger
cascades following photoexcitation from an inner shell
were performed for Ar, Kr, and Xe [31, 86–89].

The following sections of this work are devoted to
the averaged description of the elementary processes
proceeding during the cascade (Section 2), consider-
ation of transitions between close-lying and overlap-
ping configurations (Section 3), and some applications
of the global characteristics method (Section 4).

2. Elementary processes following the cascade and

their averaged description

Intensities of the spectral lines depend not only on
the probabilities of the corresponding transitions, but
also on the populations of initial levels. At the dynam-
ical equilibrium of the system (the number of atoms
excited to a given level is equal to the number of atoms
deexcited from this level at the same time) the popula-
tion of the level γ of configuration K is expressed as
[90]

N(Kγ) =

∑

K ′γ′ N(K ′γ′)
∑

s As(K
′γ′ − Kγ)

A(Kγ)
,

(1)
where As(K

′γ′−Kγ) is the rate of the transition from
the level γ′ of configuration K ′ to the level γ of config-
uration K by the process s, A(Kγ) is the total deexci-
tation rate of the level γ:

A(Kγ) =
∑

s

∑

K ′γ′

As(Kγ − K ′γ′). (2)

The main idea of the averaged configuration method
is to consider the transitions not between the separate
levels, but between the configurations. Then Eqs. (1),
(2) are replaced by

N(K) =

∑

K ′ N(K ′)
∑

s As(K
′ − K)

A(K)
, (3)

A(K) =
∑

s

∑

K ′

As(K − K ′). (4)

Here As(K
′−K) is the total rate of transitions between

all levels of configurations K and K ′:

As(K − K ′) =
∑

γγ′

As(Kγ − K ′γ′). (5)

On the usual assumption that the radial orbitals of elec-
trons do not depend on many-electron quantum num-
bers, the summation in Eq. (5) can be performed alge-
braically.

The radiative transition rate is expressed in terms of
the line strength and the transition energy in a certain
power. The dependence of the rate on many-electron
quantum numbers is mainly determined by the line
strength. The dependence of the transition energy, es-
pecially in the case of transitions between the inner
shells, is considerably weaker. Thus, for the approx-
imate calculation of cascades it can be replaced by the
average energy of the transition array between two con-
figurations. Its simplest expression is the difference of
the average energies of the initial and final configura-
tions

E(K − K ′) ≈ E(K) − E(K ′). (6)

A more exact expression is obtained by averaging
the transition energy with the weight equal to its line
strength S(Kγ,K ′γ′):

E(K − K ′) =

∑

γγ′ [〈Kγ|H|Kγ〉 − 〈K ′γ′|H|K ′γ′〉]S(Kγ,K ′γ′)
∑

γγ′ S(Kγ,K ′γ′)
.

(7)

It is expressed by the difference E(K) − E(K ′) and
the shift due to the distribution of lines in the spectrum:

E(K − K ′) = E(K) − E(K ′) + δE(K − K ′). (8)

In the nonrelativistic approximation this shift is de-
scribed by the formula [38]

δE
(

K0n1l
N1

1 n2l
N2

2 − K0n1l
N1+1
1 n2l

N2−1
2

)

=
1

(4l1 + 1)(4l2 + 1)

×
∑

k>0

{

l1 l1 k

l2 l2 1

}

〈l1‖C(k)‖l1〉〈l2‖C(k)‖l2〉

×
[

−N1(4l2 + 2 − N2)F
k
K(n1l1, n2l2)

+ (4l1 + 1 − N1)(N2 − 1)F k
K ′(n1l1, n2l2)

]

+
1

(4l1 + 1)(4l2 + 1)

×
∑

k

(−1)k
[

2

3
δ(k, 1) − 1

2(2l1 + 1)(2l2 + 1)

]
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× 〈l1‖C(k)‖l2〉2

×
[

−N1(4l2 + 2 − N2)G
k
K(n1l1, n2l2)

+ (4l1 + 1 − N1)(N2 − 1)Gk
K ′(n1l1, n2l2)

]

. (9)

Here K0 means all passive open or closed shells not
involved in the transitions, Ni is the number of elec-
trons in the ith shell, 〈l1|C(k)‖l2〉 is the reduced ma-
trix element of the spherical function, and F k, Gk

are the Coulomb integrals calculated with the radial
wave functions of the configuration indicated as a sub-
script.

