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The review is devoted to developement and applications of the so-called non-commutative Rayleigh–Schrödinger pertur-

bation theory (NCRSPT). As opposed to the standard RSPT used for taking into account weak interorbital interactions, the

NCRSPT is aimed to account for weak interactions inside and between entire subsets of basis functions of arbitrary dimensions

separated by substantial energy gaps. Accordingly, this new PT is formulated in terms of multidimensional (non-commutative)

quantities, including row-matrices of basis functions corresponding to individual subsets and the so-called eigenblocks play-

ing the role of eigenvalues. When discussing applications, the principal attention is paid to the perturbative version of the

non-canonical theory of molecular orbitals based on the Brillouin theorem.
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1. Introduction

Perturbation theory (PT) is among the most powerful

approximate methods in quantum mechanics [1–4]. In

particular, the well-known Rayleigh–Schrödinger PT

(RSPT) for eigenvalues and eigenfunctions of opera-

tors [1–3] and an alternative PT based on the resolvent

formalism [4] can be mentioned here.

Various forms of the perturbation theory are widely

used in quantum chemistry as well. To obtain the

many-electron wave functions of molecules, the so-

called Møller–Plesset partitioning of the total Hamil-

tonian operator is now generally applied [5, 6]. The

analogous partitioning of localized orbitals [7–9] and

its generalization for any type of reference function [6]

also are noteworthy. The self-consistent version of the

RSPT (the coupled RSPT) [10–13] forms the basis of

the perturbed Hartree–Fock (HF) calculations. Self-

consistent perturbative approaches for Green’s func-

tions [13] and for density matrices [14–16] instead of

the one-electron orbitals also have been developed. It

should be additionally noted here that diagonality con-

dition for zero order matrices and/or operators is not

imperative in perturbative approaches. Thus, in the

resolvent-based PT [4], the zero-order operator is such

that its eigenvalues and eigenfunctions can be easily de-

termined. Similarly, the Fock operator of [7–9] is not

necessarily diagonal in the orbital space.

Quantum chemistry, however, is far from being only

a field of application of quantum mechanics. More-

over, it is an independent branch of science which is

based on fundamentals of the classical chemistry along

with quantum-mechanical methods [17]. It is no sur-

prise, therefore, that new problems arise in this melt-

ing pot of different concepts and thereby new quantum-

mechanical formalisms are required to solve them.

The so-called non-commutative RSPT (NCRSPT)

discussed in this review is among formalisms of the

above-mentioned type. Developement of this the-

ory started with its particular cases devoted to the

common quantum-mechanical description of saturated

molecules [18–24]. (Note that entire classes of the

so-called related compounds usually are studied in the

classical chemistry instead of individual molecules.)

The same theory subsequently acquired a more gen-

eral form [25, 26] that may be applied for solution of

the block-diagonalization problem for a definite matrix

specified below, as well as of its operator analogue re-

ferred to as the eigenblock equation.

The above-mentioned problem is a generalization

of the very popular diagonalization (eigenvalue) prob-

lem, wherein eigenblocks of arbitrary dimensions are
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sought instead of usual (one-dimensional) eigenvalues.

In other words, we look for a unitary matrix that trans-

forms the initial matrix H into a block-diagonal form

defined as a direct sum of eigenblocks. Given that

subsets of corresponding dimensions may be revealed

in the initial basis set so that the intersubset interac-

tions are weak as compared to the intrasubset ones,

the perturbation theory may be formulated in terms

of entire subsets of basis functions instead of indi-

vidual orbitals. Accordingly, matrices play the role

of usual one-dimensional coefficients in this general-

ized formalism. In particular, row-matrices of func-

tions arise instead of eigenfunctions in the respective

eigenblock equation for operator. As a consequence,

non-commutativeness of the eigenblock and of the re-

spective multidimensional eigenfunction and thereby

of related terms of power series is the main distinc-

tive feature of this formalism. That is why it has been

called the non-commutative RSPT. Allowance for non-

diagonal zero-order matrices H(0) is another feature of

the NCRSPT [27] (a block-diagonal constitution of the

latter is acceptable).

As opposed to the actual way of developement of

the NCRSPT, the scheme of this review is based on

passing from the most general formalism to its partic-

ular cases. Thus, we start with the case of an arbitrary

number of interacting subsets of basis functions (Sec-

tion 2) and subsequently overview the relevant applica-

tions (Section 3). The remaining Sections 4, 5, and 6

are devoted to the case of two interacting subsets. The

reason why this particular case deserves so much at-

tention consists in the fact that the respective block-

diagonalization problem for a Fockian or Hamiltonian

matrix is equivalent to the non-canonical HF equation

and yields numerous applications including those de-

voted to chemical reactivity (Section 6).

2. The general operator formalism of the NCRSPT

The standard RSPT is most commonly applied to

secular equations for Hamiltonian operators. To be able

to compare the NCRSPT to the standard RSPT more

easily, an analogous formalism of the former [26] is

given in this section.

Let us start with principal definitions. Let us as-

sume that the Hamiltonian matrix of our system H is

determined in the basis {ϕ}. Let this basis set to be

divided into N subsets {{ϕ1}, {ϕ2}, . . . , {ϕN}}, each

of them containing an arbitrary number of orbitals. In

this connection, subscripts i, j,m, . . . here and below

will be ascribed to entire subsets (no consideration of

individual basis functions is required in the NCRSPT).

Furthermore, basis functions of each subset will be col-

lected into row-matrices that will be designated by ket-

vectors |Φ1〉, |Φ2〉, . . . and referred to as multiorbitals.

Accordingly, the bra-vectors 〈Φ1|, 〈Φ2|, . . . coincide

with column-matrices containing respective complex-

conjugate orbitals.

The total Hamiltonian matrix H will be accordingly

divided into submatrices (blocks) that may be alterna-

tively considered as its multidimensional elements and

denoted by Hij . It is evident that elements of intra-

and intersubset type may be distinguished. Let us then

define the relevant Hamiltonian operator

Ĥ =
N∑

i,j=1

|Φi〉Hij〈Φj|, (1)

where multiorbitals meet the orthonormalization con-

dition

〈Φi|Φj〉 = Iδij (2)

and I stands for the unit matrix of respective dimension.

Let us consider the operator equation of the form

Ĥ|Ψa〉 = |Ψa〉Ea, (3)

where |Ψa〉 is a row-matrix further referred to as the

multieigenfunction. Accordingly, Ea stands for the re-

spective eigenblock playing the role of a multidimen-

sional eigenvalue. It should be additionally emphasized

here that Ea does not commute with |Ψa〉 in contrast to

the usual eigenvalue equation. It may be easily verified

that Eq. (3) turns into a block-diagonalization problem

for the matrix H if the multieigenfunction |Ψa〉 is ex-

pressed in the form of a linear combination

|Ψa〉 =
N∑

p=1

|Φp〉Bpa (4)

containing matrix coefficients Bpa and Eq. (4) is sub-

stituted into Eq. (3) with subsequent use of Eq. (2).

Let the operator Ĥ consist of the zero-order term Ĥ(0)

and of the first-order term V̂ , the latter being called

the perturbation operator. We will assume also that the

zero-order operator Ĥ(0) complies with the zero-order

equation

Ĥ(0)|Ψ(0)i〉 = |Ψ(0)i〉E(0)i (5)

and the zero-order multieigenfunctions are orthonor-

malized similarly to multiorbitals (see Eq. (2)). Given

that Eq. (5) is solved, a block-diagonal zero-order

Hamiltonian matrix is evidently obtained for our initial

(unperturbed) system.
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As in the usual RSPT [1–3], let the multieigenfunc-

tion |Ψa〉 of the total operator Ĥ be represented in the

form of a linear combination of zero-order multieigen-

functions, viz.

|Ψa〉 =
N∑

i=1

|Ψ(0)i〉Cia, (6)

where Cia also are multidimensional coefficients.

The subsequent derivation of the formalism resem-

bles that of the usual RSPT. Thus, we start with sub-

stitution of Eq. (6) into Eq. (3) and define multidimen-

sional elements Vmp representing the perturbation op-

erator V̂ in the basis {Ψ(0)} as follows:

Vmp = 〈Ψ(0)m|V̂ |Ψ(0)p〉. (7)

Thereupon, the multidimensional coefficients Cia

along with eigenblocks Ea are expanded in the form

of a power series and terms of the same order are col-

lected to form the equations of PT. The principal dif-

ference of this procedure from the standard one [1–3]

consists in non-commutativeness of multidimensional

factors in respective products. The results may be de-

scribed as follows.

Some of expressions of the NCRSPT formally re-

semble those of the RSPT, e. g.,

E(0)a = E(0)r, C(0)ra = Iδra,

E(1)r = Vrr, C(1)rr = C+
(1)rr = 0,

C(2)rr = C+
(2)rr =

1

2

N∑
i(6=r)

C+
(1)irC(1)ir,

(8)

where the superscript + here and below designates the

Hermitian conjugate matrix, Vrr is defined by Eq. (7),

and the subscripts contain the order parameter (1 or 2)

in their parentheses.

