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An alternative method to the density matrix formalism for the derivation of general expressions for the cross-sections of

the interaction of polarized atoms with polarized photons and electrons is presented. The expression for the cross-section

describing the polarization states of all particles taking part in the process are obtained in the form of the expansion via

irreducible tensors that have the simplest possible behaviour under changes of directions. The ways of the application of the

general expressions suitable for the specific experimental conditions are outlined by deriving asymmetry parameters of the

angular distributions of photoelectrons and Auger electrons following photoionization as well as the parameters of the angular

correlations between photo- and Auger electrons.
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1. Introduction

In collision processes, the differential cross-section

is simply a scalar with respect to the joint rotation of in-

coming and outgoing particles if neither the projection

quantum numbers of the incident particle nor the target

are resolved. For the derivation of expressions for the

spectroscopic characteristics invariant under space ro-

tation, the powerful methods of atomic theory and an-

gular momentum were developed by A. Jucys and his

coworkers [1, 2] in the case of the states of atoms de-

scribed with complex configurations. These methods

can also be applied for the study of the interaction of

atoms with photons, electrons, and other charged parti-

cles that is a powerful tool for the investigation of mat-

ter and interactions and have both theoretical and prac-

tical importance. In any atomic process, but particu-

larly in collisions, energy, momentum, and angular mo-

mentum are exchanged among the various constituents.

All three of these quantities are conserved, and, in

a classical theory, all three quantities may simultane-

ously have fixed values. Quantum states, however, can-

not be simultaneously eigenstates of linear and angular

momentum. If the state of linear momentum is fixed, as

it usually is in collision experiments, then the angular

momentum is not. Angular momentum is conserved,

but the information about it cannot be used directly.

The mean value of products of the components of an-

gular momentum that are proportional to the parame-

ters describing the orientation and alignment can be de-

scribed. Just these products completely specify atomic

states [3]. The measurement of the parameters of the

alignment and orientation helps us to learn about the

interchange of angular momentum in atomic collisions.

Orientation and alignment parameters essentially char-

acterize, respectively, the circulation of the atomic elec-

tron around the atomic core and the shape of the excited

electron cloud and its direction in space. Orientation

and alignment parameters thus allow us to go beyond

the cross-section concept, in favourable cases leading

to the so-called perfect scattering experiment, in which

the sets of quantum-mechanical scattering amplitudes

and phases are completely determined [4].

The studies of the polarization phenomena in the in-

teractions of atoms with charged particles and radiation

stimulated the creation of new methods of the inves-

tigation of plasmas, ionized gases [5], and solids [6].

One of them is plasma polarization spectroscopy [5],

since in the majority of laboratory and astrophysical

plasmas the electron–ion interaction is the dominant

mechanism of the radiation emission. Measurements
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of the polarization of the spectroscopic characteristics

of plasma provide a unique possibility for the diagnos-

tics of electron and ion distribution function with high

accuracy. The distortion of the Maxwellian distribution

function or presence in plasma beams may play a sub-

stantial role for the formation of the emission spectra

[6]. The deviations from the Maxwellian distribution of

electrons were directly registered in laser produced [7],

tokamak [8], vacuum spark [9], and astrophysical (So-

lar corona) [10] plasmas by observing the polarization

of line spectra and continuous radiation. Polarization

state of emission and absorption lines could be con-

sidered as a consequence of polarization of atoms due

to nonequilibrium populations of magnetic sublevels

or to ordering of angular momenta of atomic particles

in plasma, that is called a self-alignment phenomenon

caused by the anisotropy properties of plasma sources.

Disentanglement of the geometrical aspects of ani-

sotropy from the dynamical ones is another aspect of

alignment and orientation. From the classical radiation

theory, it follows that when the light is observed, only

the components of the source projected onto a plane

perpendicular to the direction of observation are im-

aged. The source must be looked at from different an-

gles to determine its complete electromagnetic config-

uration. This holds for any measurement of radiation.

To see the complete source, one must look at it from

several angles. Irreducible tensors are selected for the

description of polarization precisely because they have

the simplest possible behaviour under changes of direc-

tion (rotation) [3].

The experiments on free polarized atoms open up the

possibility to disentangle the atomic and solid state ef-

fects [11]. Because of some atoms [11, 12] basic prac-

tical importance for the magnetic properties of multi-

layer systems and of ultrathin films on ferromagnetic

substrates they are currently the focus of many inves-

tigations. The photoelectron spectroscopy, exploring

linear and circular magnetic dichroism [13] yields de-

tailed and site-specific information [11, 12]. Magneto-

optical effects in the VUV and soft X-ray ranges are

very important tools for the investigation of magnetic

materials [13].

To derive expressions for the parameters suitable to

characterize the polarization state in the photoioniza-

tion of atoms, the density matrix formalism proposed

by Fano and Macek [14, 15] has been widely used

[16–23]. In this formalism the polarization state of

atoms or ions was described by the statistical tensors

(state multipoles) which were the basis for the expan-

sion of atomic density matrix [24]. The methods of

the density matrix became common, but the work by

Fano and Macek [15] formulated a transparent method

for the light emission in the decay of a stationary state

of an atom following the excitation by collision with

an electron or photon that used a complete set of mean

values of measurable quantities instead of the density

matrix to characterize a state, thereby bypassing the

language of the density matrix [3]. The Wigner–Eckart

theorem [1] was used to relate measured quantities to

mean values of irreducible tensors constructed from

angular momentum operators. In effect, these mean

values were proportional to state multipoles, therefore,

density matrix elements need never appear. Then the

matrix element is expressed as a product of the reduced

matrix element invariant under space rotation and the

Clebsch–Gordan coefficient depending on the orienta-

tion in space.

A further development of the ideas of Fano and

Macek [15] was accomplished by Kupliauskienė et al.

[25, 26]. They have used the method based on the

atomic theory [1, 2, 27] to derive the expressions for

the photoionization cross-sections of polarized atoms

by polarized radiation. The methods of the theory of an

atom [1, 2, 27] usually were used to the isolated atom

for the derivation of the expressions for the spectro-

scopic characteristics that are invariant under the ro-

tation of the space. These characteristics were made

independent of the magnetic components of the total

angular momentum by using the Wigner–Eckart theo-

rem [1]. Then, the matrix element was expressed as

a product of the reduced matrix element that was in-

variant under space rotation and the Clebsch–Gordan

coefficient depending on the orientation in space. But

the Clebsch–Gordan coefficients in the expression for

the probability or cross-section can also be used to con-

struct the sums of the spherical tensors for the descrip-

tion of the orientation in space and rotation properties.

Until the Vilnius theoreticians have started the appli-

cation of the atomic theory methods for the investi-

gation of the polarization in atoms [25, 26] there have

been few applications of this method, and these have

been restricted to the polarization parameters for spe-

cial cases. Fano and Dill [28] have obtained the expres-

sion for the photoelectron angular distribution param-

eter β expressed as a sum of incoherent contributions

corresponding to the different magnitudes of the angu-

lar momentum transferred to an unpolarized target. The

same method was extended by Klar [18] to the angular

distribution of spin-polarized photoelectrons from un-

polarized atoms. The expression for the angular dis-

tribution of Auger electrons following ionization by a
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beam of unpolarized electrons or protons was also de-

rived without the help of density matrix by Cleff and

Mehlhorn [29]. Therefore, the formulation of the po-

larization theory of atoms in general form based on

the traditional technique of spherical tensors and wave

functions is useful for people working in atomic theory.