A more complicated expression for this shift is ob-
tained in the relativistic approximation [91]. The sim-
pler way to account for the relativistic effects is to re-
place the nonrelativistic integrals in Eq. (9) by the cor-
responding linear combinations of relativistic integrals.
The explicit expression for the total line strength of ra-
diative transitions between two configurations has the
form

S
(

K0λ
N1

1 λN2

2 ,K0λ
N1+1
1 λN2−1

2

)

= g(K0)

(

Ω1 − 1
N1

) (

Ω2 − 1
N2 − 1

)

〈λ1‖o‖λ2〉2. (10)

Here λi means the quantum numbers of the shell nili
or the subshell niliji, Ωi is the number of single-
electron states in the shell (4li + 2) or the subshell
(2ji + 1), g(K0) is the statistical weight of the passive
shells (subshells) that do not take part in the transitions,
(

a

b

)

is the number of combinations. Equation (10)

holds for any radiative transition operator of every mul-
tiplicity in nonrelativistic or relativistic approximation.
This specific feature of the operator holds only in its
one-electron reduced matrix element. In the nonrela-
tivistic approximation for the main electric dipole tran-
sitions it equals to

〈n1l1s‖o(1)‖n2l2s〉 =
√

2〈l1‖C(1)‖l2〉〈n1l1|r|n2l2〉.
(11)

The multiplier
√

2 appears due to the scalarity of the
operator in the spin space. The formulae for the ma-
trix elements of electric and magnetic transitions in the
relativistic approximation are given, for example, in
[92, 93].

The Auger transition rate does not depend explicitly
on the transition energy, thus the line strength is not in-
troduced and the total transition rate is used. For the
two main types of Auger transitions the following ex-
pressions are obtained [90, 94]:

A
(

K0λ
N1

1 λN2

2 → K0λ
N1+1
1 λN2−2

2 ελ
)

= g(K0)

(

Ω1 − 1
N1

) (

Ω2 − 2
N2 − 2

)

A(λ2
2 − λ1ελ),

(12)

A
(

K0λ
N1

1 λN2

2 λN3

3 → K0λ
N1+1
1 λN2−1

2 λN3−1
3 ελ

)

= g(K0)

(

Ω1 − 1
N1

) (

Ω2 − 1
N2 − 1

) (

Ω3 − 1
N3 − 1

)

× A(λ2λ3 − λ1ελ). (13)

Here λi, Ωi, and g(K0) have the same meaning as in
Eq. (10), λ means the quantum numbers of the Auger
electron l or lj. Because the summation over λ cannot
be accomplished explicitly, the expressions are given
for the Auger channel. The last multiplier in the right-
hand side of Eqs. (12), (13) is the Auger transition rate
in the two-electron model. It is expressed by the sum of
two-electron matrix elements of the operator h respon-
sible for the autoionization transitions (atomic units are
used):

A(λ2λ3 − λ1ελ) =
∑

Λ

〈λ2λ3Λ‖h‖λ1εlΛ〉2, (14)

where Λ means LS in LS-coupling and J in jj-coupl-
ing. In the nonrelativistic approximation h is usually
approximated by the operator of Coulomb interaction
between electrons. Then in the case of LS-coupling
within shells we have:

A(n2l2, n3l3 − n1l1εl)

= 4
∑

k

{

1

2k + 1
〈l1‖C(k)‖l2〉2〈l‖C(k)‖l3〉2

× Rk(n2l2n3l3, n1l1εl)
2

+
1

2k + 1
〈l2‖C(k)‖l〉2〈l1‖C(k)‖l3〉2

× Rk(n2l2n3l3, εln1l1)
2

−
∑

k′

(−1)k+k′〈l2‖C(k)‖l1〉〈l3‖C(k)‖l〉

× 〈l2‖C(k′)‖l〉〈l3‖C(k′)‖l1〉
{

l1 l2 k

l l3 k′

}

× Rk(n2l2n3l3, n1l1εl)R
k′

(n2l2n3l3, εln1l1)

}

,

(15)
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A(n2l
2
2 − n1l1εl)

=
1

2
δ(n2, n3)δ(l2, l3)A(n2l2, n3l3 − n1l1εl). (16)

Here Rk is the general integral of Coulomb interac-
tion.

In the relativistic approximation the Breit operator
or some of its terms are taken into account in addi-
tion to the Coulomb interaction operator. The formu-
lae for the two-electron matrix elements are given, for
example, in [92, 93], and their direct summation can
be accomplished easily. The total line strength of ra-
diative transitions (10) and the total Auger transition
rate (12), (13) consist of the statistical multipliers, de-
pending on the numbers of electrons in the active shells
or subshells, and of the one- or two-electron quan-
tities, depending only on the radial orbitals of these
electrons. It enables the extrapolation of the global
characteristics for the other transitions between the
same shells (subshells) of the same element as well as
for the same transitions in the atoms of different ele-
ments.

For the analysis of a cascade only the relative popu-
lations of configurations are needed. Thus, if the cas-
cade begins only from one excited configuration, its
population can be taken equal to 1. If during the ex-
citation process several excited configurations are cre-
ated, their relative populations must be calculated us-
ing the total excitation probabilities or cross-sections.
Usually atoms are excited from one ground level. The
cross-sections of photoionization and photoexcitation
as well as of the excitation or ionization by electron
beam in the first Born approximation of plane waves
are expressed in terms of the line strength of multipole
transitions.