The above-demonstrated similarity of expressions

of the NCRSPT to those of the RSPT, however, does

not refer to coefficients C(k)mr for m 6= r, where

k here and below stands for the order parameter

(k = 1, 2, . . .). These coefficients are defined by the

following matrix equations:

E(0)mC(k)mr − C(k)mrE(0)r + W(k)mr = 0, (9)

instead of usual algebraic expressions in terms of frac-

tions containing elements of the perturbation operator

and diffences in zero-order eigenvalues in their numer-

ators and denominators, respectively. The first-order

matrix W(1)mr coincides with Vmr . For higher k val-

ues, however, more involved expressions are obtained,

e. g.,

W(2)mr =
∑

j

VmjC(1)jr − C(1)mrVrr. (10)

Finally, expressions for eigenblocks may be exempli-

fied by the second-order correction E(2)r , which takes

the form

E(2)r =
1

2

∑

i

(1−δri)(V
+
irC(1)ir +C+

(1)irVir). (11)

The principal matrix problems of the NCRSPT

shown in Eq. (9) belong to well-studied matrix equa-

tions of the type AX + XB + C = 0 [28]. Given that

E(0)m and −E(0)r are Hermitian and negative-definite

matrices, the unique solution of Eq. (9) takes the form

of an integral

C(k)mr

=−

∫ ∞

0
exp

[
E(0)mt

]
W(k)mr exp

[
−E(0)rt

]
dt.

(12)

It is seen, therefore, that the solution of our princi-

pal problem of Eq. (3) is expressed in terms of entire

submatrices (blocks) of the initial Hamiltonian matrix

without specifying either the structures or dimensions

of these submatrices (i. e. of E(0)m and Vmj), and this

is the most essential feature of the NCRSPT.

Before finishing this section, an important particular

case of diagonal zero-order matrices E(0)m and E(0)r

should be mentioned [24–27]. Let these matrices con-

sist of elements E(0)m,µ and E(0)r,ρ, respectively. Sep-

arate elements of the matrix C(k)mr may be then ex-

pressed algebraically, viz.

C(k)mr,µρ =
W(k)mr,µρ

E(0)r,ρ − E(0)m,µ
. (13)

Certain resemblance between this formula and the rel-

evant expression of the standard RSPT [1–3] may be

noticed. Even for this special case, however, no coinci-

dence of these power series is actually obtained. This

fact causes no surprise as the matrix C made up of co-

efficients Cia of Eq. (6) serves to transform the initial

matrix H into a block-diagonal form but not into a di-

agonal one.
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3. Applications of NCRSPT to derive effective
Hamiltonian matrices for separate subsystems of
molecular systems

In this section we will discuss applications of

NCRSPT to investigate molecular systems consisting

of weakly interacting subsystems separated by substan-

tial energy gaps. The block-diagonalization procedure

is used here as an intermediate step in the way of di-

agonalization of the respective Hamiltonian matrix H.

Subsets of basis orbitals introduced in Section 2 evi-

dently correspond to individual weakly interacting sub-

systems in this case.

Traditional ways of investigation of the above-

specified systems are based on the quasi-degenerate

RSPT [1–3] and consist of an initial diagonalization

of the intrasubset blocks of the matrix H followed by

taking into account intersubset interactions. This pro-

cedure actually implies passing to the basis of delocal-

ized (canonical) molecular orbitals (MOs) of isolated

subsystems from the very outset of solving the prob-

lem and a subsequent regard for interactions between

these MOs. This approach is usually referred to as the

PMO theory [29].

The experience of dealing with eigenvalue equa-

tions for matrices shows that it is the decision on the

first step when solving the problem that determines the

terms in which the final results are expressed and in-

terpreted [30]. It is no surprise, therefore, that the re-

sults of the PMO theory are expressed in terms of de-

localized MOs of isolated subsystems. This fact is the

main origin of difficulties in revealing relations of the

final electronic structure characteristics to peculiarities

of local constition of the system.

In this context, application of NCRSPT offers a pos-

sibility of an inverted order of operations versus the tra-

ditional one, namely, intersubsystem interactions may

be taken into account before the intrasubsystem ones.

To this end, block-diagonalization of the matrix H

should be initially performed. This approach has been

referred to as the alternative one [31, 32].

The final numerical results evidently coincide with

one another for both approaches provided that these are

obtained at the same level of approximation. The alter-

native approach, however, offers new possibilities for

interpretation of results in terms of local structure as

demonstrated below (Sections 3.1 and 3.2).

An essential feature of the alternative approach con-

sists also in the fact that eigenblocks of the Hamil-

tonian matrix H resulting from the initial block-

diagonalization procedure actually coincide with the

effective Hamiltonian matrices for separate subsystems

influenced by the intersubsystem interaction [31]. In

this respect, certain analogy may be traced between

the approach under discussion and the Löwdin’s par-

titioning technique [33–36]. The principal difference

of our procedure from that of [33–36] consists in the

eigenvalue-independent nature of the effective Hamil-

tonian matrix and thereby in the non-iterative charac-

ter of the respective secular problem. The same refers

also to comparison of the present approach to the re-

duction procedures for Hamiltonian matrices suggested

in [30, 37–40].

3.1. Studies of regular quasi-one-dimensional systems.

Interpretation of energy bands in terms of local

structure

Given that atomic orbitals (AOs) of the elemen-

tary cell of a regular quasi-one-dimensional system

(polymer) are characterized by substantial energy gaps

versus the off-diagonal Hamiltonian matrix elements,

weakly interacting subsets of AOs may be revealed in

the total basis set. These subsets represent definite

subchains of our chain, the latter, in turn, coinciding

with the above-defined weakly interacting subsystems.

Hence, the alternative approach based on NCRSPT

may be applied [31].

Before passing to a more specific discussion, let

us note that studies of regular quasi-one-dimensional

chains usually are based on concepts and methods of

the solid state theory [41, 42]. Delocalized Bloch func-

tions corresponding to subchains play the role of MOs

in this case. Accordingly, difficulties arise in establish-

ing the relations between the actual dispersion curves

and local interorbital interactions in the system. The

alternative approach is especially fruitful in this respect

as discussed below.

It should be admitted here that the scope of applica-

bility of the general solid state theory is considerably

more extended as compared to that of any perturbative

approach. This theory, however, resembles the PMO

theory [29] in respect of relative order of taking into

account the intra- and intersubset interactions. That is

why application of NCRSPT offers a definite concep-

tual alternative to the solid state theory [31].

Inasmuch as no specifying of the numbers of basis

orbitals within separate subsets is required when per-

forming the block-diagonalization procedure by means

of the NCRSPT (Section 2), quasi-infinite systems may

be treated without additional difficulties. To be able

to solve the matrix equations like that of Eq. (9) al-

gebraically, the particular case of diagonal zero-order
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blocks E(0)r has been invoked. This assumption evi-

dently implies first-order magnitude of both intra- and

intersubchain interactions.

The diagonality requirement for blocks E(0)r and

the regular constitution of the chain yield proportion-

ality of these blocks to unit matrices of corresponding

dimensions. Then the respective algebraic solutions of

Eq. (9) have been substituted into expressions for cor-

rections to eigenblocks (see, e. g., Eq. (11)) and simple

formulae for the latter have been derived.

The zero- and first-order intrasubchain blocks (E(0)r

and Vrr) make the principal contributions to the rth

eigenblock Er (see Eq. (7)). This evidently implies

correspondence of this eigenblock to the rth subchain

of our chain. Again, the remaining corrections E(k)r

(k > 1) and thereby the total eigenblock Er imbibes

intersubchain interactions represented by submatrices

Vir (i 6= r). For example, the second-order correc-

tion E(2)r is expressed in terms of products of matri-

ces Vir as follows:

E(2)r =
∑

i(6=r)

1

ε(0)r − ε(0)i
VriVir, (14)

where ε(0)r and ε(0)i stand for one-electron energies

of AOs of the rth and ith subsets, respectively. It has

been concluded on this basis that the eigenblocks Er

are nothing more than effective Hamiltonian matrices

for separate subchains influenced by the intersubchain

interaction [31].

Analysis of separate elements of the eigenblocks Er

also yields interesting conclusions. Thus, the first-

order contribution E(1)r,µν to the effective interaction

between AOs ϕr,µ and ϕr,ν of the rth subchain coin-

cides with their direct interaction (resonance parame-

ter) Vrr,µν (see Eq. (8)), whereas the relevant second-

order correction E(2)r,µν follows from Eq. (14) and

describes the indirect interaction between the same

AOs by means of AOs of other subchains playing the

role of mediators. Accordingly, an indirect interaction

by means of two mediators corresponds to the third-

order increment E(3)r,µν . Hence, elements of eigen-

blocks describe effective interactions between AOs of

the given subchain that consist of their initial (direct)

interactions and of additional indirect interactions by

means of nearest AOs of other subchains.