The aim of the method based on the atomic theory

approach was the derivation of the differential cross-

section and parameters describing the interaction of

polarized atoms with polarized radiation, electrons or

other charged particles in the form of the multiple ex-

pansions over spherical tensors by using the graphical

technique [30–35] for the integration over the angular

and spin variables of the matrix elements of the transi-

tion operators. Any calculation made using the graph-

ical technique can also be made using conventional al-

gebraic technique [31]. To every graphical reduction

there is a corresponding algebraic reduction because

of the correspondence between graphs and algebraic

formulas. However, the graphical method has two ad-

vantages over the algebraic methods: (a) the notation

is more compact because the undetermined magnetic

quantum numbers need not be written explicitly, and

(b) reductions can be made by recognizing geometrical

patterns. The graphical technique of angular momen-

tum was proposed by Levinson [30] to obtain an ex-

pression for the reduced matrix element invariant under

the rotation of space. The dependence of the matrix ele-

ment on the magnetic quantum numbers was separated

with the help of Wigner–Eckart theorem. In [25, 26],

the graphical technique was extended to make it suit-

able for investigating the probability of the process de-

pending on the mutual orientation of the particles par-

ticipating in the process or on their orientation with re-

spect to the chosen quantization axis.

The present work is devoted to the review of the ap-

plications of the alternative method to the density ma-

trix formalism for the investigation of the excitation

and ionization of polarized atoms and ions by polar-

ized radiation, electrons, and other charged particles

with subsequent decay of the formed ions and atoms in

two-step approximation. The general expressions for

the cross-sections of the excitation of atoms by elec-

trons as well as the radiative and dielectronic recom-

binations are derived and presented for the first time.

The expression for the photoionization cross-section is

also written in a more general form more convenient

for the practical applications. The photon–atom inter-

action will be described in Section 2 where the exci-

tation and ionization of polarized atoms by polarized

photons as well as the modifications of the expressions

for the probabilities or cross-sections in one- and mul-

tistep approximation will be discussed. In Section 3,

the electron–atom interactions (excitation and ioniza-

tion of atoms and ions and radiative recombination) are

considered. The radiative and Auger decay processes

are described in Section 4. The two-step process – di-

electronic recombination – is investigated in Section 5.

Section 6 is devoted to demonstrate some applications

of the general expressions for the specific experimen-

tal conditions. The review ends with concluding re-

marks that summarize the results and discuss the possi-

bilities of the application of ordinary atomic theory for

the description of the polarization in photon–atom and

electron–atom interactions.

2. Photon–atom interactions

2.1. Photoexcitation of atoms

The laser [36] and tunable synchrotron radiation al-

lows one not only to ionize an electron of a specific

outer or inner shell of an atom but also to excite it to

a specific orbital [37, 38]. The state of the produced

atom is polarized if the radiation is polarized. Thus,

the excitation of atoms by polarized radiation is one of

the ways to produce atoms in polarized states for fur-

ther measurements [39, 40]. The photoexcitation can

be used as a first step to create a resonant state with

well-defined angular momentum and parity for further

investigations of polarization and angular correlation

phenomena [41, 23].

The general expression for the excitation of polar-

ized atoms by polarized radiation was obtained [42] for

the following process:

A(α0J0M0) + hν(ǫ̂λk0) → A∗(α1J1M1). (1)

Here an atom A in the state α0J0M0 is excited by

the electromagnetic radiation into the state α1J1M1,

α0 and α1 define the configuration and other quan-

tum numbers, J is the total angular momentum and M
is its projection. The electromagnetic radiation is de-

scribed with the wave vector k0 (k0 = |k0| = ω/c,

ω = 2πν, and ν is the frequency of light) and unit vec-

tor ǫ̂λ of the polarization (λ is the helicity, λ = ±1).

The system of atomic units is used in the present work

(~ = e = m = 1, c = 137 unless these constants

are displayed explicitly). The assumption is taken into

account that the fine structure splitting ≫ line width

≫ hyperfine structure splitting. Then the states of an

atom can be specified by the total angular momentum J
of all electronic shells. The modifications enabling the
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calculations of the probability in the case when hyper-

fine structure is important will be described below. In

the present work, it is assumed that the directions for

the measurement of the projections M0 and M1 can be

different.

The differential cross-section of the process (1) can

be written as follows [23]:

dσ(α0J0M0ǫ̂λk0 → α1J1M1)

dΩ

= 2π2
[ ∫

〈α1J1M1|J(r)|α0J0M0〉Aλk0
(r) dr

]

×
[ ∫

〈α1J1M1|J(r)|α0J0M0〉Aλk0
(r) dr

]∗
.

(2)

Here J(r) stands for the operator of the current of elec-

trons and Aλk0
(r) is the operator of the vector poten-

tial of electromagnetic field. Taking into account that

kr ≫ 1 and the case of an arbitrary direction of the

incidence k0 of the photon, and inserting the multipole

expansion for the Aλk0
(r), the expression in the right

brackets of Eq. (2) acquires the form [23]

∫
〈α1J1M1|J(r)|α0J0M0〉Aλk0

(r) dr

=
∑

p=0,1

∞∑

k=1

q=k∑

q=−k

{
ik(−iλ)p

[
k + 1

k

]1/2 k
k−1/2
0

(2k − 1)!!

× Dk
qλ(k̂0)〈α1J1M1|Qp

kq|α0J0M0〉
}

=
∞∑

k=1

q=k∑

q=−k

〈α1J1M1|Q(k)
q |α0J0M0〉Dk

qλ(k̂0), (3)

〈α1J1M1|Q(k)
q |α0J0M0〉

= k
k−1/2
0

∑

p=0,1

[
k + 1

k

]1/2 ik(−iλ)p

(2k − 1)!!

× 〈α1J1M1|Qp
kq|α0J0M0〉. (4)

Here Dk
qλ(k̂0) is the Wigner rotation matrix [43] for

transforming from the helicity frame (k̂0 is the direc-

tion of the incoming radiation) to the frame common

to all particles participating in the process and used for

the evaluation of reduced matrix elements, p = 0 in-

dicates the operator of the electric multipole transition

(Ek) [27]

Q0
kq = −rkC(k)

q , (5)

and p = 1 shows the operator of the magnetic multipole

transition (Mk)

Q1
kq =−1

c

[
k(2k − 1)

]1/2
rk−1

×
{

1

k + 1

[
C(k−1) × L(1)](k)

q

+
[
C(k−1) × S(1)](k)

q

}
. (6)

Here L(1) and S(1) are the operators of the orbital

and spin angular momentum, respectively, C
(k)
q is

the operator of the spherical function normalized to

[4π/(2k + 1)]1/2 [1].

Note that the parities of the magnetic and electric

multipole fields are (−1)k and (−1)k+1, respectively.

Only the magnetic (Mk) and electric (Ek) part con-

tributes between specific electronic states owing to par-

ity selection rules. Since we are considering pure pho-

ton states, there is no need to introduce Stokes param-

eters explicitly. In electrical dipole approximation, the

matrix element (4) is as follows:

〈α1J1M1|Q(1)
q |α0J0M0〉

=
√

2k0〈α1J1M1|Q0
1q|α0J0M0〉. (7)

The helicity λ = ±1 describes the right-hand and

left-hand circular polarization of the radiation. In the

case of any polarization ǫ̂, the polarization of radiation

may be expressed via the circular polarization. Then

Aǫk0
(r) = αAλ=+1k0

(r) + βAλ=−1k0
(r) (8)

that has to be inserted into Eq. (3) to obtain the expres-

sion for the excitation cross-section (2).