If the initial vacancy is created by photoexcitation
from the closed inner shell or subshell, the sum over all
levels of the final configuration divided by the statisti-
cal weight gγ = 2J + 1 of the initial level γ yields a
simple expression independent of many-electron quan-
tum numbers of the initial level:

1

gγ

∑

γ′

2
γ′

S(K0λ
Ω1

1 λN2

2 γ2γ,K0λ
Ω1−1
1 λN2+1

2 γ′

2γ
′)

=
Ω2 − N2

Ω2
〈λ1‖o‖λ2〉2. (17)

By substituting λ2 → ελ at N2 = 0 and separating one
open shell (subshell) from K0 we obtain the expression

for the ionization from a closed shell in the presence of
an open shell:

1

gγ

∑

γ′

2
γ′

S(K0λ
Ω1

1 λN2

2 γ2γ,K0λ
Ω1−1
1 λN2

2 γ′

2ελγ′)

= 〈λ1‖o‖ελ〉2. (18)

Here K0 can also contain the other open shells.
The population of the initial configuration by the in-

ner shell ionization with electron beam is described by
the average collisional ionization strength. Its formula
is given in [95].

During the initial excitation of an atom and the
subsequent radiative or Auger decay, described by
p-electron transition operators, the (p+1)-electron pro-
cesses also play a significant role. For the investigation
of cascades they are usually calculated in the sudden
perturbation approximation. The sudden change of the
potential caused by the production of a vacancy or by
its shift from one shell to another can excite the addi-
tional electron (shake-up) or remove it from the atom
(shake-off). These transitions involving excited elec-
trons are less probable and such weakly bound elec-
trons usually are shaken off during future decay, thus
all the probability to remove the electron during the
sudden perturbation approximately can be attributed to
the shake-off effect [3, 46]. The probability to remove
an additional electron from the nlN -shell is approxi-
mately expressed in terms of the overlap integral be-
tween the radial orbital Pnl(r) before and after the per-
turbation:

A(nl−1) = N
[

1 − 〈nlK |nlK ′〉2
]

, (19)

where K is the initial, and K ′ is the final configuration.
The analogous formula holds for the expulsion of an
electron from a subshell.

3. Transitions between close-lying and overlapping

configurations. Zones of transitions

The most probable and thus rather important for the
cascades are the transitions involving the neighbouring
shells. The energy spectra of the initial and final con-
figurations can even overlap, and transitions between
some levels of such configurations become forbidden
energetically. Then it is necessary to take into account
the energetic intervals of configurations and the distri-
bution of intensities in the spectrum.

The width of the energy level spectrum of config-
uration K can be approximately determined as a full
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width at the half-maximum of the normal distribution
of states:

∆E(K) = 2
√

2 ln 2σ(K), (20)

where σ2(K) is the variance of the distribution,
σ(K) =

√

σ2(K).
The energy interval of the configuration spectrum is

estimated as

E(K) − ∆E(K)

2
, E(K) +

∆E(K)

2
. (21)

The general formulae for the variance of the energy
level spectrum in nonrelativistic and relativistic ap-
proximations were given in [38, 40].

In the case of transitions between overlapping con-
figurations the total transition rate must be diminished
by some coefficient. It can be calculated using the dis-
tribution functions of states [46]:

a =

∫

∞

−∞

ρK(E)

∫ E

−∞

ρK ′(E′) dE dE′, (22)

where ρK and ρK ′ are respectively the distribution
functions for the initial and final configurations. For
the description of cascades they can be approximated
by the Gaussian function:

ρ(E) =
1√
2πσ

exp

(

−E − E(K)

2σ2(K)

)2

. (23)

More accurately the transitions between close-lying
configurations can be described introducing the zones
of configurations taking into account the distribution of
the line strengths or rates in the spectrum [47, 48].

The emissive zone characterizes the main part of the
energy level spectrum of the initial configuration, in-
volved in the considered transitions, and the receptive
zone similarly describes the final configuration. These
zones are determined by their moments.

For the radiative transitions between configurations
K and K ′ the distribution moment of the kth order of
the zone is obtained by averaging the kth power of the
energy of the level of the initial or final configuration
with the weight equal to the sum of the line strength
from this level [47]:

αem
k (K) =

∑

γ〈Kγ|H|Kγ〉k ∑

γ′ S(Kγ,K ′γ′)
∑

γγ′ S(Kγ,K ′γ′)
,

(24)

αrec
k (K ′) =

∑

γ′〈K ′γ′|H|K ′γ′〉k ∑

γ S(Kγ,K ′γ′)
∑

γγ′ S(Kγ,K ′γ′)
.

(25)

The sum in the denominator is the total line strength
S(K,K ′) (10). The sum of the line strengths over all
levels of the final configuration is called the emissivity
of the initial level; it is expressed by Eq. (17).