On the whole, the block-diagonalization procedure

allows the initial chain to be divided into M non-

interacting effective chains, where M coincides with

the number of AOs in the elementary cell. Each of these

new chains contains both the initial bonds of the re-

spective subchain and some additional bonds originat-

ing from intersubchain interaction. Experience in deal-

ing with specific examples shows that effective chains

of a rather simple constitution actually arise, wherein

the most important bonds correspond to neighbouring

pairs of equivalent AOs. At the same time, each effec-

tive chain gives birth to a definite energy band.

On this basis, dispersion relations for separate en-

ergy bands may be derived before the final solution of

the problem. Moreover, each of several additive com-

ponents of such a relation may be traced back to a par-

ticular type of effective intrasubchain interaction. Inas-

much as the latter, in turn, are expressible in terms of

local interorbital interactions (see Eq. (14)), interpre-

tation of dispersion curves in terms of local structure

easily follows from the alternative approach. This im-

portant achievement has been illustrated in [31] by sev-

eral non-trivial examples.

3.2. Expressions for effective energies of

bridge-assisted interactions

Let us dwell here on studies of molecules and

molecular systems described by the general formula

A–(X)n–B, where A and B stand for functional groups

and –(X)n– is a bridge usually consisting of a certain

number of similar elementary units X (see [32] and the

references cited therein). The groups A and B usu-

ally are approximately representable by a single fron-

tier orbital which is sufficiently separated from orbitals

of the bridge. That is why the functional groups and

the bridge may be considered as two weakly interact-

ing subsystems.

Non-conjugated molecules containing NH2, OH

or H2C=CH groups joined with a saturated bridge

(X = CH2) or several bridges of the same constitution

are among the most well-studied systems of the above-

specified type. A pair of splitted energy levels corre-

sponds to terminal groups in the photoelectron spectra

of these molecules. Interpretation both of the variable

extent of this splitting for related compounds and of

relative orders of the two levels is of importance for

theoretical spectroscopy.

Further, molecular systems of analogous constitu-

tion are assumed to participate in the electron transfer

reactions in condensed media. In this case, the sys-

tem contains an electron-donating subsystem (A) and

an electron-accepting one (B) joined with bridges of

solvent molecules.

Developement of the theory of these important and

intriguing systems has been overviewed in a detail in

[32]. In our context, applications of the standard PMO
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theory [29] may be mentioned [43–45]. So far as elec-

tron transfer reactions are concerned, partitioning tech-

nique [33–36] and related approaches are most com-

monly used.

Application of the block-diagonalization procedure

based on NCRSPT to the Hamiltonian matrix of a

system A–(X)n–B yields an eigenvalue-independent

eigenblock corresponding to the subset of orbitals of

terminal groups. For the case of two orbitals ϕa and

ϕb representing these groups, a single off-diagonal el-

ement of this block describes the effective interaction

energy (Eab) between fragments A and B. As with

the quasi-one-dimensional chains (Section 3.1), the en-

ergy Eab was shown to consist of the direct (through-

space) interaction of orbitals ϕa and ϕb and of various

types of their indirect (bridge-assisted) interactions, as

well as of mixed increments. On the whole, the ef-

fective interaction energy has been expressed in terms

of sums of increments corresponding to various path-

ways through the bridge from one terminal group to an-

other. As opposed to similar expressions based on par-

titioning technique [33–36], the formulae of [32] con-

tain the difference E(0)a − E(0)b between one-electron

energies of orbitals ϕa and ϕb explicitly. A more de-

tailed comparison of these expressions may be found

in [32].

The above-mentioned explicit dependence of Eab

upon the difference E(0)a − E(0)b allowed us to study

the case of dissimilar functional groups A and B in

detail. Given that the latter are joined with a suf-

ficiently long tightly-bound bridge(s), application of

NCRSPT yields a generalization to the case of dis-

similar groups A and B of the well-known McConnell

formula [46] for the bridge-assisted interaction en-

ergy. An analogous extension of the scope of valid-

ity of the so-called parity rule [43–45, 47] has also

been achieved (the rule consists in opposite signs

of Eab for even and odd numbers of mediating or-

bitals).

4. Non-commutative RSPT in the framework of the
non-canonical method of molecular orbitals. The
PNCMO theory

Electronic structures of molecules are most com-

monly studied in terms of delocalized canonical MOs

(CMOs) resulting from the canonical HF (CHF) equa-

tion [2, 48]. Since the CMOs are usually sought in the

form of linear combination of certain basis functions

(usually of AOs), the CHF equation resolves itself into

the diagonalization problem for the Fockian matrix.

In contrast to the unique CHF equation, various

forms of the non-canonical one-electron problem are

possible [2, 48]. As delocalized MOs are more easily

obtainable from the CHF equation, the non-canonical

problems are usually adapted [49] to look for orbitals

localized mostly on separate fragments of molecule.

(Orbitals of this type are more closely related to chem-

ical concepts of interatomic bonds, lone electron pairs,

etc. [49–51].) Localized pattern of MOs usually is

achieved by imposing a certain “external” localization

criterion (cf. the criterion of minimal self-energy of an

atom in the Adams–Gilbert equation [52–54]).

In our context, the Brillouin theorem [22–24, 26,

48, 49] deserves particular attention. Application of

this theorem is equivalent to solution of the non-

canonical HF equation [48]. On the other hand, the

theorem itself contains no particular localization crite-

rion, and, consequently, it may be used to obtain vari-

ous types of non-canonical MOs (NCMOs).

Applications of this theorem to derive expressions

for NCMOs started with the contribution [55], where

the conditions that ensure the existence of non-ortho-

gonal localized MOs (LMOs) containing a single bond

orbital and tails consisting of vacant orbitals of other

bonds have been explored. Thereupon [56, 57], explicit

perturbative expressions for tails have been derived in

terms of separate elements of the initial Hamiltonian

matrix. A similar iterative approach to the linearized

version of the Brillouin theorem for the Fockian opera-

tor also may be mentioned here [58].

Among particular forms of the Brillouin theorem

there is a zero value requirement for an off-diagonal

element of the Fockian operator referring to an occu-

pied and a vacant MO [48]. In its matrix form, this re-

quirement resolves itself into the zero matrix condition

for the occupied–vacant off-diagonal block (submatrix)

of the total Fockian matrix in the basis of NCMOs be-

ing sought [22–24, 26, 55–57]. As a result, the block-

diagonalization problem for the Fockian matrix actu-

ally arises, where the two eigenblocks correspond to

subsets of occupied and vacant NCMOs, respectively.

Moreover, basis sets of the so-called fragmental or-

bitals (FOs) were shown to exist for various classes of

molecules (Section 5) that contain two weakly interact-

ing subsets separated by a substantial energy gap. In

qualitative investigations, these orbitals may be addi-

tionally assumed to be orthonormalized [59]. Finally,

the Fockian matrices of molecules can be actually re-

placed by certain effective one-electron Hamiltonian

matrices (e. g., of the Hückel type [17]). That is why

a solution of the above-discussed non-canonical prob-
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lem proved to be possible by means of the particu-

lar case of the NCRSPT corresponding to two eigen-

blocks and thereby two multidimensional eigenfunc-

tions (N = 2).

One-electron density matrices (DMs) are also widely

used to represent electronic structures. This matrix

is one of the most fundamental quantum-mechanical

characteristics describing charge redistributions in a

molecule and related to numerous observed properties

[2, 36]. Moreover, the DM is a unique characteristic

of the given molecule in contrast to NCMOs. The rel-

evant general expressions for the DM were shown to

follow from the projector to a single multieigenfunc-

tion of the Hamiltonian matrix containing occupied

NCMOs (Section 4.2). Finally, the total energy is ex-

pressible either as the trace of the occupied eigenblock

multiplied by the occupation number 2 or in terms

of the DM (Section 4.3). The above-outlined scheme

forms the basis of the general perturbative PNCMO

theory.

The actual way of formulating the PNCMO the-

ory, however, was different from this rather straight-

forward scheme. Thus, the particular case of the block-

diagonalization problem for two subsets (N = 2) [24]

has been solved before formulating the general formal-

ism of Section 2. This particular solution was also addi-

tionally generalized to the case of two non-orthogonal

sets of FOs [25]. (The generalized solution has been

accordingly expressed in terms of entire blocks of both

Hamiltonian and overlap matrices.) Finally, a direct

way of obtaining the DM based on solution of the

so-called commutation equation has been applied in

the first derivations of this matrix [18–24]. These

results will also be discussed briefly in Sections 4.1

and 4.2.