Sometimes it is more convenient to analyse the po-

larization state of the particle with respect to the direc-

tion that differs from the one used for the calculation of

the matrix element where all particles of the process (1)

should be described in the same coordinate system and

their projections of the angular momentum on the same

quantization axis. For the transfer from the wave func-

tion |JM〉 defined in the laboratory fixed direction to

the wave function |JM̃〉 of the atomic frame used for

the evaluation of reduced matrix elements, the coordi-

nate rotation transformation [43] is used:
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|JM〉 =
∑

M̃

DJ
M̃M

(Ĵ)|JM̃ 〉. (9)

Here DJ
M̃M

(Ĵ) denotes the Wigner rotation matrix [43], and the hat on J indicates the rotation by solid angle that

transforms the atomic frame into the laboratory one used for the polarization measurements of the characteristics

depending on J. In the laboratory system of coordinates, the matrix element 〈α1J1M1|Q(k)
q |α0J0M0〉 can be

written by taking into account Eq. (9) in the form

〈α1J1M1|Q(k)
q |α0J0M0〉 =

∑

M̃0,q̃,M̃1

〈α1J1M̃1|Q(k)

q̃
|α0J0M̃0〉DJ0

M̃0M0

(Ĵ1)D
k
q̃q

(k̂0)D
∗J1

M̃1M1

(Ĵ1). (10)

The matrix element 〈α1J1M̃1|Q(k)

q̃
|α0J0M̃0〉 is defined in the atomic frame. The angular momentum part of this

matrix element was obtained in [42] with the help of the graphical technique of the angular momentum [1]. The

final expression for the excitation cross-sections is

dσ(α0J0M0ǫ̂qk0 → α1J1M1)

dΩ

= C
∑

K0,Kr,K1,k,k′

1

2K1 + 1
Ar(K0,Kr,K1, k, k′)

∑

N0,Nr,N1,N ′

1

[
K0 Kr K1

N0 Nr N1

]
T ∗K0

N0
(J0, J0,M0|Ĵ0)

× T ∗Kr

Nr
(k, k′, q|k̂0)T

K1

N1N ′

1

(J1, J1,M1,M1|Ĵ1), (11)

where

Ar(K0,Kr,K1, k, k′)

= (α1J1||Q(k)||α0J0)(α1J1||Q(k′)||α0J0)
∗





J0 K0 J0

k Kr k′

J1 K1 J1





[
(2J0 + 1)(2J1 + 1)(2k + 1)(2K1 + 1)

]1/2
, (12)

T ∗K
N (J, J ′,M |Ĵ) = (−1)J

′−M
[

4π

2J + 1

]1/2 [
J J ′ K
M −M 0

]
Y ∗

KN(θ, φ), (13)

TK1

N1N ′

1

(J1, J
′

1,M1,M
′

1|Ĵ1) = (−1)J
′

1
−M ′

1

[
2K1 + 1

2J1 + 1

]1/2 [
J1 J ′

1 K1

M1 M ′
1 N ′

1

]
D∗K1

N1N ′

1

(Ĵ1). (14)

In Eq. (12), the relation

(α1J1||Q(k)||α0J0) = [2J1 + 1]1/2〈α1J1||Q(k)||α0J0〉 (15)

is taken into account. In Eq. (11), C = 2π, Ĵ denotes the angles of J with respect to the z axis of laboratory

frame. In the case when hyperfine structure is important, the reduced matrix element (α1J1||Q(k)||α0J0) should

be changed by (α1J1(I)F1||Q(k)||α0J0(I)F0) in Eq. (12). A simple relation between these two matrix elements

holds:

(α1J1(I)F1||Q(k)||α0J0(I)F0) = (−1)F0−J1+I+k[(2F0 + 1)(2J1 + 1)]1/2
{

F0 k F1

J1 I J0

}
(α1J1||Q(k)||α0J0). (16)

I is the spin of the nucleus. The values of J0, J1 in Eqs. (11)–(15) should be changed by F0, F1. The probability

W (α0J0M0ǫ̂qk0 → α1J1M1) equals to the cross-section (2) divided by the density of the flow of the radiation.

Thus, the same expression of the cross-section can be used for the probability by changing only the definition of

the constant C .
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2.2. Photoionization of atoms

The expression for the differential cross-section of the photoionization process

A(α0J0M0) + hν(ǫq1k0) → A+(α1J1M1) + e−(p1, sms) (17)

was derived by Kupliauskienė et al. [26] in the case of dipole approximation and the levels LS(J)IF of an atom.

Here the ejected photoelectron has momentum p1, and the projection of its spin s is indicated by ms.

In the case when the hyperfine structure is small and taking into account of all multipoles, the general expression

for the differential cross-section of Eq. (17) can be written as follows:

dσ(J0M0ǫ̂q1k01 → J1M1p1ms)

dΩp1

= C
∑

K0,Kr,K1,Kλ,Ks,Kj,K,k1,k′

1

Bph(K1,K0,Kr,Kλ,Ks,Kj ,K, k1, k
′

1)

×
∑

N0,Nr,N1,Nλ,Nj ,N,Ns

[
K1 Kj K
N1 Nj N

] [
Kλ Ks Kj

Nλ Ns Nj

] [
K0 Kr K
N0 Nr N

]
TK1

N1N ′

1

(J1, J1,M1,M1|Ĵ1)

× T ∗K0

N0
(J0, J0,M0|Ĵ0)T ∗Kr

Nr
(k1, k

′

1, q1|k̂01)TKs

Ns
(s, s,ms|ŝ)

√
4π YKλNλ

(p̂1), (18)

Bph(K1,K0,Kr,Kλ,Ks,Kj ,K, k1, k
′

1)

= Cph(k1, k
′

1)
∑

λ,j,J,λ′,j′,J ′

(2J + 1)(2J ′ + 1)(−1)λ
′〈α1J1ε1λ(j)J ||Q(k1)||α0J0〉〈α1J1ε1λ

′(j′)J ′||Q(k′

1
)||α0J0〉∗

× [(2J0 + 1)(2Kj + 1)((2J1 + 1)(2k1 + 1)(2s + 1)(2λ + 1)(2λ′ + 1)(2j + 1)(2j′ + 1)]1/2

×
[
λ λ′ Kλ

0 0 0

] 



J0 K0 J0

k1 Kr k′
1

J ′ K J









J1 K1 J1

j′ Kj j
J ′ K J









λ′ Kλ λ
s Ks s
j′ Kj j



 . (19)

In the case of the photoionization as the first step process, the expression for the cross-section should be modified

(see Section 2.3). It acquires the form

dσK1N1
(α0J0M0ǫ̂q1k01 → α1J1p1ms)

dΩp1

= C
∑

K0,Kr,Kλ,Ks,Kj ,K,k1,k′

1

Bph(K1,K0,Kr,Kλ,Ks,Kj ,K, k1, k
′

1)

[
2K1 + 1

2J1 + 1

]1/2

×
∑

N0,Nr,Nλ,Nj ,N,Ns

[
K1 Kj K
N1 Nj N

] [
Kλ Ks Kj

Nλ Ns Nj

] [
K0 Kr K
N0 Nr N

]

× T ∗K0

N0
(J0, J0,M0|Ĵ0)T ∗Kr

Nr
(k1, k

′

1, q1|k̂01)TKs

Ns
(s, s,ms|ŝ)

√
4πYKλNλ

(p̂1). (20)

Further the general expressions (18)–(20) can be used to obtain some special expressions for specific experimen-

tal conditions also investigated by other authors with the help of the density matrix formalism, e. g., the expressions

for the angular distribution and spin polarization of photoelectrons in the case of nonpolarized atom.
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2.3. One- and multistep processes

The excitation or ionization of an atom by laser or other electromagnetic radiation is often used to prepare it in

a polarized state for further investigation. Then the magnetic state of an atom or ion in the final state J1M1 is not

observed, and summation of M1 has to be performed coherently. In this case, the excitation (1) is the first step of

the multistep process while the second step is

A∗(α1J1M1) + b(α) → A(α2J2M2) + b′(α′). (21)