For the calculations of cascades only the first two
moments of zones are necessary. The first moment is
the average energy of zone:

α1(K) = Eem
(K), α1(K

′) = E rec
(K ′). (26)

The variance of the zone σ2(K) is expressed in
terms of its first and second moments:

σ2(K) = α2(K) −
(

α1(K)
)2

. (27)

The shift of the average energy of a zone with re-
spect to the average energy of a configuration for the
transitions

K ≡ K0n1l
N1

1 n2l
N2

2 → K ′ ≡ K0n1l
N1+1
1 n2l

N2−1
2

(28)
can be expressed from Eqs. (7)–(9) and (24), (25):

δEem
rad(K)

≡Eem
rad(K) − E(K)

=−N1(4l2 + 2 − N2)

(4l1 + 1)(4l2 + 1)

{

∑

k>0

{

l1 l1 k

l2 l2 1

}

× 〈l1‖C(k)‖l1〉〈l2‖C(k)‖l2〉F k(n1l1, n2l2)

+
∑

k

(−1)k
[

2

3
δ(k, 1) − 1

2(2l1 + 1)(2l2 + 1)

]

× 〈l1‖C(k)‖l2〉2Gk(n1l1, n2l2)

}

, (29)

δErec
rad(K ′)

≡Erec
rad(K ′) − E(K ′)

=−(4l1 + 1 − N1)(N2 − 1)

(4l1 + 1)(4l2 + 1)

{

∑

k>0

{

l1 l2 k

l2 l2 1

}

× 〈l1‖C(k)‖l1〉〈l2‖C(k)‖l2〉F k(n1l1, n2l2)

+
∑

k

(−1)k
[

2

3
δ(k, 1) − 1

2(2l1 + 1)(2l2 + 1)

]

× 〈l1‖C(k)‖l2〉2Gk(n1l1, n2l2)

}

. (30)
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It follows from Eq. (29) that the average energy of the
emissive zone equals to the average energy of the initial
configuration only for these transitions:

K0n1l
N1

1 n2l
4l2+2
2 →K0n1l

N1+1
1 n2l

4l2+1
2 , (31)

K0n2l
N2

2 →K0n1l1n2l
N2−1
2 , (32)

where the passive shells contained in K0 can be closed
or open.

Similarly, the average energy of the receptive zone
equals to the average energy of the final configuration
for the following transitions:

K0n1l
4l1+1
1 n2l

N2

2 →K0n1l
4l1+2
1 n2l

N2−1
2 , (33)

K0n1l
N1

1 n2l2 →K0n1l
4l1+1
1 . (34)

The absolute value of the shift of the emissive zone
increases with the number of electrons in the inner shell
(N1) and with the number of vacancies in the outer
shell (4l2 + 2 − N2). On the contrary, |δErec

rad(K ′)|
increases with the number of electrons (N2 − 1)
and with the number of vacancies in the inner shell
(4l1 + 1 − N1).

The difference between the average energies of the
zone and configuration becomes maximal for the tran-
sitions between neighbouring shells, when radial wave
functions of the jumping electron in the initial and fi-
nal configurations strongly overlap and the integrals F k

and Gk acquire large values. Usually in such a case the
exchange Coulomb interaction between electrons plays
more important role than the direct interaction. Espe-
cially at n1 = n2 and l2 = l1 + 1 the coefficient at the
main exchange integral G1 considerably exceeds the
coefficient at the integral F 2, thus the magnitude of the
shift is mainly determined by its component with G1:

Eem
rad

(

K0nlN1n(l + 1)N2
)

≈E
(

K0nlN1n(l + 1)N2
)

+
N1(4l + 6 − N2)(16l

2 + 32l + 9)

6(2l + 1)(2l + 3)(4l + 1)(4l + 5)

× G1(nl, n(l + 1)
)

, (35)

Erec
rad

(

K0nlN1+1n(l + 1)N2−1)

≈E
(

K0nlN1+1n(l + 1)N2−1)

− (4l + 1 − N1)(N2 − 1)(16l2 + 32l + 9)

6(2l + 1)(2l + 3)(4l + 1)(4l + 5)

× G1(nl, n(l + 1)
)

. (36)

Consequently, the average energy of the emissive
zone usually increases with respect to the average en-
ergy of the initial configuration. It is related with the
existence of two level groups caused by the Coulomb
exchange interaction – only the levels of the upper
group mainly participate in the transitions [96]. The
shift of the receptive zone also tends to be positive.

The shift of the emissive zone obtains the maximal
value, sometimes exceeding 20 eV, for the transitions

K0nl4l+1n(l + 1) → K0nl4l+2. (37)

The maximal absolute value of the shift of the recep-
tive zone is attained for the transitions

K0nl0n(l + 1)4(l+1)+2 → K0nl n(l + 1)4(l+1)+1.

(38)
However, such configurations with the empty inner
shell (except s0 shell) are rather exotic.