4.1. Analysis of expressions for NCMOs

To discuss the above-indicated expressions, we will

turn to more convenient notations used throughout

[22–27]. Inasmuch as the principal subsets of FOs

usually correspond to initially-occupied (bonding) and

initially-vacant (antibonding) orbitals (Section 5), these

can be conveniently represented by row-matrices

|Φ(+)〉 and |Φ(−)〉. The zero-order Hamiltonian ma-

trix H(0) was assumed to take a block-diagonal form

containing submatrices E(+) and −E(−) in its diagonal

positions, where the minus sign in front of E(−) was in-

troduced for convenience. The relevant first-order ma-

trix H(1) has been represented in terms of four blocks

T, R, and Q so that the following relations with sub-

matrices Vmr of Section 2 result:

H(1)11 =V11 = T,

H(1)22 =V22 = Q,

H(1)12 =V12 = R.

(15)

The multieigenfunctions of this Hamiltonian matrix

containing occupied and vacant NCMOs, respectively,

have been accordingly designated by |Ψ(+)〉 and

|Ψ(−)〉. From Eq. (6) it is evident that these take the

form of simple linear combinations of two multiorbitals

|Φ(+)〉 and |Ψ(−)〉 containing matrix coefficients, e. g.,

|Ψ(+)〉 = |Φ(+)〉C11 + |Φ(−)〉C21. (16)

Equation (16) can be considered as the matrix analogue

of expressions for MOs of two-level systems as lin-

ear combinations of two AOs. The relations like that

of Eq. (16) may be rewritten in the following matrix

form:

∣∣|Ψ(+)〉, |Ψ(−)〉
∣∣ =

∣∣|Φ(+)〉, |Φ(−)〉
∣∣
∣∣∣∣
C11 C12

C21 C22

∣∣∣∣

= ΦC, (17)

where the transformation matrix C is expressible as a

power series. The first three corrections of this series

are

C(0) = I,

C(1) =

∣∣∣∣∣∣

0 G(1)

−G+
(1) 0

∣∣∣∣∣∣
,

C(2) =

∣∣∣∣∣∣

−1
2G(1)G

+
(1) G(2)

−G+
(2) −1

2G
+
(1)G(1)

∣∣∣∣∣∣
,

(18)

where the notations G(k) here and below stand for

C(k)12. It should be noted here that G(k) play

the role of the principal matrices of the PNCMO

theory, and these are determined by matrix equa-

tions

E(+)G(k) + G(k)E(−) + W(k)12 = 0 (19)

resulting from Eq. (9), where W(1)12 = R and

W(2)12 = TG(1) − G(1)Q. Coincidence between

matrices C(0) and I seen from Eq. (18) ensures both

one-to-one correspondence between NCMOs and ba-

sis orbitals (FOs) and a localized nature of the for-

mer.
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Given that E(+) and E(−) are diagonal matrices,

Eq. (13) yields the expressions

G
(d)
(1)ir = G

+(d)
ri(1) = −

Rir

E(+)i + E(−)r
, (20)

G
(d)
(2)ir = G

+(d)
(2)ri

=
1

E(+)i + E(−)r

{
IOFOs∑

p

TipRpr

E(+)p + E(−)r

−
IVFOs∑

m

RimQmr

E(+)i + E(−)m

}
, (21)

where the abbreviations IOFOs and IVFOs stand for

initially-occupied and initially-vacant FOs, respec-

tively, and the superscript (d) serves to distinguish this

particular case. Interpretation of these elements [24]

was based on the concept of direct (through-space) and

indirect interactions of orbitals [47, 60–62].

Thus, the first-order term G
(d)
(1)ir describes the di-

rect (through-space) interaction between orbitals ϕ(+)i

and ϕ(−)r . Inasmuch as resonance parameters (Rir)
decrease rapidly when the interfragmental distance in-

creases, the same refers also to the direct interaction

G
(d)
(1)ir . Hence, considerable LMO tails usually are lo-

calized on the nearest environment of the given basis

orbital. Similarly, the element G
(d)
(2)ir has been inter-

preted as indirect interaction of the same basis func-

tions by means of various mediators (either ϕ(+)p or

ϕ(−)m). This interaction is likely to be of a more long-

range nature than the direct one.

4.2. The two ways of derivation of the one-electron

DM

As it was mentioned already, the one-electron DM of

molecules described by the Hamiltonian matrix of Sec-

tion 4.1 may be obtained [25] on the basis of a projector

to the multieigenfunction |Ψ(+)〉 of Eq. (16) multiplied

by the occupation number 2, that is

P (r | r′) = 2|Ψ(+)(r)〉〈Ψ(+)(r
′)|. (22)

Substituting Eq. (16) into Eq. (22) yields the following

expression for the DM P (r|r′) in terms of four multi-

dimensional elements of the bond order matrix:

P (r | r′) =
2∑

i,j=1

|Φi(r)〉Pij〈Φj(r
′)|, (23)

where i and j coincide with either (+) or (−). This

result serves as a generalization of the well-known bi-

linear form of the DM in terms of individual basis func-

tions [36]. The multidimensional elements Pij are

P11 = 2C11C
+
11,

P22 = 2C21C
+
21,

P12 = 2C11C
+
21.

(24)

These expressions demonstrate the analogy of our DM

to that of a simple two-level system. Use of Eqs. (17)

and (18), in turn, allows us to obtain the four submatri-

ces of the matrix P in terms of the principal matrices

G(k) defined by Eq. (19). This procedure may be re-

ferred to as the indirect way of obtaining the DM (i. e.

via NCMOs as an intermediate step).

The direct way of obtaining the same matrix consists

in solution of the following system of equations [16]:

[H,Y]− = 0, Y2 = I; TrY = 0, (25)

where Y is the residual charge matrix connected

with P by the relation Y = P − I, and the notation

[. . . , . . .]− indicates a commutator of matrices. The

commutation condition of Eq. (25) is the main physi-

cal requirement determining the matrix Y and thereby

the DM P. This relation results from Dirac’s equa-

tion for the time-independent Hamiltonian. The re-

maining relations of Eq. (25) are additional system-

structure-independent restrictions following from the

idempotence requirement (Π2 = Π) for the projector

Π = (1/2)P and the charge conservation condition,

respectively.

In [24], the system of matrix equations of Eq. (25)

has been solved directly by substituting the matrix Y

in the form of a power series and collecting the terms

of the same order. Each correction Y(k), in turn, has

been represented in terms of four multidimensional el-

ements.

It is evident that both ways of obtaining the bond

order matrix P yield coinciding results, viz. the correc-

tions P(k) of the following form:

P(k) =

∣∣∣∣∣∣

P(k)+ −2G(k)

−2G+
(k) P(k)−

∣∣∣∣∣∣
, (26)
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where the intrasubset blocks P(k)+ and P(k)− have

been expressed in terms of matrices G(k−1),G(k−2),
etc. as exemplified below:

P(0)+ = 2I,

P(0)− = 0,

P(1)+ = P(1)− = 0,

P(2)+ =−2G(1)G
+
(1),

P(2)− = 2G+
(1)G(1),

(27)

etc. It should be noted, however, that the direct way

of obtaining the matrix P proves to be easier and more

convenient when looking for higher order corrections

[63, 64] necessary for applications (Section 6). More-

over, feasibility of the direct way demonstrates that

the eigenblock equation is not the only problem the

NCRSPT is applicable to.

Comparison of corrections P(k) (k = 1, 2) to re-

spective corrections C(k) of Eq. (18) indicates similar-

ity of their structures. Analysis of direct ways of ob-

taining these corrections [24] allowed us to conclude

that this similarity originates from a deep interrela-

tion between the Brillouin theorem and the commuta-

tion condition for the DM in the framework of NCR-

SPT. Moreover, direct matrix relations between correc-

tions P(k) and C(k) have been derived [24].

Similarity of the structures of corrections P(k) and

C(k) has important implications. First, NCMOs and

the respective DM rows (columns) prove to be inter-

related and characterized by the same dependence on

the structure of the system. Second, diagonal elements

of the matrix P (i. e. occupation numbers of individual

FOs) are proportional to extents of delocalization of re-

spective NCMOs, namely, the alterations in occupation

numbers versus their initial values (equal to either 2

or 0 for bonding and antibonding FOs, respectively)

coincide with the total delocalization coefficients of re-

spective NCMOs (see [23, 24] for definition). As oc-

cupation numbers are invariant to unitary transforma-

tions, the above relation implies that a certain special

choice of NCMOs was actually made when applying

NCRSPT, namely, NCMOs, the extents of delocaliza-

tion of which were related to the unique populations

of basis orbitals. Finally, from similarity of correc-

tions P(k) and C(k) it follows that the unique bond or-

der matrix belongs to the localized way of representing

electronic structures along with LMOs. This conclu-

sion contributes to an increased importance of this al-

ternative representation of electronic structures versus

the delocalized (canonical) one.

4.3. Analysis of the total energy

For a system represented by a certain one-electron

Hamiltonian matrix H, the expression

E = Tr (PH) (28)

is among alternative definitions of the total energy (E)

[16]. Given that the matrix H contains a zero-order

(H(0)) and the first-order matrices (H(1)) (Section 4.1),

two components reveal themselves within any correc-

tion E(k) of the power series for the energy E , viz.