Here b(α) stands for impacting particle or electromagnetic radiation in the state α and b′(α′) indicates ionized and

emitted one or more particles. In two-step approximation, the probability of both processes (1) and (21) can be

written as coherent sum since the projection M1 cannot be observed [18]:

W (α0J0M0ǫ̂k0 → α1J1α → α2J2M2α
′) = C ′

∣∣∣∣
∑

M1

〈α2J2M2α
′|H2|α1J1M1α〉〈α1J1M1|H1|α0J0M0〉

∣∣∣∣
2

= C ′
∑

M1,M ′

1

〈α2J2M2α
′|H2|α1J1M1α〉〈α2J2M2α

′|H2|α1J1M
′

1α〉∗

× 〈α1J1M1|H1|α0J0M0〉〈α1J1M
′

1|H1|α0J0M0〉∗. (22)

The matrix elements in Eq. (22) are defined similar to Eq. (10) allowing the measurement in the direction different

from that used for evaluation. H1 and H2 are the operators of the interaction in the first and second processes,

respectively. Then the product of two Wigner rotation matrices coming up from the matrix element and its complex

conjugate in Eq. (22) should be replaced by

DJ1

M̃1M1

(Ĵ1)D
∗J ′

1

M̃ ′

1
M ′

1

(Ĵ1) =
∑

K1,N1,N ′

1

[
J ′

1 K1 J1

M̃ ′
1 N1 M̃1

]
T ∗K1

N1N ′

1

(J1, J
′

1,M1,M
′

1|Ĵ1), (23)

and the summation over M1 and M ′
1 in Eq. (22) is possible to be carried out. From the examination of the expres-

sions (29) in [44] and (11) and (18) of the present work for both terms in Eq. (22) it follows that only the tensors

TK1

N1N ′

1

(J1, J
′
1,M1,M

′
1|Ĵ1) depend on M1 and M ′

1. The sum over M1,M
′
1 of the product of these tensors is equal to

∑

M1,M ′

1

TK1

N1N (J1, J1,M1,M
′

1|Ĵ1)T
∗K ′

1

N ′

1
N ′

(J1, J1,M1,M
′

1|Ĵ1)

=

√
(2K1 + 1)(2K ′

1 + 1)

2J1 + 1
D∗K1

N1N (Ĵ)D
K ′

1

N ′

1
N ′

(Ĵ)
∑

M1,M ′

1

(−1)2J1−2M ′

1

[
J1 J1 K1

M1 M ′
1 N

] [
J1 J1 K ′

1

M1 M ′
1 N ′

]

=
2K1 + 1

2J1 + 1
D∗K1

N1N (Ĵ)DK1

N ′

1
N (Ĵ)δ(K1,K

′

1)δ(N,N ′). (24)

Then the quantization axis can be chosen along the z axis of the laboratory coordinate system, and

D∗K1

N1N (0, 0, 0)DK1

N ′

1
N (0, 0, 0) = δ(N1, N)δ(N ′

1, N). The square root of the multiplier (2K1 + 1)/(2J1 + 1) is

convenient to attribute to both terms of the following expression:

W (α0J0M0ǫ̂k0 → α1J1α → α2J2M2α
′)

=
∑

K1,N1

WK1N1
(α0J0M0ǫ̂k0 → α1J1α)W A

K1N1
(α1J1α → α2J2M2α

′). (25)



206 A. Kupliauskienė / Lithuanian J. Phys. 44, 199–218 (2004)

Here the sum over M1,M
′
1 in Eq. (22) is replaced by the sum over K1, N1, i. e. the probability of the two-step

process is expanded as the sum of state multipoles. For example, the expressions for the photoexcitation probabil-

ity (11) and that of the second process slightly change. For the excitation probability, it is

WK1N1
(α0J0M0ǫ̂qk0 → α1J1) =

C

[2J1 + 1]1/2

∑

K0,Kr,k,k′

Br(K0,Kr,K1, k, k′)
∑

N0,Nr ,q

[
K0 Kr K1

N0 Nr N1

]

× T ∗K0

N0
(J0, J0,M0|Ĵ0)T ∗Kr

Nr
(k, k′, q|k̂0), (26)

W00(α0J0k → α1J1) =
C

(2J0 + 1)(2k + 1)[2J1 + 1]1/2

∣∣〈α1J1||Q(k)||α0J0〉
∣∣2. (27)

The expression for the second term in Eq. (25) depends on the second-step process. In the case of the Auger decay,

it is presented by Kupliauskienė and Tutlys (see Eq. (4) in [45]).

The proposed method is easy to generalize for multistep process when intermediate states are not observed. In

the case of a three-step process where the fluorescence radiation of the doubly charged ion formed following the

photoionization of an atom and Auger decay of the singly charged ion is registered, the summation over intermediate

states gives

∑

M1,M ′

1
,M2,M ′

2

W 1(J0M0k1 → J1M1M
′

1p1m1)W 2(J1M1M
′

1p1m1 → J2M2M
′

2p2m2)

× W 3(J2M2M
′

2p2m2 → J3M3k2)

=
∑

K1,N1,K2,N2

W 1
K1N1

(J0M0k1 → J1p1m1)
2K1 + 1

2J1 + 1
W 2

K1N1K2N2
(J1p1m1 → J2p2m2)

× 2K2 + 1

2J2 + 1
W 3

K2N2
(J2p2m2 → J3M3k2). (28)

The square root of each multiplier (2K+1)/(2J +1) in Eq. (28) is also convenient to attribute to both neighbouring

terms.

3. Electron–atom interactions

3.1. Excitation of atoms by electrons

The process of the excitation of polarized atoms by polarized electrons can be written as follows:

A(α0J0M0) + e−(p0m0) → A(α1J1M1) + e−(p1m1). (29)

The expression for the differential cross-section of the process (29) is easy to obtain by the method described in

[26, 44] and is as follows:

d2σ(α0J0M0p0m0 → α1J1M1p1m1)

dε2 dΩ1

= 4πC
∑

K, K0, K
′

0, Kλ0, Ks0, K1,

K′

1, Kλ1, Ks1

Bex(K0,K
′

0,K1,K
′

1,Kλ0,Ks0,Kλ1,Ks1,K)
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×
∑

N0, N
′

0, Nλ0, Ns0, N1,

N ′

1, Nλ1, Ns1, N

[
Kλ0 Ks0 K ′

0

Nλ0 Ns0 N ′
0

] [
K0 K ′

0 K
N0 N ′

0 N

] [
K1 K ′ K
N1 N ′ N

] [
K1 K ′

1 K
N1 N ′

1 N

] [
Kλ1 Ks1 K ′

1

Nλ1 Ns1 N ′
1

]

× Y ∗

Kλ0Nλ0
(p̂0)YKλ1Nλ1

(p̂1)T ∗K0

N0
(J0, J0,M0|Ĵ0)TK1

N1
(J1, J1,M1|Ĵ1)T ∗Ks0

Ns0
(s, s,m0|ŝ)TKs1

Ns1
(s, s,m1|ŝ),

(30)

Bex(K0,K
′

0,K1,K
′

1,Kλ0,Ks0,Kλ1,Ks1,K)

=
∑

λ0,λ′

0
,λ1,λ′

1
,j0,j′

0
,j1,j′

1
,J,J ′

(2J + 1)(2J ′ + 1)(2K + 1)(2s + 1)(−1)λ
′

0
+λ′

1

× 〈α1J1, ε1λ1(j1)J‖H‖α0J0, ε0λ0(j0)J〉〈α1J1, ε1λ
′

1(j
′

1)J
′‖H‖α0J0, ε0λ

′

0(j
′

0)J
′〉∗

×
[
(2λ0 + 1)(2λ′

0 + 1)(2λ1 + 1)(2λ′

1 + 1)(2j0 + 1)(2j′0 + 1)

