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New calculations of the energy spectrum of the many-body nuclear Hamiltonian, evading the diagonalization of its matrix
in an extremely large harmonic oscillator basis, are presented. The efficiency of this method, which is based on factorization
of the antisymmetrizer and Hamiltonian operators, is compared to the direct one. The precision of the method is tested in
four-body calculations using a modern realistic nucleon–nucleon potential.
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1. Introduction

Recently, reliable calculations of light nuclei have
been performed using high-precision nucleon–nucleon
(NN) potentials [1–3]. The well-known methods (e. g.,
Hyperspherical Harmonics [4, 5]), as well as new meth-
ods (Faddeev–Yakubovski [6–8] and Green’s Function
Monte Carlo [9, 10]) were employed, and the effective
interactions in a truncated harmonic-oscillator basis
[11–18] were also used. The last mentioned method is
based on a previously developed technique of antisym-
metrization of the translationally invariant harmonic-
oscillator basis [19] and on a procedure of diagonaliza-
tion of the Hamiltonian matrix. Such technique [20, 21]
is essential as the limits of computer capabilities are
reachable very quickly when huge matrices need to
be diagonalized in order to get more or less accept-
able results. Good results have been obtained using
this method [22] for phenomenological effective inter-
actions, but serious problems occur in the case when a
bare NN potential is applied instead of effective inter-
action. The most important among them is very slow
convergence of the process.

In our approach the structure of the Hamiltonian ma-
trix is investigated and a way to evade direct calculation
of big matrices is proposed. The matrix of the anti-
symmetrization operator as well as the matrix of the
reduced Hamiltonian operator have been presented in
the form of direct sums of simpler matrices. This op-

eration, based on a simple basis modification, allows
us to simplify the calculations and to make them faster.
The precision of this method is compared with the re-
sults of earlier calculations.

2. Bound state of the four-particle system

We use the normalized Jacobi coordinate system,
known as Jacobi tree, to ensure translational invariance
of the many-body wave function. By definition, the Ja-
cobi tree has 2N − 1 vertices, N of which are the ver-
tices of the first order, see Fig. 1. They are arranged in
a line and marked with the one-particle radius-vectors
~r1, ~r2, . . . , ~rN . The order of remaining N − 1 vertices

Fig. 1. The Jacobi tree sample.
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Fig. 2. The Jacobi tree for the four particles.

situated below the first group is 2 or 3. These vertices
are labelled 1, 2, . . . , N − 1, where the numbers corre-
spond to Jacobi coordinates given by the formula

~ξi =

√

piqi

pi + qi

[

1

pi

∑

j∈{pi}

~rj −
1

qi

∑

j∈{qi}

~rj

]

, (1)

and pi is the number of the first-order vertices to the
left of the ith Jacobi coordinate, {pi} is a set of its in-
dices. qi and {qi} mean the same for the right side.
This system of coordinates is very useful, because if
the centre-of-mass coordinate is defined as

~ξ0 =
1√
N

N
∑

j=1

~rj , (2)

then the transformation matrix between the sets
~r1, ~r2, . . . , ~rN and ~ξ0, ~ξ1, . . . , ~ξN (as well as between
all Jacobi coordinate systems) is orthogonal. All Ja-
cobi coordinates should have the corresponding spin
and isospin coordinates, σi and τi, respectively. The
number of the spin–isospin variables associated with
a vertex corresponding to a definite Jacobi coordinate
equals the number of vertices of the first order that
are directly connected to the given vertex. Now let us
choose the Jacobi coordinates for the four-particle sys-
tem to be as follows [23] (see Fig. 2):

~ξ1 =
1

2
(~r1 + ~r2 − ~r3 − ~r4), (3)

~ξ2 =
1√
2
(~r1 − ~r2), (4)

~ξ3 =
1√
2
(~r3 − ~r4). (5)

The spin–isospin coordinates assigned to ~ξ2 and ~ξ3

are σ1τ1σ2τ2 and σ3τ3σ4τ4, respectively [23]. The cor-
responding basis functions are labelled as follows:

Φe2l2s2j2m2t2mt2

(~ξ2σ1τ1σ2τ2
)

=
{

Φe2l2

(~ξ2
)[

α1/2(σ1)α1/2(σ2)
]

s2

}

j2m2

×
[

α1/2(τ1)α1/2(τ2)
]

t2mt2
, (6)

and

Φe3l3j3m3mt3

(~ξ3σ3τ3σ4τ4
)

=
{

Φe3l3

(~ξ3
)[

α1/2(σ3)α1/2(σ4)
]

s3

}

j3m3

×
[

α1/2(τ3)α1/2(τ4)
]

t3mt3
, (7)

where e2, l2, s2, j2, and t2 are the oscillator excita-
tion energy, angular momentum, spin, total momen-
tum, and isospin of the first two particles, and e3, l3,
s3, j3, and t3 are the oscillator excitation energy, an-
gular momentum, spin, total momentum, and isospin
of the last two particles. We use the components of
the four-body wave functions that are antisymmetric
only with respect to the first two and the last two parti-
cles:

ΦJπTMMT
(1, 2; 3, 4)

= δπ(−1)l1+l2+l3 ,1δ(−1)l2+s2+t2+1,1δ(−1)l3+s3+t3+1,1

×
∑

e1l1e2l2s2j2t2j12e3l3s3j3t3

aJπT
e1l1e2l2s2j2t2j12e3l3s3j3t3

×
{[

Φe1l1

(~ξ1
)

Φe2l2s2j2t2

(~ξ2σ1τ1σ2τ2
)]

j12

× Φe3l3s3j3t3

(

~ξ3σ3τ3σ4τ4

)}

JMTMT
, (8)

and e1, l1 are the oscillator excitation energy and the
angular momentum of relative motion of the two sub-
clusters.