E
(α)
(k) = Tr (P(k)H(0)),

E
(β)
(k) = Tr (P(k−1)H(1)).

(29)

Substituting the expressions for P(k) of Eqs. (26) and

(27) along with a definite algebraic procedure based on

application of Eq. (19) yields the following general re-

lation [64]:

(k − 1)E
(β)
(k) = −kE

(α)
(k) (30)

for any k. Equation (30), in turn, implies the total cor-

rection E(k) to be alternatively representable as follows:

E(k) = −
1

k − 1
E

(α)
(k) , E(k) =

1

k
E

(β)
(k) . (31)

Opposite signs of both components of the total correc-

tion E(k) may also be seen from Eq. (30) along with the

inequality for their absolute values given below, viz.

∣∣E(β)
(k)

∣∣ >
∣∣E(α)

(k)

∣∣. (32)

Therefore, the correction E(k) of the total energy E
is determined by a difference between two interdepen-

dent components, namely, between E
(β)
(k) of a larger ab-

solute value and E
(α)
(k) of a smaller absolute value. Con-

sequently, it is the sign of E
(β)
(k) that conditions the sign

of the total correction E(k).

In particular, the zero- and first-order corrections

take the form

E(0) = E
(α)
(0) = 2TrE(+),

E(1) = E
(β)
(1) = 2TrT,

(33)

and their sum coincides with the total one-electron en-

ergy of isolated FOs. Given that one-electron energies
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of FOs are entirely included into respective diagonal

elements of the matrix E(+), the equality E(1) = 0 ob-

tained in [65, 66] results.

For the second-order correction E(2), the following

formula has been derived [27, 64]:

E(2) = −Tr (G(1)R
+) (34)

on the basis of expression in terms of E
(β)
(2) shown in

Eq. (31). If we recall that a block-diagonal zero-order

Hamiltonian matrix (H(0)) cooresponds to the power

series under discussion (Section 4.1), Eq. (34) can

be considered as a generalization of the well-known

Dewar formula for total energies of molecules (the lat-

ter corresponds to a diagonal form of H(0) and fol-

lows from the standard RSPT). Feasibility of such a

generalization, in turn, demonstrates non-trivial conse-

quences of the allowance for a non-diagonal zero-order

matrix H(0) in NCRSPT [27].

Additional possibilities for interpretation of rela-

tions of Eqs. (30)–(32) arise in the case of diagonal

blocks E(+) and E(−) containing the elements E(+)i

and E(−)j . Thus, the following expressions for E
(α)
(k)

have been derived in this case [64]:

E
(α)
(k) =

IOFOs∑

i

IVFOs∑

j

x
(k)
(+)i,(−)j(E(+)i + E(−)j), (35)

where x
(k)
(+)i,(−)j coincides with the kth-order par-

tial transferred population between orbitals ϕ(+)i and

ϕ(−)j . The latter emerge when expressing the occupa-

tion numbers of FOs as sums of increments of individ-

ual orbitals of the opposite subset, viz.

P(k)+,ii =
IVFOs∑

l
x

(k)
(+)i,(−)l,

P(k)−,jj =
IOFOs∑

m
x

(k)
(−)j,(+)m,

(36)

where x
(k)
(+)i,(−)j = −x

(k)
(−)j,(+)i. For k = 2 and 3, sim-

ple formulae for partial transferred populations have

been derived, viz.

x
(2)
(+)i,(−)j =−2(G(1)ij)

2,

x
(3)
(+)i,(−)j =−4G(1)ijG(2)ij .

(37)

On the basis of Eq. (35), the first component of the

correction E(k) (i. e. E
(α)
(k) ) has been interpreted as the

charge transfer energy (note that E(+)i + E(−)j coin-

cides with the energy interval between orbitals ϕ(+)i

and ϕ(−)j ). Again, the remaining part of the total cor-

rection E(k) (E
(β)
(k) ) was shown to describe the effect of

formation of new bond orders upon the kth-order en-

ergy.

These interpretations along with the general rela-

tions of Eqs. (30)–(32) allowed us to conclude that sta-

bilization of the system versus the set of isolated FOs

(if any) is entirely due to formation of new bond orders

owing to the interorbital interaction, and the subsequent

charge redistribution actually reduces this stabilizing

effect. On the other hand, the absolute value of the

stabilization energy is proportional to the charge trans-

fer energy as Eq. (31) indicates. This principal result

formed the basis of substantiation [64] of the popular

intuition-based assumption of the theoretical chemistry

about a relation between the stabilization energy and

the relevant charge redistribution. It should be added

finally that a positive charge transfer energy E
(α)
(2) and

a negative total correction E(2) has been obtained for

k = 2. This conclusion gave an additional insight into

the content of the Dewar formula [27].

5. Applications of the PNCMO theory to
investigate electronic structures of separate
classes of molecules

Each of the above-indicated applications may be

characterized by a particular choice of basis functions,

i. e. of FOs. Thus, let us start with discussing these

functions.

Orbitals localized on separate fragments of the sys-

tem(s) under study usually play the role of FOs. So

far as the structures of the fragments themselves are

concerned, individual chemical bonds both of satu-

rated [22–24, 27] and conjugated molecules [67] and

phenyl rings along with substituents [63, 68] may be

mentioned, as well as separate molecules of many-

molecular systems (Section 6).

It is noteworthy here that orbitals of the above-

specified type are among popular basis sets in quantum

chemistry [69]. This especially refers to strictly local-

ized two-centre bond orbitals (BOs) for alkanes and

their derivatives [56, 57, 64, 65]. In our applications,

BOs have been defined as eigenfunctions of separate

two-dimensional Hamiltonian matrix blocks associated

with pairs of atomic or hybrid orbitals pertinent to the

same bond so that the direct intrabond interaction van-

ishes. For saturated systems [22–24, 27] and π-electron

subsystems of conjugated molecules [67], sp3 hybrid

AOs (HAOs) supplemented by 1sH AOs of hydrogen
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atoms and 2pz AOs of carbon atoms were correspond-

ingly used. Eigenfunctions of six-dimensional blocks

in the basis of 2pz AOs of carbon atoms were ac-

cordingly invoked when studying phenyl rings [63, 68].

Substantial energy gaps between bonding and anti-

bonding orbitals is the main origin of applicability of

the NCRSPT in the basis of FOs.

The fact that even particular results of NCRSPT (i. e.

those based on a certain choice of FOs) usually em-

brace entire series or classes of related molecules also

deserves emphasizing. Indeed, related compounds usu-

ally consist of the same fragments joined in a uni-

form manner (cf. alkanes containing C–C and C–H

bonds). This, in turn, implies FOs of similar structure

to represent these compounds. Consequently, a com-

mon Hamiltonian operator and/or matrix corresponds

to the whole class, where individual representatives

(molecules) are characterized by specific structures and

dimensions of multidimensional parameters Hij (see

Eq. (1)). Accordingly, a single eigenblock equation

refers to the whole class.

Before finishing these introductory remarks, let us

distinguish between direct and indirect applications of

the PNCMO theory. The former case implies FOs to

play the role of the only basis set. Alternatively, we

start with the basis of either HAOs or AOs and trans-

form the relevant Hamiltonian matrix into the basis of

FOs in order to be able to apply the NCRSPT. There-

upon, retransformation of the results into the initial ba-

sis set is carried out. The latter procedure, in turn, may

embrace either the entire matrices C and P or their par-

ticular blocks. (The term local retransformation will be

used in the latter case.)

The subsequent overview starts with direct appli-

cations of the PNCMO theory in the basis of BOs

[22–24, 27, 64, 70] (Section 5.1). These results orig-

inally referred to alkanes and their derivatives. Al-

though their applicability to π-electron subsystems of

aliphatic conjugated hydrocarbons seems to be rather

evident, the relevant extension of the discussion is not

undertaken. The main reasons of such a decision are

cleared up in Section 5.2, where indirect applications

of the PNCMO theory [67, 71, 72] are described. Sec-

tion 5.3 is devoted to results of local retransformations

of expressions of the PNCMO theory [68, 73, 74]. It

deserves mentioning here that the contribution [63] de-

voted to the indirect intersubstituent interaction also

belongs to direct applications of the PNCMO theory.

However, the relevant results are not discussed sepa-

rately in this review because of their close resemblance

to those of two interacting molecules overviewed in

Section 6.