× (2j1 + 1)(2j′1 + 1)(2J0 + 1)(2J1 + 1)(2K ′

0 + 1)(2K ′

1 + 1)
]1/2

×
[
λ0 λ′

0 Kλ0

0 0 0

] [
λ1 λ′

1 Kλ1

0 0 0

] 



J0 K0 J0

j′0 K ′
0 j0

J ′ K J









λ′
0 Kλ0 λ0

s Ks0 s
j′0 K ′

0 j0









λ′
1 Kλ1 λ1

s Ks1 s
j′1 K ′

1 j1









J1 K1 J1

j′1 K ′
1 j1

J K J ′



 . (31)

In Eq. (31), 〈α1J1, ε1λ1(j1)J‖H‖α0J0, ε0λ0(j0)J〉 is the reduced matrix element of the electrostatic interac-

tion. If the excitation of atoms by electrons is used as the first step process for the preparation of atoms in polarized

excited states for the next step process, the projections M1 are not registered. Then the summation over M1 should

be performed following the recommendations of Section 2.3.

3.2. Ionization of atoms by electrons

If neither the projection quantum numbers of the incident electron nor the target are resolved, the differential

cross-section for the ionization of atoms by electrons is simply a scalar with respect to the joint rotation of the

incoming and outgoing electron momenta p0, p1, and p2, respectively. This basic symmetry is destroyed by an

initial orientation and/or alignment of the target, and can supply more information about the elementary processes

in such diverse fields as discharge and plasma physics [47], fusion physics [8], and the physics and chemistry of the

upper atmosphere [48]. For the interpretation of recently measured ionization cross-sections of polarized Na atoms

[48, 49], the expressions enabling one to describe the polarization states of all particles taking part in the process

are necessary.

Recently the general expression for the description of the ionization of polarized atoms by polarized electrons

A(α0J0M0) + e−(p0m0) → A+(α1J1M1) + e−(p2m2) + e−(p1m1) (32)

was obtained by Kupliauskienė and Glemža [46]. In Eq. (32), pi denotes the momentum of the electron in the

initial (i = 0) and final (i = 1, 2) states, mi indicates the projection of an electron spin. The fine structure splitting

was assumed larger than hyperfine one. The expression for the cross-section was derived by using the graphical

technique of the angular momentum [1] and is as follows:

d3σ(α0J0M0p0m0 → α1J1M1p2m2p1m1)

dε2 dΩ1 dΩ2

= C(4π)3/2
∑

K, K0, K
′

0, Kλ0, Ks0, K
′, K1,

K′

1, K
′

2, Kλ1, Ks1, Kλ2, Ks2

Bion(K0,K
′

0,K,Kλ0,Ks0,K1,K
′,Kλ1,Ks1,K

′

1,Kλ2,Ks2,K
′

2)
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×
∑

N, N0, N
′

0, Nλ0, Ns0, N
′, N1,

N ′

1, N
′

2, Nλ1, Ns1, Nλ2, Ns2

[
Kλ0 Ks0 K ′

0

Nλ0 Ns0 N ′
0

] [
K0 K ′

0 K
N0 N ′

0 N

] [
K1 K ′ K
N1 N ′ N

] [
K ′

2 K ′
1 K ′

N ′
2 N ′

1 N ′

] [
Kλ1 Ks1 K ′

1

Nλ1 Ns1 N ′
1

]

×
[
Kλ2 Ks2 K ′

2

Nλ2 Ns2 N2

]
Y ∗

Kλ0Nλ0
(p̂0)YKλ1Nλ1

(p̂1)YKλ2Nλ2
(p̂2)T ∗K0

N0
(J0, J0,M0|Ĵ0)TK1

N1
(J1, J1,M1|Ĵ1)

× T ∗Ks0

Ns0
(s, s,m0|ŝ)TKs1

Ns1
(s, s,m1|ŝ)TKs2

Ns2
(s, s,m2|ŝ), (33)

Bion(K0,K
′

0,K,Kλ0,Ks0,K1,K
′,Kλ1,Ks1,K

′

1,Kλ2,Ks2,K
′

2)

=
∑

λ0, λ
′

0, λ1, λ
′

1, λ2, λ
′

2, j0, j
′

0,

j1, j
′

1, j2, j
′

2, J, J ′, j, j′

(2J + 1)(2J ′ + 1)(2K + 1)(2s + 1)(−1)λ
′

0
+λ′

1
+λ′

2

× 〈α1J1, ε2λ2(j2)ε1λ1(j1)j, J ||H||α0J0, ε0λ0(j0)J〉〈α1J1, ε2λ
′

2(j
′

2)ε1λ
′

1(j
′

1)j
′, J ′||H||α0J0, ε0λ

′

0(j
′

0)J
′〉∗

×
[
(2s + 1)(2λ0 + 1)(2λ′

0 + 1)(2λ1 + 1)(2λ′

1 + 1)(2λ2 + 1)(2λ′

2 + 1)(2j0 + 1)(2j′0 + 1)

× (2j1 + 1)(2j′1 + 1)(2j2 + 1)(2j′2 + 1)(2j + 1)(2j′ + 1)(2J0 + 1)(2J1 + 1)(2K ′

0 + 1)(2K ′

1 + 1)

× (2K ′ + 1)(2K ′

2 + 1)
]1/2

[
λ0 λ′

0 Kλ0

0 0 0

] [
λ1 λ′

1 Kλ1

0 0 0

] [
λ2 λ′

2 Kλ2

0 0 0

]

×





J0 K0 J0

j′0 K ′
0 j0

J ′ K J









λ′
0 Kλ0 λ0

s Ks0 s
j′0 K ′

0 j0









J1 K1 J1

j K ′ j′

J K J ′









λ′
1 Kλ1 λ1

s Ks1 s
j′1 K ′

1 j1









λ′
2 Kλ2 λ2

s Ks2 s
j′2 K ′

2 j2









j′2 K ′
2 j2

j′1 K ′
1 j1

j′ K ′ j



 . (34)

The reduced matrix element of the electrostatic interaction in Eq. (34) is defined in [2]. In the case of the

inner-shell ionization of atoms, the state of the ion is not stable and decays via radiative or Auger transition. Then

the expression (33) should be modified following the recommendations of Section 2.3 as it was pointed out in

Section 2.2.

The expression (33) for the electron-impact ionization can also be used for the investigation of the ionization of

atoms by protons and highly charged ions. Then the expressions for the cross-section and reduced matrix element

should suffer some changes. The alignment parameters for L3-subshell of Cd and Sb atoms were obtained by

observing the degree of polarization of the L1-lines excited by proton impact [50].

3.3. Radiative recombination

The process of the radiative recombination of polarized ions with polarized electrons can be written as follows:

An+(α0J0M0) + e−(p0m0) → A(n−1)+(α1J1M1) + hν(ǫqk0). (35)

From the relation of detailed balance, it follows that the cross-section of the radiative recombination σrr
f→i(E0)

is related to the cross-section of the photoionization σph
i→f (E1) thought detailed balance (Milne relation) as

σrr
f→i(E0) =

(αE1)
2

2E0

gi

gf
σph

i→f (E1). (36)

Here E0 and E1 are the energy of an electron and emitted photon, respectively, gi and gf are the statistical weights

of the initial and final states, α is the fine structure constant, and E1 = E0 + Ip (Ip is the ionization energy). Then
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the general expression for the differential radiative recombination cross-section can be written in the following form

by using Eq. (18):

dσ(J0M0p1ms → J1M1ǫ̂q1k01)

dΩ

= C
√

4π
∑

K0,Kr,K1,Ks,Kj ,K,k1,k′

1

Bph(K0,K1,Kr,Kλ,Ks,Kj ,K, k1, k
′

1)

×
∑

N0,Nr,N1,Ns,Nj ,N

[
K0 Kj K
N0 Nj N

] [
Kλ Ks Kj

Nλ Ns Nj

] [
K1 Kr K
N1 Nr N

]
Y ∗

Kλ,Nλ
(p̂1)T ∗K0

N0
(J0, J0,M0|Ĵ0)

× TKr

Nr
(k1, k

′

1, q1|k̂01)T ∗Ks

Ns
(s, s,ms|ŝ)TK1

N1N ′

1

(J1, J1,M1,M
′

1|Ĵ1). (37)

Here C = (α2E2
1)/E0.