Similar dependence of the shift between the aver-
age energies of the zone and the configuration on the
numbers of electrons and vacancies in the subshells
holds in the relativistic approximation, too. How-
ever, the single-configuration relativistic approxima-
tion takes less correlation effects than such a nonrel-
ativistic approximation and it is often necessary to con-
sider all the complex of relativistic configurations origi-
nating from the same nonrelativistic configuration. The
characteristics of zones for the transitions between such
complexes can also be derived [91]. When the cou-
pling within a shell is closer to LS rather than to the
jj scheme, it is useful to apply the expressions given
above for the nonrelativistic approximation replacing
its radial integrals by the corresponding combinations
of relativistic integrals [97].

According to Eqs. (7), (8) and (24), (25), the shift
∂E(K − K ′) can be presented as

∂E(K − K ′)

= E(K − K ′) −
[

E(K) − E(K ′)
]

=
[

Eem
(K) − E(K)

]

−
[

Erec
(K ′) − E(K)

]

.

(39)

This quantity for distant configurations is of the order
of several eV, but for the transitions between the neigh-
bouring configurations, especially for Eqs. (33), (34)
when the shift of the receptive zone disappears, can
play a rather important role.

By using in Eqs. (20), (21) the average energy and
variance of zone instead of these characteristics for
configurations, more exact estimations of the width of
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energy levels interval involved in the transition are ob-
tained. Also the coefficient a in Eq. (22) taking into
account the energetically allowed part of the transitions
between the overlapping configurations must be rewrit-
ten:

a =

∫

∞

−∞

ρem(E)

∫ E

−∞

ρrec(E′) dE dE′. (40)

In a similar way the Auger zones are introduced
and used [48]. The moments of the emissive and re-
ceptive zones, corresponding to the Auger transitions
K → K ′ε, are defined by the distribution moments:

αem
k (K)

=

∑

γ〈Kγ|H|Kγ〉k ∑

γ′γ′′ A(Kγ → K ′γ′εγ′′)

A(K → K ′ε)
,

(41)

αrec
k (K ′)

=

∑

γ′〈K ′γ′|H|K ′γ′〉k ∑

γ′γ′′ A(Kγ → K ′γ′εγ′′)

A(K → K ′ε)
.

(42)

Here K , K ′ are the configurations of an atom and ion,
ε is the energy of Auger electron, and γ′′ is a set of
quantum numbers of this electron and of the whole sys-
tem atom + free electron. A(K → K ′ε) is the total
transition rate. The expressions for the shift of the av-
erage energy of the Auger zone with respect to the aver-
age energy of the configuration were presented in [48].

The complex of programs for the calculation of
global characteristics of spectra enables one to calcu-
late the second moment of the Auger zones, too.

All the moments of the emissive zone coincide with
the corresponding moments of the initial configura-
tion K when it contains only one open shell (or sub-
shell) involved in the considered Auger transitions:

K0λ
N1

1 λΩ2

2 λΩ3

3 →K0λ
N1+1
1 λΩ2−1

2 λΩ3−1
3 ελ, (43)

K0λ
N1

1 λΩ2

2 →K0λ
N1+1
1 λΩ2−2

2 ελ, (44)

where K0 means all passive closed or open shells.
The receptive zone coincides with the final config-

uration of the ion for a considerably narrower class of
transitions involving s electrons:

K0λ
Ω1−1
1 s2 →K0λ

Ω1

1 ελ, (45)

K0λ
Ω1−1
1 ss′ →K0λ

Ω1

1 ελ. (46)

In the case of the Coster–Kronig or super-Coster–
Kronig transitions involving the neighbouring shells
with the same principal quantum number the shift of
the zone with respect to the corresponding configura-
tion is also mainly determined by the Coulomb (in the
relativistic approximation by Coulomb and Breit) in-
teraction. The shift of the emissive zone is usually
positive and it increases, when the number of elec-
trons in the λN1

1 shell increases and the number of elec-
trons in the other active shell with the same principal
quantum number decreases. The shift of the recep-
tive zone has usually a smaller value. The average en-
ergy of Auger transitions between two configurations
expressed in terms of average energies of zones differ
mostly from the difference of the average energies of
configurations for the transitions

Nl4l+1n(l + 1)2 → nl4l+2εl, (47)

Nl4l+1n(l + 1)n3l
N3

3 → nl4l+2n3l
N3−1
3 εl. (48)

4. Calculation of spectra excited by a cascade of

processes

4.1. Method of calculation

Relative total rates of transitions from the same ini-
tial configuration in percent give the branching ratios of
its depopulation. These ratios calculated along all paths
of a cascade present its branching scheme. By sum-
ming the percents at various ionization stages for all
final configurations, from which further Auger decay
is impossible energetically, the ratios of multicharged
ions are obtained. The variation of these ratios with
the energy of exciting particles gives the photoion-yield
spectrum.