5.1. Interbond interaction in alkanes and their

derivatives

In accordance with the above-introduced definition

of BOs, two bond orbitals were ascribed to each chem-

ical bond in a saturated molecule, viz. the initially-

occupied bonding BO (BBO) ϕ(+)i and the initially-

vacant antibonding BO (ABO) ϕ(−)i. Orbitals refer-

ring to lone electron pairs (if any) can also be included

into the subset {ϕ(+)}. As a result, a Hamiltonian

matrix consisting of four submatrices like that of Sec-

tion 4.1 has been constructed. The first-order magni-

tude of interactions (resonance parameters) of the in-

tersubset type (i. e. between a BBO and an ABO) ver-

sus the intersubset energy gaps [24] follows from the

relevant estimations [19, 21, 75–79]. These ratios be-

tween matrix elements, in turn, imply applicability to

both alkanes and their derivatives of the NCRSPT and

thereby of the results of Section 4. It is also noteworthy

here that the above-mentioned ratios have been directly

related to the tetrahedral local structure of alkanes [22].

On the whole, a common localized description of

saturated molecules follows from the PNCMO theory

of Section 4, wherein LMOs and the DM play the role

of alternative representations of electronic structures.

So far as the structures of the zero-order blocks E(+)

and E(−) are concerned, an assumption about their di-

agonality proved to be a somewhat rough approxima-

tion for alkanes [27]. In particular, resonance param-

eters between nearest-neighbouring (geminal) BBOs

were shown to exceed those of the intersubset type con-

siderably [27, 75, 76, 78]. In this connection, two dif-

ferent approximations have been considered, the first

one being based on acceptance of diagonal matrices

E(+) and E(−), and the second one containing a non-

diagonal matrix E(+).

Let us start with the first approximation. Similar en-

ergies of all BBOs and of all ABOs may be assumed

in this case [80–82]. As a result, matrices E(+) and

E(−) become proportional to unit matrices and thereby

the relevant problem of Eq. (20) may be solved alge-

braically (see also Section 3.1). Studies of respective

expressions for the LMO representation matrix and for

the DM showed definite common features to be inher-

ent in these matrices [22]. These have been traced back

to the similar spatial constitution of all alkanes, viz.

to the constant numbers of the nearest-neighbouring

(geminal) bonds for all C–C and for all C–H bonds
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equal to six and three, respectively. In particular, sim-

ilar structures have been obtained for both LMOs and

the DM rows (columns) belonging to C–C and C–H

bonds. It deserves mentioning here that transferabil-

ity of LMOs of alkanes has been borne out by numer-

ical calculations, too [50, 51]. In this context, the re-

sults of NCRSPT yield a general relation between this

transferability and the common local structure of these

molecules.

In the framework of the same approximation, appli-

cation of Eq. (34) to the total energy of alkanes [71]

actually yields the Dewar formula [29, 65, 66, 83]. The

a priori negative sign of the second-order correction

of this formula, in turn, indicates an additional stabi-

lization of any molecule versus the relevant set of iso-

lated BOs in line with the observed stability of alka-

nes. Moreover, any direct interbond interaction was

shown to contribute to stabilization of the whole sys-

tem whatever the actual spatial arrangement of partici-

pating bonds [27, 71].

An analogous study of substituted alkanes may be

found in [70]. Rules governing the interbond charge

transfer originating from the inductive effect of sub-

stituent (heteroatom) have been formulated there. On

the basis of the general relation between the LMO rep-

resentation matrix and the DM (Section 4.2) it has been

demonstrated that the inductive effect may be inter-

preted either in terms of a perturbed electron density

distribution or in terms of LMOs that have changed

shape relative to those of parent alkanes. The latter

perturbations, in turn, were shown to be proportional to

the extents of delocalization of LMOs in the parent hy-

drocarbons. Accordingly, the well-known short-range

nature of the inductive effect has been concluded to

originate from a weak interbond delocalization in alka-

nes.

Application of the more rigorous second approxima-

tion to alkanes has been discussed in [27] in connec-

tion with the generalization of the Dewar formula to

the case of zero-order intrasubset interactions. No al-

gebraic solution of Eq. (19) is obtained in this case.

Thus, a general analysis of LMOs and DM is hardly

possible.

Nevertheless, some conclusions concerning total en-

ergies of alkanes have been drawn on the basis of stud-

ies of signs of the second-order correction E(2) refer-

ring to zero-order blocks E(+) and E(−) of arbitrary

constitution. Thus, stabilization of the system versus

the set of isolated BOs was confirmed for negative-

definite matrices E(+) and E(−) [28, 84]. Negative

signs of eigenvalues of matrices E(+), in turn, have

been concluded on the basis of studies of their spectra

[37, 38, 40]. Hence, the stabilizing effect of the inter-

bond interaction in alkanes was additionally supported.

As opposed to the Dewar formula, however, a more

profound accounting for stability of alkanes follows

from its generalization. Indeed, the above-mentioned

negative signs of eigenvalues of matrices E(+) were

related to the asymmetry of their spectra relatively to

diagonal elements, which, in turn, is conditioned by

the specific spatial arrangement of BOs and thereby of

bonds. Consequently, the tetrahedral spatial arrange-

ment of quartets of bonds at the same carbon atom

(molecular topology) was considered as the main ori-

gin of stability of alkanes.

5.2. Comparative studies of saturated and conjugated

hydrocarbons

Bond orbitals are not the optimum basis functions in

respect of describing the details of electron density dis-

tributions, especially of changes in the intrabond char-

acteristics due to interbond interaction. To this end,

the HAO (AO) bases have been used as initial basis

sets (cf. the indirect application of the PNCMO theory

[67, 71, 72]). Advantages of HAOs (AOs) when com-

paring the relative rates of convergence of the power

series for different types of molecules [67] can also be

mentioned.

The HAOs (AOs) of hydrocarbons may be repre-

sented by close values of Coulomb and of intrabond

resonance parameters, whereas the remaining Hamil-

tonian matrix elements are relatively small [18–21, 23,

59, 67, 71, 72, 75–79]. This allowed us to reveal a zero-

order term H̃(0) of a simple and common form in the

total Hamiltonian matrix H̃, which contains unit matri-

ces in its off-diagonal positions. Then the relevant uni-

tary transformation matrix U (which describes trans-

fer to the basis of BOs and backwards) also consists of

unit submatrices and the transformed Hamiltonian ma-

trix (H = U+H̃U) coincides with that referred to as

the first approximation for alkanes (Section 5.1).

It is evident that new combinations of the princi-

pal matrices G(k) including their Hermitian-conjugate

counterparts (G+
(k)) arise as building blocks of the final

DM (P̃) after retransformation [71, 72]. These com-

binations were shown to represent new types of in-

tramolecular interactions being expressed in terms of

through-space and through-bond ones, namely, intra-

bond polarization, interbond charge transfer, and redis-

tribution of bond orders (rebonding).



V. Gineitytė / Lithuanian J. Phys. 44, 219–236 (2004) 231

Non-zero intrabond dipole moments in alkanes even

for uniform Coulomb parameters of all HAOs and

1sH AOs may be mentioned as a principal result here.

Indeed, the second-order intrabond polarization was

shown to yield a substantial increment to an intrabond

dipole proportional to the self-interaction (G(2)ii) be-

tween respective BOs ϕ(+)i and ϕ(−)i by means of or-

bitals of the nearest environment. For C–C bonds in

alkanes, the mediating effects of the six geminal neigh-

bours cancel out each other, and, consequently, zero

dipoles are obtained. Alternatively, non-zero transfer-

able dipole moments follow for C–H bonds. Their

immediate reason was shown to consist in the non-

symmetric nearest environment of these bonds. It has

been concluded on this basis that non-zero experimen-

tal dipole moments of some alkanes [85] are not nec-

essarily related to differences in electronegativities of

carbon and hydrogen atoms.

Furthermore, an alternative interpretation of the to-

tal energy (versus that in terms of interbond interac-

tions discussed in Section 5.1) was achieved using the

HAO (AO) basis [72]. Thus, any correction E(k) of the

energy E has been expressed as trace of the rebonding

matrix Ω(k), the latter taking the off-diagonal position

within the retransformed correction P̃(k). As a result,

stabilization of hydrocarbons has been related to the so-

called rebonding effect, which involves a formation of

new bond orders between orbitals of different bonds

due to their interaction accompanied by reduction of

intrabond bond orders.

Along with the total kth-order energy E(k), its sepa-

rate components E
(α)
(k) and E

(β)
(k) also acquired a new in-

terpretation in the HAO (AO) basis [71, 72]. (Note that

the relations of Eqs. (29)–(32) are invariant towards the

unitary transformations of the basis set.) Thus, the first

component E
(α)
(k) contains the kth-order corrections to

the neighbouring bond orders, whereas the second one

(E
(β)
(k) ) consists of contributions of non-neighbouring

bond orders. As a result of Eq. (30), the relevant effects

upon the total kth-order energy are interrelated. In par-

ticular, consideration of the second-order term (k = 2)

allowed us to conclude that lowering in the neighbour-

ing bond orders by itself gives rise to destabilization of

the system in accordance to the expectation (E
(α)
(2) > 0).

On this basis, the final stabilization of hydrocarbon ver-

sus the respective set of isolated bonds was traced back

to the fact that the total stabilizing effect of the newly-

formed non-neighbouring bond orders exceeds twice

the total destabilizing increment due to reduction of the

neighbouring bond orders.