If a recombined ion arises in the excited state, it can suffer the radiative decay to a lower excited or ground state

by emitting a photon. The polarization state of this photon depends on the states of the ion and electron. For the

description of the polarization characteristics of the second photon, the expression for the radiative recombination

cross-section as that of the first-step process is necessary. It can be obtained following the recommendations of

Section 2.3.

4. Decay of excited atoms

In the case of the registration of the decay products of the formed ion, much information can be gained not only

about the structure of the system under investigation but also about the process itself and many-body interactions.

Here the Auger decay process is often used [51]. But in the case of the creation of a vacancy in the outermost

closed shell of atoms containing one valence electron, the radiative transition is the only way of its decay. The

fluorescence and Auger decay of an excited ion or atom are the processes of the second step following inner-shell

excitation or ionization of the atom. In the present section, the expressions for the radiative and Auger decay as the

second step process will be presented. These expressions were obtained by applying atomic theory methods [2, 27]

and the graphical technique of the angular momentum [1].

4.1. Radiative decay

The radiative decay of an atom or ion is the inverse process to the photoexcitation and can be written in the form

A(α1J1M1) → A(α2J2M2) + hν(ǫ̂q2k02). (38)

The general expression for the probability of the fluorescence following the photoionization of polarized atoms

was obtained by Kupliauskienė and Tutlys [52]. In the case of fluorescence as the second step process, the initial

state M1 is not registered. Then, the expression for the radiative transition probability is as follows:

dW r
K1N1

(α1J1 → α2J2M2ǫ̂q2k02)

dΩ2

=
∑

K ′

r ,K2,k2,k′

2

A(K1,K
′

r,K2, k2, k
′

2)
∑

N ′

r ,N2

[
K1 K ′

r K2

N1 N ′
r N2

]
TK2

N2
(J2, J2,M2|Ĵ2)T

K ′

r

N ′

r
(k2, k

′

2, q2|k̂02), (39)

A(K1,K
′

r,K2, k2, k
′

2)

= C(k2, k
′

2)(α2J2‖Q(k2)‖α1J1)(α2J2‖Q(k′

2
)‖α1J1)

∗

[
(2K1 + 1)(2J2 + 1)(2k2 + 1)

2K2 + 1

]1/2




J1 K1 J1

k2 K ′
r k′

2

J2 K2 J2



 . (40)
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The reduced matrix element in Eq. (40) is equal to

(α2J2‖Q(k2)‖α1J1) = (2J2 + 1)1/2k02〈α2J2‖Q(k2)‖α1J1〉 (41)

and is defined by Eq. (4). The constant C(k2, k
′
2) depends on the multipolarity of the transition operator. In the

case of electrical dipole transition, C(1, 1) = α3∆E3/(2π), where α is the fine structure constant and ∆E is the

difference of the energies (in a.u.) of the initial and final states.

4.2. Auger decay

Usually Auger decay is the second step process

A+(α1J1M1) → A2+(α2J2M2) + e−(p2,m
′

s) (42)

following inner-shell excitation or ionization of atoms and ions. The general expression for the probability of

Eq. (42) was obtained by Kupliauskienė and Tutlys [44, 45] in the case when the Auger transition follows the

photoionization of an atom.

When the state of the intermediate ion is not registered, the Auger transition probability acquires the form [45]

dWK1N1
(α1J1 → α2J2M2p2m

′
s)

dΩ2

=
∑

K ′,K2,K ′

λ
,K ′

s

AA(K1,K2,K
′

λ,K ′

s,K
′)

∑

N ′,N2,N ′

λ
,N ′

s

[
K ′

λ K ′
s K ′

N ′

λ N ′
s N ′

] [
K2 K ′ K1

N2 N ′ N1

]

× TK2

N2
(J2, J2,M2|Ĵ2)T

K ′

s

N ′

s
(s, s,m′

s|ŝ)
√

4πYK ′

λ
N ′

λ
(θ2, φ2), (43)

where

AA(K1,K2,K
′

λ,K ′

s,K
′)

= 2π
∑

λ1,j1,λ2,j2

〈α2J2ε2λ1(j1)J1‖H‖α1J1〉〈α2J2ε2λ2(j2)J1‖H‖α1J1〉∗

× (2J1 + 1)
[
(2λ1 + 1)(2λ2 + 1)(2j1 + 1)(2j2 + 1)(2J2 + 1)(2s + 1)(2K ′ + 1)

]1/2

×





J2 j1 J1

J2 j2 J1

K2 K ′ K1









λ2 s j2

Kλ K ′
s K ′

λ1 s j1



 (−1)λ2

[
λ1 λ2 K ′

λ
0 0 0

]
. (44)

5. Dielectronic recombination

The process of dielectronic recombination (DR) can be written as follows:

A+(α0J0M0) + e−(p0m0) → A∗∗(α1J1)





→ A(α2J2M2) + hν(ǫq2
,k02),

→ A+(α3J3M3) + e−(p1m1).

(45)

It is an example of a two-step process. The first step is resonant electron capture. The next step is radiative or

Auger decay that were described in Section 4. Two-step approximation for DR may be applied if the interference

with the radiative recombination is neglected and the summation over intermediate states J1M1, that usually occurs

in second-order perturbation theory, is limited to a single resonance. Then, only a summation over the magnetic

substates that are not registered is retained. DR process is finished when the photon is emitted.
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In the two-step approximation (see Section 2), the cross-section for DR may be written as

dσ(α0J0M0p0m0 → α1J1 → α2J2M2ǫq2
k02)

dΩ

= 2π
∑

M1,M ′

1

〈α2J2M2ǫq2
k02|H ′|α1J1M1〉〈α2J2M2ǫq2

,k02|H ′|α1J1M
′

1〉∗

× 〈α1J1M1|He|(α0J0M0p0m0〉〈α1J1M
′

1|He|(α0J0M0p0m0〉∗
[
(E − E1)

2 +
Γ2

4

]−1

. (46)

Here H ′ and He is the radiative decay and electrostatic interaction operators, respectively, dΩ is the solid angle of

the emission of radiation, E1 and E is the energy of the intermediate and initial state of the system atom + electron,

respectively, and Γ denotes the decay width of the intermediate state that includes both radiative and nonradiative

decay channels.

In the two-step approximation (E ≈ E1), the general expression for DR (46) in the case of the interaction of

a polarized ion with a polarized electron may be obtained by applying the methods described in [26, 45] and is as

follows:

dσ(α0J0M0p0m0 → α1J1 → α2J2M2ǫq2
k02)

dΩ

=
2π

p2
0

∑

K1,N1

W c
K1,N1

(α0J0M0p0m0 → α1J1)
dσr

K1,N1
(α1J1 → α2J2M2ǫq2

k02)

dΩ

[
(E − E1)

2 +
Γ2

4

]−1

. (47)

The resonant electron capture cross-section W c is inverse to that of Auger decay and is defined by Eq. (43). The

expression for the radiative decay probability dW r/dΩ is the same as in Eq. (39).