During the cascade complex Auger and character-
istic emission spectra are generated. Due to a large
natural width of lines they often coalesce into broad
maxima, corresponding to the transitions between con-
figurations or even complexes of configurations. Such
maxima can be described using the global characteris-
tics of spectra. If the maximum has a symmetric form,
its envelope is described by a Gaussian function (23),
where E means the average energy and σ2 the vari-
ance of transitions between two configurations. When
the distribution of lines has significant asymmetry, the
skewed Gaussian function must be used. It is obtained
by multiplying the Gaussian function (23) by the factor

1 − 1

2
κ1

[

E − E

σ
− 1

3

(

E − E

σ

)3]

. (49)
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Here κ1 is the coefficient of skewness [41]. It is ex-
pressed in terms of the third moment of spectrum µ3

and the variance σ2:

κ1 =
µ3

σ3
. (50)

By multiplying the distribution function by a pop-
ulation of the initial configuration and performing the
summation of such functions for all transitions, which
give the contribution in the considered energy interval,
the envelope of the summary spectrum is obtained.

All main global characteristics of the emission and
Auger spectra in nonrelativistic and relativistic approx-
imations are calculated using the general computer
code. The necessary algebraic expressions are derived
by applying the algorithms of group-diagrammatic
method [44, 45] and then they are used in the cal-
culations. Some formulae for the emission spectrum
are presented in [38, 41] and for the Auger spectrum
in [42].

All radial integrals necessary for the applications
presented in the following section were calculated by
the pseudorelativistic Hartree–Fock method [98].

4.2. Production of multiply charged ions of

lanthanides

Atoms of lanthanides with the 4fN shell and other
open shells in various configurations, which appear
during the cascade, have a very large number of lev-
els. Thus the detailed calculation of the cascade after
the production of a vacancy in the inner shell is practi-
cally impossible. Additionally many overlapping con-
figurations appear during the cascade and some tran-
sition arrays in lanthanides are distributed asymmetri-
cally. This requires more accurate calculations using
the global characteristics of zones and transition ar-
rays.

Though various lanthanides have similar physical
properties their photoion-yield spectra generated by
photoabsorbtion in the region of 4d giant resonances
show rather different behaviour: at the beginning of
the group the triply charged ions have been mainly
produced, while for the elements of the second part
of the group the singly charged ions are predomi-
nant [8].

At the photon energies of 100–200 eV, used for the
registration of spectra, the 4d, 4f , 5s, and 5p shells can
be effectively ionized. The Auger decay of these vacan-
cies involves transitions between more than 100 config-
urations. They play very different roles: the total tran-
sition rates vary by more than five orders of magnitude.

Considering the Auger decay of each configuration, the
weak transitions, which rate is smaller than 1% of the
strongest transitions from this configuration, are omit-
ted. The initial population of excited configurations
with 4d−1, 4f−1, 5s−1, and 5p−1 vacancies was de-
termined using the photoionization cross-sections cal-
culated in the relativistic time-dependent local density
approximation [7, 8].

The main part of the Auger cascade for Nd is shown
in Fig. 1. This scheme demonstrates clearly that a large
part of transitions takes place between the overlapping
configurations and such transitions are only partially
allowed. For them the total transition strength was
diminished by the coefficient a, calculated according
to Eq. (40). In the region of the giant photoabsorp-
tion the population of the initial states is mainly de-
termined by the 4d and 4f photoionization (Fig. 2(d)).
The Auger decay of 4d−1 vacancy including the shake-
off transitions mainly produces triply (47%) and dou-
bly (47%) charged ions. The decay of 5p−1 vacancy
ends at the second ionization stage. This results in the
predominance of Nd2+ ions during the cascade. All
Nd+ ions are formed by the production of 4f−1 va-
cancy, for which the Auger decay is forbidden ener-
getically. A relatively small number of Nd4+ ions is
produced essentially through the 4d−1 → 5s−2 + e →
5s−15p−16s−1+2e → 5p−14f−16s−2+3e transitions.
The contribution of the shake-off transitions is not very
large, but when taking them into account the num-
ber of Nd3+ ions exceeds the number of Nd2+ ions at
the maximal photoabsorption, and the qualitative cor-
respondence to the experimental spectrum is obtained
(Fig. 2).

In Dy the 4f orbital is essentially contracted com-
pared to Nd and at the giant photoabsorption the
4d → 4f photoexcitation becomes the main pro-
cess. The decay of the 4d94f115d configuration by
the super-Coster–Kronig transitions mainly populates
the 4d104f95d configuration. Its levels are also pop-
ulated effectively by the direct photoionization of the
almost filled 4f10 shell. However, the Auger decay of
the 4f−1 vacancy by transitions 4f−1 → 6s−2εl is al-
lowed only to some levels of the partially overlapping
configuration 4f95d. Thus, the photoion spectrum of
Dy is dominated by Dy+ production (Fig. 3). The num-
ber of Dy2+ ions is essentially increased by the shake-
off process. For Dy even more than for Nd the accurate
description of transitions between overlapping config-
urations is very important. Only using the distribution
functions for zones (40) the correspondence to the ex-
perimental spectrum is obtained.
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Fig. 1. The Auger cascade following photoionization of Nd atoms [64]: (· · · · · ·) photoionization, (—) Auger transitions, (- - -) partially
allowed Auger transitions. Numbers at the arrows indicate the branching ratios in percent.