Let us turn now to comparison of saturated and con-

jugated hydrocarbons [67]. A considerably slower con-

vergence of the power series for both the LMO repre-

sentation matrix and the DM is peculiar to conjugated

molecules versus the saturated ones, and this makes

the most important difference between the two classes.

Furthermore, substantial individual differences are ob-

served in the relative rates of convergence for sepa-

rate conjugated hydrocarbons as opposed to the satu-

rated ones. In particular, the convergence rate of linear

polyenes decreases gradually when the chain length in-

creases. On the other hand, turning from linear to a

cyclic constitution of the chain leads to drastic reduc-

tion of the convergence rate. These results, in turn, have

been related to different relative values of interbond

interactions versus the intrabond energy gaps for con-

jugated and saturated hydrocarbons (these were evalu-

ated to be 0.25 and 0.1, respectively). It has been con-

cluded on this basis that applicability of the PNCMO

theory to conjugated hydrocarbons in general is not

self-evident.

Before finishing this subsection, investigation of va-

lidity of the basis set orthogonality assumption for alka-

nes [52] should be mentioned. Let us start with a no-

tation that the above-mentioned assumption seems to

be less justified in the HAO basis because of large

intrabond overlap integrals. Treatement of this prob-

lem is known to be based on transforming the initial

Hamiltonian matrix into the symmetrically orthogo-

nalized basis using the Löwdin’s transformation ma-

trix S−1/2 [86, 87], where S stands for the initial over-

lap matrix. To obtain a convergent power series for the

matrix S−1/2 in terms of four submatrices of the ma-

trix S, the NCRSPT has been successfully applied in

[59]. This result not only allowed us to justify the basis

set orthogonality assumption for alkanes in the HAO

basis, but also demonstrated an example of applicabil-

ity of NCRSPT in dealing with power functions for ma-

trices.

5.3. Electron density redistributions inside

hydrocarbon fragments under influence of a

heteroatom

As already mentioned, local retransformations of ex-

pressions of the PNCMO theory into the HAO (AO)

bases are also possible. The relevant matrices U then

embrace orbitals of a certain fragment of the molecule.

It is noteworthy that such a procedure refers to all

molecules containing the given fragment. Additivity of

the PNCMO expressions for elements of the bond or-

der matrix with respect to contributions of separate FOs
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(Section 4) allows us to consider the effect of a certain

external group (e. g., of a substituent or heteroatom)

upon the fragment under interest separately without

specifying the structure of the whole compound. The

results of just this approach are overviewed in this sub-

section.

Let us start with a two-dimensional DM block

[73, 74] corresponding to two BOs ϕ(+)i and ϕ(−)i of

the ith bond defined in terms of HAOs(AOs) χ1 and

χ2 generally represented by different Coulomb param-

eters. The diagonal elements of the retransformed DM

block describing the occupation numbers of orbitals χ1

and χ2 take then the form of sums of several mean-

ingful components, including the zero-order (primary)

dipole moment, the increments of the secondary polar-

ization of various orders, the analogous contributions

of the so-called depolarization, as well as increments

of the population alteration of the whole bond due to

interbond charge transfer.

Applications of these results to substituted alka-

nes [73] allowed us to replenish the early interpreta-

tion of the inductive effect in terms of interbond charge

transfer (Section 5.1). Thus, alteration in the sec-

ondary polarization of a C–C (or C–H) bond under in-

fluence of a heteroatom was shown to be among the

principal components of the effect. This increment,

in turn, has been related to differences in the indirect

self-interaction (G(2)ii) between BOs ϕ(+)i and ϕ(−)i

by means of orbitals of the heteroatom-containing bond

before and after substitution.

Further, the so-called trans-effect of heteroatom, re-

vealing itself as non-equivalence of the cis- and trans-

arranged Cβ–Cγ (Cβ–H) bonds with respect to the

heteroatom-containing (Z–Cα) bond, has been traced

back to the third order increments to occupation num-

bers of HAOs (AOs) [74]. Moreover, application of

the PNCMO theory allowed both the inductive and the

trans-effect of a heteroatom to be studied on the unified

basis. Similarity and differences of the two effects also

have been successfully revealed.

Let us turn now to an analogous local retransfor-

mation of a six-dimensional Hamiltonian matrix block

corresponding to the phenyl ring [68]. The relevant

matrix U was made up of coefficients of linear com-

binations of the canonical MOs of benzene in terms of

2pz AOs of carbon atoms. As a result of retransforma-

tion, the occupation numbers of AOs of the phenyl ring

have been expressed as a sum of five terms, two of them

describing the intramolecular charge transfer and the

remaining ones representing the secondary dipoles aris-

ing within the ring under influence of the heteroatom.

These expressions yielded simple accountings for ob-

served pictures of electron density distributions in sub-

stituted bemzenes and in pyridine-like heterocycles in

terms of direct and indirect interactions of FOs.

6. PNCMO theory as the basis of the semilocalized
description of chemical reactivity

Early stages of bimolecular chemical reactions are

usually modelled by formation of weak intermolecu-

lar bonds. In this connection, various forms of per-

turbation theory are used in quantum-chemical studies

of relative reactivities of alternative routes of a certain

process. Passing to the basis of delocalized (canonical)

MOs of isolated molecules makes the principal step of

these theories and thereby delocalized descriptions of

reactivity are obtained. This equally refers both to pio-

neering contributions based on the simple Hückel the-

ory and to perturbative approaches of a considerably

higher level of sophistication developed later (these are

overviewed in [88] in detail).

As opposed to the majority of quantum-chemical

studies, a local point of view to chemical reactivity

is prevalent in the classical chemistry [89–91]. Thus,

a definite functional group is regarded as taking part

in the given process directly and it is usually referred

to as the reaction centre. Again, the remaining parts

of molecules are supposed to participate in the same

process indirectly by exerting certain electron donating

or accepting effects upon the respective reaction cen-

tres, and the extents of these effects are usually consid-

ered to be quite different at various stages of the reac-

tion [89]. Extinction of the indirect influence when the

distance between the given fragment and the reaction

centre grows also is among the expectations.

To formulate quantum-chemical analogues of the

above-discussed classical concepts and to be able to

discuss chemical reactions in terms of local structures

and/or interactions, a semilocalized approach to chem-

ical reactivity [88] has been developed on the basis of

application of the PNCMO theory to the case of two in-

teracting molecules. Orbitals localized on separate el-

ementary fragments of both participants of the process

(e. g., the single and double bonds, phenyl rings, etc.)

played the role of FOs, and the term “semilocalized”

was introduced to distinguish our approach from over-

simplified localized models [92], wherein only a few of

directly-overlapping orbitals are explicitly considered.

Electron density redistribution inside and between two

weakly interacting molecules A and B was the prin-

cipal characteristic under study. The relation between
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this redistribution and the total intermolecular interac-

tion energy has been taken from Eq. (35).

To be able to apply the general expressions for the

bond order matrix P shown in Eqs. (26) and (27), the

total subset of IOFOs {ϕ(+)} has been subdivided into

two parts {ϕ
(a)
(+)} and {ϕ

(b)
(+)} referring to molecules A

and B, respectively. The subset of IVFOs, in turn,

consisted of subsets {ϕ
(a)
(−)} and {ϕ

(b)
(−)}. Accordingly,

submatrices E(+) and E(−) of the zero-order Hamilto-

nian matrix H(0) have been assumed to consist of direct

sums of matrices referring to separate molecules, viz.

E(+) =E
(a)
(+) ⊕ E

(b)
(+),

E(−) =E
(a)
(−) ⊕ E

(b)
(−),

(38)

whereas the first-order blocks T, R, and Q contained

intermolecular parts of the anti-block-diagonal consti-

tution in addition. Use of these partitions allowed the

total principal matrices G(k) to be represented as fol-

lows:

G(k) = G
(a)
(k) ⊕ G

(b)
(k) + δG(k), (39)

where G
(a)
(k) and G

(b)
(k) are purely monomolecular terms

and δG(k) is a correction generally consisting of four

non-zero blocks and describing contributions of the in-

termolecular interaction.

After substituting Eq. (39) into Eqs. (26) and (27),

it turned out that any correction P(k) of the total DM

of two interacting molecules also is representable as

shown in Eq. (39). This result allowed us to study the

respective intermolecular increment δP(k) separately

and to derive a general expression for an alteration

δP(k)+,ii in the population of a certain IOFO ϕ(+)i

of the molecule A due to its contact with the opposite

molecule B.

Before going on to an overview of the relevant

results, some definitions of [88] should be recalled.

Thus, the directly interacting fragments of molecules A

and B have been called the reaction centres and de-

noted by RC(A) and RC(B). Further, the fragments of

molecules A and B, the orbitals of which interact di-

rectly only with those of reaction centres of their own

molecules (but not with orbitals of opposite molecule)

have been referred to as the nearest-neighbouring frag-

ments and denoted by NN(A) and NN(B). Analo-

gously, the next-nearest-neighbouring fragments may

be defined and so forth.