The DR process is similar to that of resonant electron transfer and excitation (RTE). When highly charged ions

interact with low-Z atoms, the differential cross-section for RTE may be determined by using the cross-section of

DR and momentum approximation for the distribution of electron charge in the atom [53, 54]. Angular distribution

of radiation emitted after RTE in collisions of nonpolarized U90+ with a graphite target was investigated in [55].

The process of DR with emission of two and more photons was also treated both in nonrelativistic [56] and fully

relativistic [57] approximations.

6. Practical applications

General expression for the differential cross-section

and probability of the excitation and ionization of po-

larized atoms and ions by polarized electrons or radi-

ation can be used to obtain much more simple expres-

sions applicable for specific experimental conditions.

The authors who used the density matrix formalism to

derive the expressions for various parameters describ-

ing the polarization usually started from the very begin-

ning by formulating the problem dealing the specific

experiment. Below several most important papers are

reviewed.

In the case of the photoionization of polarized atoms

by polarized radiation, Jacobs [16] obtained the general

expression for the differential cross-section, the asym-

metry parameters β of the angular distribution and γ,

δ, and ξ for the spin polarization of photoelectrons.

The statement that the photoion was not detected was

assumed from the very beginning. The angular distri-

bution of photoelectrons from nonpolarized atoms was

investigated in [58, 59]. The investigation of the an-

gular distribution of photoelectrons with specific spin

orientation in the case of nonpolarized atoms by po-

larized dipole radiation was carried out by Cherepkov

[60]. General expression for the angular distribution

and polarization of photoelectrons from nonpolarized

atoms in the region of autoionizing states was obtained

in [17]. Here the photons of any multipolarity were

treated. Later on, the expressions for the cross-sections

and asymmetry parameters for the angular distribution

of photoelectrons from polarized atoms exposed to po-

larized radiation in both resonant [20] and nonresonant

[13, 18] case were obtained. These expressions also

found their applications for the investigation of mag-

netic dichroism in the angular distributions of photo-

electrons [61]. Recently, dramatic nondipole effects in
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low-energy photoionization were discovered both the-

oretically and experimentally [62].

A much larger number of papers is devoted to the in-

vestigation of Auger and fluorescence decay of atoms

following ionization by electrons and photons. In 1972

and 1974, three papers presented calculations on angu-

lar distributions of ionized atom decay products. The

polarization of characteristic radiation excited by elec-

tron impact [65] and angular distribution of Auger elec-

trons following photoionization [29, 66] were calcu-

lated not applying the density matrix formalism. Later

on, Kabachnik and coworkers [17, 41, 67–71], Lohman

et al. [72, 73], and Bartschat and Grum-Grzhimailo

[74] obtained numerous expressions describing the an-

gular distribution and spin polarization of Auger elec-

trons for various specific experimental conditions. As

the expressions were hinted to the applications of no-

ble gases, the initial state of the atom was considered

randomly oriented. The atoms could be ionized by po-

larized dipole photons [67] or nonpolarized electrons

[51, 68, 72, 73]. Angular distribution of Auger elec-

trons ejected by electron impact from laser-excited and

polarized atoms was described in [70]. A resonant cas-

cade model based on a stepwise approach was sug-

gested [41] for the analysis of the angular correlation in

the decay of core-excited resonances produced by pho-

toabsorption. The model was applied to the description

of angular distributions of Auger electrons and fluores-

cence.

The alignment of atoms and ions in radiative elec-

tron capture (REC) into ground and excited states of

ions is recently formed field for the polarization inves-

tigation in electron–ion interactions [75–77]. The an-

gular distribution of the decay radiation of recombined

ions may provide useful information about the ionic

sublevels following electron capture from atoms [78],

molecules, and solids. But the parameters of the reso-

nant electron transfer and excitation (RETE) are similar

to those of dielectronic recombination. Some special

cases of RETE were investigated in [55, 79].

The general expressions presented in Sections 2–5

can be used for the description of the processes men-

tioned above that were investigated with the help of the

density matrix formalism. These general expressions

are written in the invariant form of the expansions over

the state multipoles, i. e. they are independent of the

choice of the coordinate system.

If the atoms or electrons in the initial state are ran-

domly oriented, the general expressions have to be av-

eraged over the projections of the total angular momen-

tum J or electron spin, respectively. When the final

states of the products of processes are not detected, the

summation over projections over the states of the atom

or electron spin should be performed. The integration

over the angles of the emission of electrons or radiation

should be performed if they are not detected.

The examination of the general expressions (11),

(18), (20), (30), (33), (37), (39), and (41) shows that

only the tensor TK
N (J, J,M |Ĵ) depends on the projec-

tion M . Summation over M gives [26]

∑

M

TK
N (J, J,M |Ĵ) = δ(K, 0)δ(N, 0). (48)

Integration over the angles leads to [43]

∫ π

0
sin θ dθ

∫ 2π

0
dφYKN(θφ) =

√
4πδ(K, 0)δ(N, 0).

(49)

A more complicated case occurs with the polariza-

tion of radiation. The nonpolarized radiation usually

is represented as a sum of equal parts of the left- and

right-polarized radiation since the helicity q 6= 0. Thus,

for the nonpolarized dipole photon we have

∑

q=±1

TK
N (1, 1, q|k̂0)

=
1

3
δ(K, 0)δ(N, 0)

+

√
4π

3

[
1 1 2
1−1 0

]
Y2N (θ, φ)δ(K, 2). (50)

This expression can also be used in the case when the

polarization of the emitted radiation is not detected.

6.1. The angular distribution of photoelectrons from

unpolarized atoms

If the initial state of atoms is randomly oriented, the

final state of ions and the spin of the photoelectrons are

not registered, the summation over the components of

the ion state and the spin of the photoelectron, and av-

eraging over the components of the atoms is necessary.

From the application of Eq. (48) in (18) it follows that

K0 = K1 = Ks = 0, Kr = Kλ = Kj = K . The use

of these values in Eq. (18) and the choice of the z axis

along the direction of incoming radiation allows us to

write the differential cross-section:
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dσ(α0J0q → α1J1)

dΩp

=
1

2J0 + 1

∑

K,k,k′

Bph(0, 0,K,K, 0,K,K, k, k′ )(−1)k−q
[
2J1 + 1

2k + 1

]1/2 [
k k′ K
q −q 0

]
PK(cos θ). (51)

In Eq. (51), PK(cos θ) stands for a Legendre polynomial. For the circular polarization of incoming dipole radiation

(k = k′ = q = 1), the cross-section can be written as

dσ(α0J0 → α1J1)

dωp
=

σ(J0 → J1)

4π

[
1 − 1

2
βP2(cos θ)

]
, (52)

where

β =
5
√

2 Bph(0, 0, 2, 2, 0, 2, 2, 1, 1)

Bph(0, 0, 0, 0, 0, 0, 1, 1)
, (53)

σ(α0J0 → α1J1) =
4π

3(2J0 + 1)
Bph(0, 0, 0, 0, 0, 0, 1, 1). (54)

The expressions for β (53) and σ (54) differ from those obtained in [26] and used in the calculations of the

angular distribution of 2p photoelectrons from Na atoms in the ground [80] and excited states [80–82]. The spin

polarization parameters γ, δ, and ξ were also calculated for the 2p photoionization of Na in the ground and first

excited states [83].