The photoion-yield spectra of Eu and Gd have their
specific features related with the existence of the half-
filled 4f7 shell, for these elements the correspondence
to the experimental data has been obtained, too [64].

In [66] the distribution of the multiply charged
ions of Eu after the resonant photoexcitation
3d3/2,5/2 → 4f and 3d-ionization was calculated.

After the resonant excitation 3d5/2 → 4f the distri-
bution of ions reaches its maximum at Eu4+ (Fig. 4).
After excitation 3d3/2 → 4f the majority of ions are
obtained with charge q = 5+ (Fig. 5). However,
the ionization gives relatively more highly charged
ions Eu6+ and Eu7+, and it corresponds to the ex-
perimental data [99] measured using the time-of-flight
mass spectrometer. Though the calculation reproduces
qualitatively the charge distribution, in all cases the
number of ions at low ionization stages is overesti-
mated and at high ionization stages it is underesti-
mated. The account of the shake-off process improves
the correspondence to the experimental data, but not
to a sufficient extent. The same discrepancy was no-
ticed when considering the ratios of ions following the
3d ionization in xenon. One reason can be the cor-
relation effects, especially in the decay of ns−1 and

np−1 vacancies at the presence of the other shells with
the same principal quantum number. Some config-
uration mixing effects can be taken into account by
global characteristics method, too [100], but the cal-
culations become more complicated. Secondly, when
considering the transitions between strongly overlap-
ping configurations like one integral transition, they
are treated to be forbidden when the average energy
of the emission zone of the initial configuration ex-
ceeds the average energy of the receptive zone of
the final configuration. However, transitions from
some higher levels can remain allowed. It can be
important, namely, at the ending stages of the cas-
cades.

4.3. Use of global characteristics for the calculation of

the Auger cascade spectrum

When the natural width of lines is rather large and
the individual lines coalesce into broad maxima, corre-
sponding to the transitions between configurations, the
method of global characteristics can be applied not just
for the investigation of cascade, but also for the calcu-
lation of the Auger cascade spectrum.
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Fig. 2. Photoion-yield spectra of Ndi+ with i = 1−4: (a) ex-
periment [7], (b) calculation taking into account the Auger and
shake-off processes [64], (c) calculation without shake-off [64],
and (d) partial photoionization cross-section σnl for the 4d, 5s,
5p, and 4f shells using relativistic time-dependent local density

approximation (RTDLA) [7].

As an example in Fig. 6 the Auger spectrum of
Eu produced after 3d3/2 → 4f photoexcitation is
presented. The majority of the intensive maxima

Fig. 3. Photoion-yield spectra of Dyi+ with i = 1−3: (a) ex-
periment [8], (b) calculation taking into account the Auger and
shake-off processes [64], (c) calculation without shake-off [64],
and (d) partial photoionization cross-section σnl for the 4d, 5s, 5p,

and 4f shells using RTDLA [8].

corresponds to the direct Auger transitions from the
initial excited configuration to the final configura-
tions 4d−24f , 4d−14f−1, 4p−14d−14f , 4d−1, and
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(a)

(b)

Fig. 4. Partial photoion-yield spectrum of Eu resulting from the
resonant photoexcitation 3d5/2 → 4f : (a) calculation [64] (white
columns – without shake-off transitions; black columns – the to-
tal spectrum), (b) experiment [99] taken at the photon energies

hν = 1130 eV.

4s−14d−14f (the number of vacancies and electrons
are indicated with respect to the ground configuration
Eu 4f7). However, with the relative probability equal
to about 30% of the Coster–Kroning transitions, shift-
ing of the vacancy from the 3d3/2 to the 3d5/2 sub-
shell takes place. Thus, some additional maxima in
the Auger spectrum can be attributed to the transitions
from the 3d−1

5/24f configuration of Eu+ to the final con-

figurations 4d−2, 4f−2, and 4s−14d−1.
The method of global characteristics can be success-

fully used even for the interpretation of spectra having
the fine structure which corresponds to the transitions
between separate levels. Usually only a small main
part of the cascade plays an essential role in the for-
mation of the spectrum and the influence of many less
probable transitions can be neglected. Thus, the ap-

(a)

(b)

Fig. 5. Partial photoion-yield spectrum of Eu originating after
the resonant photoexcitation 3d3/2 → 4f : (a) calculation [64]
(black columns – ab initio result; white columns – the probabil-
ities of 3d−1

3/2
→ 3d−1

5/2
nl−1 transitions multiplied by the empir-

ical factor 3), (b) experiment [98] taken at the photon energies
hν = 1158.4 eV.

proximate consideration of the whole cascade enables
us to determine the most important processes and to
perform only for them the detailed level-by-level cal-
culations.