Let us turn now to the population alteration

δP(k)+,ii. As with the total populations of FOs shown

by Eq. (36), the alteration δP(k)+,ii consists of a sum

of partial populations δx
(k)
(+)i,(−)l of various orders (k).

Given that the opposite orbital ϕ(−)l belongs to the

same molecule (A), the relevant partial population de-

scribes charge redistribution inside the molecule A ow-

ing to its contact with the molecule B. Alternatively, an

intermolecular increment is obtained.

Analysis of separate contributions to the population

alteration δP(k)+,ii showed that the higher is the order

of the given increment (k), the more distant fragments

are embraced by the relevant charge redistribution. In

particular, the second- and third-order increments de-

scribe charge redistributions inside and between the

reaction centres RC(A) and RC(B). This result indi-

cates the primary role of these centres in chemical pro-

cesses. Moreover, the above-mentioned local charge

redistributions have been considered as the quantum-

mechanical analogues of the supposed direct participa-

tion of the RC(A) and EC(B) fragments in a certain

process.

The fourth-order correction δP(4)+,ii to the to-

tal population alteration was shown to contain five

meaningful components, three of them describing in-

tramolecular charge redistribution. The first of these

components proved to represent an electron-donating

or accepting effect of the NN(A) fragment upon the

reaction centre RC(A) owing to the indirect participa-

tion of orbitals of the opposite molecule B. Accord-

ingly, the second increment described an intramolec-

ular charge redistribution within the RC(A) fragment

due to its contact with the molecule B and orbitals of

the NN(A) fragment participated in this redistribution

indirectly as mediators of a certain interorbital interac-

tion. Finally, the third intramolecular increment repre-

sented a charge redistribution inside the same reaction

centre RC(A) mediated by orbitals of the opposite re-

action centre RC(B).

The remaining two intermolecular components of

the fourth-order correction δP(4)+,ii were shown to

desribe the following effects: (i) an additional charge

redistribution between the reaction centres RC(A) and

RC(B) under an indirect participation of the NN frag-

ments, and (ii) an indirect charge transfer between

one of the two reaction centres (e. g., RC(A)) and the

nearest-neighbourhood of the opposite reaction centre

(NN(B)), wherein orbitals of the remaining reaction

centre (i. e. of the RC(B), respectively) play the role

of mediators.

On the whole, the above-discussed fourth-order

terms represent additive components of an indirect

participation of a certain neighbouring fragment in a
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chemical process. In the case of a still more remote

fragment, terms of even higher orders are required to

describe the relevant effects. Thus, extinction of an in-

direct influence is predicted when the distance between

the given fragment and the respective reaction centre

grows. Moreover, the relative importance of higher or-

der terms may be expected to increase when passing

from the early stages of reactions to later ones.

Therefore, the intuition-based hypotheses of the

classical chemistry concerning reactivity (see the in-

troductory part of this section) acquired an additional

quantum-chemical support. Moreover, the scope of

validity of these classical concepts has been related

to that of the PNCMO theory. It is also evident that

both the local charge redistributions representing con-

sequences of direct participation of the reaction centres

in the given process and the above-enumerated princi-

pal components of the indirect influence of the nearest-

neighbouring fragment (substituent) depend on the spa-

tial arrangement of the reagent with respect to reactant.

On this basis, relative efficiences of alternative routes

of reactions may be compared.

Applicability of the above-described general ap-

proach to specific chemical problems has been il-

lustrated by several examples. First, the approach

formed the basis of the so-called extended model of

the SN2 reaction between a substituted alkane and nu-

cleophile [93]. Application of this model allowed us

to distinguish between the efficiencies of the frontal

and back attacks of the reagent even if the direct in-

termolecular interactions between the orbital of the

latter and the antibonding orbital of the Z–Cα bond

take coinciding absolute values. An analogous model

gave us an insight into the origin of the enhanced

reactivity of α-halocarbonyl compounds in SN2 pro-

cesses [94]. In the case of the AdE2 reaction of sub-

stituted ethenes [95], different relative reactivities of

carbon atoms have been related to dissimilar indirect

influences of the substituent for alternative directions

of an electrophilic attack.

7. Concluding remarks

As seen from the above review, the NCRSPT is for-

mulated in terms of entire submatrices (blocks) of the

initial Hamiltonian matrix. This, in turn, ensures a con-

siderably more general nature of the subsequent results

versus those of the standard RSPT. For example, gen-

eral expressions have been derived for effective Hamil-

tonian matrices of separate weakly-interacting subsys-

tems of molecular systems and these may be regarded

as the most outstanding result of the NCRSPT in the

framework of the usual (canonical) method of MOs.

The principal achievements of NCRSPT, however,

refer to the non-canonical method of MOs based on

the Brillouin theorem. This fact may be traced back to

the more general nature of the NCMO method itself as

compared to the CMO method. Moreover, application

of the NCRSPT allowed us to formulate the so-called

PNCMO theory of molecules that involves the follow-

ing principal points:

(1) interrelation between the Brillouin theorem and the

commutation equation for the one-electron density

matrix;

(2) expressions for NCMOs that are related to the re-

spective bond order matrix as closely as possible;

(3) generalization of the Dewar formula for total ener-

gies of molecules to the case of substantial intra-

subset interactions.

It is no surprise in this context that applications of

the PNCMO theory embrace entire classes of related

molecules and yields general results concerning chem-

ical reactivity.

Finally, good prospects for further developement of

NCRSPT in general and of the PNCMO theory in par-

ticular may be mentioned. For example, generalization

of NCRSPT to the case of non-orthogonal subsets of

basis functions seems to be feasible. (Such an expec-

tation is based on an analogous generalization of the

standard RSPT [96–99], on the one hand, and of the

particular case of two interacting subsets [25], on the

other hand.) Moreover, the NCRSPT is likely to be

applicable to solution of a wide variety of matrix prob-

lems. The latter expectation is based on the success-

ful solution of the commutation equation for the one-

electron DM and derivation of a power function for a

matrix discussed in this review.
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NEKOMUTATYVI RAYLEIGH’AUS IR SCHRÖDINGER’IO TRIKDŽIŲ TEORIJA IR JOS TAIKYMAI
KVANTINĖJE CHEMIJOJE

V. Gineitytė

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Aptarta vadinamoji nekomutatyvi Rayleigh’aus ir Schrödin-

ger’io trikdžių teorija ir jos taikymai. Skirtingai nuo standartinės

trikdžių teorijos, įgalinančios atsižvelgti į santykinai mažas sąvei-

kas tarp atskirų orbitalių, nekomutatyvi jos versija skirta sąvei-

koms tarp ištisų orbitalių rinkinių ir jų viduje tirti, nenurodant

bazinių funkcijų skaičiaus juose. Todėl, pereinant nuo įprasti-

nės prie nekomutatyvios trikdžių teorijos, vienmačiai dydžiai pa-

keičiami daugiamačiais dydžiais – matricomis, būtent, orbitalės

ir tikrinės hamiltoniano funkcijos tampa matricomis-eilutėmis, o

tiesinių kombinacijų koeficientai bei tikrinės vertės – kvadrati-

nėmis matricomis. Hamiltono operatoriaus tikrinių verčių lygtis

atitinkamai virsta tikrinių blokų lygtimi, kurioje ieškomasis tik-

rinis blokas nekomutuoja su apibendrinta tikrine funkcija (iš čia

ir kyla teorijos pavadinimas). Bendras tokios teorijos formaliz-

mas aptartas 2 skyriuje, o jos pagrindiniai taikymai standartinio

(kanoninio) molekulinių orbitalių (MO) metodo ribose – 3 sky-

riuje.

Nekomutatyvios trikdžių teorijos panaudojimas pagrindinei ne-

kanoninio MO metodo lygčiai spręsti bei iš to išplaukiantys rezulta-

tai aptarti 4–6 skyriuose. Čia remiamasi Brillouin’o teorema, kurią

taikant sudaromas hamiltoniano matricos blokinės diagonalizaci-

jos uždavinys, o jį išsprendus, suformuluojamas vadinamasis per-

turbacinis nekanoninis MO metodas (4 skyrius). Jo esmę sudaro

šie pagrindiniai rezultatai: 1) sąsaja tarp Brillouin’o teoremos ne-

kanoninėms MO gauti ir komutacinės lygties vienelektronei tankio

matricai, 2) nekanoninių MO, labiausiai panašių į ryšių eilių mat-

ricą, bendros išraiškos ir 3) Dewar’o formulės molekulės energijai

apibendrinimas.

Perturbacinio nekanoninio MO metodo taikymai konkrečių mo-

lekulių bei jų klasių elektroninės sandaros teorijoje aptarti 5 sky-

riuje, o cheminio reaktyvumo teorijoje – 6 skyriuje.