6.2. Angular distribution of Auger electrons for unpolarized atoms

The process of the photoionization of an atom A with following Auger decay of a photoion A+ in a two-step

approximation can be written as follows:

A(α0J0M0) + hν(ǫ̂q,k01)→A+(α1J1M1) + e−(p1,ms)

→A2+(α2J2M2) + e−(p1,ms) + e−(p2,m
′

s). (55)

In Eq. (55), α0, α1, and α2 indicate the configuration and other quantum numbers, J0M0, J1M1, and J2M2

describe the total angular momenta and their magnetic components of the electron cloud of an atom in the initial

state, intermediate photoion, and doubly charged ion in the final state, respectively. The photo- and Auger electrons

have the momentum p1 and p2, the projection of their spin s is ms and m′
s, respectively. The wave vector of

incoming radiation is indicated by k01 (|k01| = ω1/c, where ω1 is the frequency of radiation).

An expression for the cross-section of the processes (55) was derived by Kupliauskienė and Tutlys [45, 44] and

can be written in the form

d2W (α0J0M0ǫ̂qk01 → α1J1p1ms → α2J2M2p2m
′
s)

dΩ1 dΩ2

=
∑

K1,N1

dσK1N1
(α0J0M0ǫ̂qk01 → α1J1pms)

dΩ1

dWK1N1
(α1J1 → α2J2M2p2m

′
s)

dΩ2
. (56)

Here dΩ1 and dΩ2 indicate the solid angles of the emission of the photoelectron and Auger electron, respectively.

The probability describing the angular distribution of Auger electrons from unpolarized atoms simplifies as a

result of the summation of (56) over the magnetic components of the spins of photo- and Auger electrons, the total
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angular momentum of a doubly charged ion, integration over the angles of photoelectron, and averaging over the

magnetic components of an atom. In the case of dipole approximation, it acquires the following form:

dW (J0 → J1 → J2p2)

dΩ2
=

∑

K1

AA(K1, 0,K1, 0,K1)B(K1)PK1
(cos θ2)

=AA(0, 0, 0, 0, 0)B(0)
[
1 + βP2(cos θ2)

]
. (57)

Here

B(K1) =
4π

2J0 + 1

[
2K1 + 1

3

]1/2 [
1 1 K1

1−1 0

]
B(K1, 0,K1, 0, 0, 0,K1, 1, 1), (58)

β =
AA(2, 0, 2, 0, 2)B(2)

AA(0, 0, 0, 0, 0)B(0)
=

AA(2, 0, 2, 0, 2)

AA(0, 0, 0, 0, 0)
A2, (59)

where A2 is the alignment [26]. Its expression coincides with that presented by Kabachnik and Sazhina [69] if the

expressions for B(K1) would be inserted.

In the case of unpolarized atoms, the expression for the probability describing angular correlations between

photo- and Auger electrons is obtained by summation of Eq. (56) over magnetic components of the spins

of photo- and Auger electrons, the angular momentum of a doubly charged ion and averaging over mag-

netic components of an atom. For circularly polarized dipole ionizing radiation, it has the following expres-

sion:

d2W (J0 → J1p1 → J2p2)

dΩ1 dΩ2
=

∑

K1N1

A(K1, 0,K1, 0,K1)

[
4π

2K1 + 1

]1/2

YK1N1
(θ2, φ2)

∑

Kr,Kλ

B′(K1,Kλ,Kr)

×
∑

Nr ,Nλ

[
K1 Kλ Kr

N1 Nλ Nr

]
4π√

2Kr + 1
Y ∗

KrNr
(θ0, φ0)YKλNλ

(θ1, φ1). (60)

Here

B(K1,Kλ,Kr) =
1

2J0 + 1

[
(2K1 + 1)(2Kr + 1)

3

]1/2[2K1 + 1

3

]1/2 [
1 1 Kr

1−1 0

]

× B(K1, 0,Kr ,Kλ, 0,Kλ,K1, 1, 1). (61)

More examples of the practical application of the general expressions can be found in [26, 42, 44–46, 52].

7. Concluding remarks

A method for the derivation of general expressions

for the cross-section and transition probability describ-

ing the polarization states of all particles participat-

ing in the interaction of polarized photons and elec-

trons with polarized atoms is developed. It is alter-

native to the density matrix formalism. The graphi-

cal technique of the angular momentum applied for the

integration over angular and spin variables of the ma-

trix elements as well as for the expansion of the cross-

sections and probabilities over the spherical tensors en-

ables us to obtain the most general expressions for the

cross-sections. Irreducible tensors are selected for the

description of polarization because they have the sim-

plest possible behaviour under changes of directions.

The method is also generalized for the multistep pro-

cesses.

The following processes playing very important role

in plasma are investigated:

• excitation and ionization of atoms by photons;

• excitation and ionization of atoms by electron im-

pact;

• radiative recombination of an ion and an electron;

• radiative and Auger decay of excited and ionized

atoms.

The dielectronic recombination of an ion with an

electron is an example of a two-step process.
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The practical application of the general expressions

for the description of more simple processes under spe-

cific experimental conditions is easy to accomplish.

The asymmetry parameter of the angular distribution

of photoelectrons and Auger electrons following pho-

toionization of unpolarized atoms as well as the param-

eters describing the angular correlations between the

photo- and Auger electrons are obtained. These ex-

amples demonstrate the way for the derivation of more

simple expressions. All expressions are presented in a

similar form convenient for development of computer

software and practical applications.
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[82] A. Kupliauskienė and J. Lipinskaja, The peculiarities

of the angular distribution of photoelectrons from the

2p shell of excited Na, Lithuanian J. Phys. 41, 208–212

(2001).
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ATOMO TEORIJOS METODAI ATOMŲ SĄVEIKAI SU FOTONAIS IR ELEKTRONAIS TIRTI

A. Kupliauskienė

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Sklaidos uždaviniuose sklaidomosios dalelės kryptis yra api-

brėžta, todėl reakcijos produktų būsenų užpildai būdinga asimet-

rija šios krypties atžvilgiu. Iki šiol tokia poliarizacija ir asimetrija

buvo tiriamos tankio matricos metodais. Prieš ketvertą metų polia-

rizacijos reiškiniams, kai atomai ir jonai sąveikauja su elektronais

ir fotonais, nagrinėti buvo pritaikyti atomo teorijos metodai, kurie

iki šiol buvo taikomi izoliuotiems atomams tirti, neatsižvelgiant į

išskirtą kryptį erdvėje. Apžvelgti darbai, skirti poliarizuotų atomų

sąveikos su poliarizuotais fotonais ir elektronais skerspjūvių bend-

riausioms išraiškoms nereliatyvistiniu artėjimu surasti. Judėjimo

kiekio momento grafinė technika pritaikyta šuolio operatorių mat-

ricinių elementų kvadratams integruoti kampinių ir sumuoti suki-

ninių kintamųjų atžvilgiu. Skerspjūvių išraiškos užrašytos daugia-

lypiais sferinių multipolių skleidiniais, kadangi sferiniai tenzoriai

transformuojasi paprasčiausiai, keičiant matavimo kryptis. Pateik-

tas būdas fotonų ar elektronų spinduliuotei po atomo ar jono joniza-

cijos, sužadinimo ar rekombinacijos dvipakopiu artėjimu nagrinėti.

Išnagrinėti svarbiausi plazmoje vykstantys vyksmai: atomų ir

jonų sužadinimas ir jonizacija fotonais bei elektronais, jono ir

elektrono fotorekombinacija, spinduliavimo ir Auger šuoliai suža-

dintuose ir jonizuotuose atomuose. Dvipakopį vyksmą iliustruoja

dvielektronė rekombinacija. Taip pat parodyta, kaip galima su-

rasti skerspjūvių išraiškas konkretiems eksperimentams aprašyti.

Visų išraiškų forma paprasta, patogi kompiuterinėms programoms

rašyti.