In Fig. 7, the Auger electron spectrum following
the 3d ionization in xenon in the kinetic energy region
of 8–40 eV is presented. The experimental spectrum
was measured using the synchrotron radiation excita-
tion with photon energy of 650 and 740 eV (below
and above the 3d ionization threshold). By subtract-
ing the first spectrum from the second one, the lines
corresponding to the transitions due to the ionization
of other shells were eliminated.

At first the calculation of the entire cascade after
the production of 3d−1 vacancy was performed by the
global characteristics method. The branching scheme
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Fig. 6. The Auger spectrum of Eu due to decay of 3d5/2 → 4f

resonant photoexcitation: points are experimental data [101], thin
solid curve gives the envelope of the calculated spectrum [66], ver-
tical lines represent the total transition rates. The vacancies are

indicated with respect to the ground configuration 4f7
6s2.

of the most intense Auger transitions giving more than
1% contribution to the decay of initial states is shown.
The obtained envelope reproduces the general distri-
bution of the intensity in the spectrum. It is mainly
determined by the following paths of Auger transi-
tions:

3d−1 → 4d−2 → 4d−15p−2 → 5p−4, (51)

3d−1 → 4p−14d−1 → 4d−25p−1

→ 4d−15p−3 → 5p−5. (52)

The largest contributions indicated by labels 2, 8, 10,
and 16 are given by the Auger transitions between the
following configurations:

4d−15p−3 → 5p−5,

4d−15p−2 → 5p−4,

4d−25p−1 → 4d−15p−3, and

4d−2 → 4d−15p−2,

respectively.
The detailed calculations of the Auger transitions

(51), (52) were carried out using the single-config-
uration pseudorelativistic Hartree–Fock method [98].
The calculated spectrum corresponds well to the exper-
imental one and their comparison allows us to identify
the main lines [32].

Fig. 7. The Auger cascade spectrum of Xe following the 3d ioniza-
tion [32]: (a) experiment; (b) the envelope of the spectrum obtained
by the global characteristics method (the most intense transitions
lying in the energy region of 8–40 eV are indicated with labels);
(c) the results of level-by-level calculations of the main part of the
cascade. The kinetic energy regions of the Auger transitions are

marked with horizontal arrows.

5. Conclusions

Cascades of processes following a vacancy cre-
ation in the inner electronic shell of an atom involve
a large number of configurations with several open
shells. Thus, the detailed level-by-level calculation
of the entire cascade is usually impossible and even
unnecessary. In the average atom model, the transi-
tions between two configurations are treated as the in-
tegral transition with the total transition rate and the
energy equal to the difference of the average ener-
gies of configurations. However, the transitions be-
tween the close-lying or overlapping configurations of-
ten play an important role in the cascade. Then be-
sides the simplest global characteristics of the spec-
tra – total transition rate, line strength, and the aver-
age energy of configuration – the supplementary char-
acteristics such as the average energy and variance
of transition array, characteristics of transition zones
must be used. The existence of explicit expressions
for these characteristics in the nonrelativistic and rel-
ativistic approximation and the realization of the gen-
eral algorithm for their derivation in a computer code
enable us to use effectively the global characteristics
method for the description of the cascade and the af-
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fected Auger or radiative spectra. Even when spectra
have a fine structure, this method is useful for the pre-
liminary investigation of the cascade to determine its
main part, for which the detailed calculation can be per-
formed.
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KASKADŲ ATOMUOSE TYRIMAS NAUDOJANTIS BENDROSIOMIS SPEKTRŲ

CHARAKTERISTIKOMIS

R. Karazija, S. Kučas, V. Jonauskas

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Sukūrus atomo vidiniame sluoksnyje vakansiją, vyksta radiaci-
nių ir Auger šuolių kaskada. Jų metu atomas daug kartų autojo-
nizuojasi. Kaskados tiriamos, registruojant jonų išeigos, emisijos
ir Auger spektrus. Šioje apžvalgoje apibūdinami teoriniai kaskadų
nagrinėjimo metodai. Kadangi kaskadoje dalyvauja šimtai ir net
tūkstančiai konfigūracijų su keliais atvirais sluoksniais, tai detalūs
skaičiavimai yra sunkiai įmanomi. Dažniausiai nagrinėjami šuoliai

ne tarp atskirų lygmenų, bet tarp konfigūracijų, naudojantis bend-
rosiomis spektrų charakteristikomis – vidutine energija ir sumine
tikimybe. Tačiau, vykstant šuoliams tarp artimų arba persikloja-
nčių konfigūracijų, reikia naudoti aukštesnius spektrų momentus –
dispersiją bei asimetrijos koeficientą, kurių algebrinės išraiškos yra
rastos tiek nereliatyvistiniu, tiek reliatyvistiniu artėjimais. Pateikti
kaskadų lantanidų atomuose skaičiavimo rezultatai; jie palyginti su
eksperimentiniais spektrų duomenimis.