The functional differential equation of [23] for this
component is

H3,4X1,2;3,4Φ(1, 2; 3, 4) = EΦ(1, 2; 3, 4). (9)

We solve this equation using a basis of harmonic-
oscillator functions having dimensionless coordinates
~ξ1/b, ~ξ2/b, ~ξ3/b, and the oscillator length parameter
b2 = ~/(mω). For 4He the mass of the nucleon equals
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(mp + mn)/2, see [24]. The reduced Hamiltonian op-
erator is

H3,4 = 6~ω

(

−1

4
∆ξ3 +

V (
√

2b~ξ3, σ3τ3σ4τ4)

~ω

)

, (10)

and for simplicity its dimensionless form h3,4 =
H3,4/(6~ω) will be used hereinafter. The antisym-
metrizer for the four-particle system can be represented
in the form

A1,2,3,4 =
1

3
(1 − P13 − P14)

1

2
(1 + P13P24)A1,2A3,4,

(11)
where A1,2 and A3,4 are antisymmetrizers for two-
particle subclusters. We can simplify the reduced
Hamiltonian, employing a basis of harmonic-oscillator
functions for computing its matrix element:

〈

(((el)1, (elsjt)2)j12; (elsjt)3)EJMTMT

∣

∣h3,4

×
∣

∣(((el)′1, (elsjt)
′
2)j

′
12;

(elsjt)′3)E
′J ′M ′T ′MT ′

〉

= δ(JMTMT ),(JMTMT )′δ(el)1,(el)′
1
δ(elsjt)2,(elsjt)′

2

× δj12,j′
12

δ(sjt)3,(sjt)′
3
h j3π3t3

e3l3,e′
3
l′
3

. (12)

Let us now transform the operator h3,4 into the form

h3,4 =−1

4
∆ξ3 + V3,4

=−1

4
∆ξ3 +

1

4
ξ2
3 + V3,4 −

1

4
ξ2
3

=
1

2

[

1

2

(

−∆ξ3 + ξ2
3

)

]

+

[

V3,4 −
1

4
ξ2
3

]

, (13)

thereby yielding the following expression for the ma-
trix element in Eq. (12):

h
j
π3
3

t3
e3l3,e′

3
l′
3

=
1

2

(

e3 +
3

2

)

δe3l3,e′
3
l′
3

+ V
(

√
2b~ξ3

)

− 1

4

(

ξ2
3

)

e3l3,e′
3

l′
3

. (14)

Due to antisymmetry with respect to permutations
1 ⇔ 2 and 3 ⇔ 4 of particles in subclusters, the ma-
trix elements of the antisymmetrizer can be evaluated
as matrix elements of a simpler operator

X =
1

6
(1 − 2P24)(1 + P13P24). (15)

The matrix element of the operator P24, essential in
Eq. (15), is given by
〈

(((el)1, (elsjt)2)j12; (elsjt)3)EJT
∣

∣P24

×
∣

∣(((el)′1, (elsjt)
′
2)j

′
12; (elsjt)

′
3)EJT

〉

= (−1)j2+j′
2
+l3+l′

3
+j3+j′

3

× [s2, t2, j2, j12, s3, t3, j3,

s′2, t
′
2, j

′
2, j

′
12, s

′
3, t

′
3, j

′
3]

1/2
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, (16)

where [a, b, . . .] is shorthand notation for (2a + 1) ×
(2b+1) · · ·. The 〈EL, el : Λ|e1l1, e2l2 : Λ〉d is a general
harmonic-oscillator bracket, as defined in [25].

3. Hermitization

The operators H and X in Eq. (9) are Hermitian, i. e.

H = H
+, X = X

+; (17)

however, the product HX is obviously not a Hermitian
operator, because

(HX)+ = XH 6= HX. (18)

This complicates the problem, but we have found at
least two ways to make this operator Hermitian. The
first method is based on the spectral decomposition of
the matrix Xn×n:

X = FF
+, (19)
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where the matrix Fn×r contains r = SpX linearly in-
dependent columns. Rewriting the functional differen-
tial equation as

HFF
+Φ = ΦE, (20)

we can multiply then Eq. (20) on the left by F
+ to ob-

tain

F
+
HFF

+Φ = F
+ΦE. (21)

The matrix

(F+
HF)+ = F

+
HF (22)

is Hermitian. The second method is even simpler. The
matrix X is a projection matrix, so

XX = X. (23)

Rewriting Eq. (9) as

XHXXΦ = EXΦ, (24)

we obtain a Hermitian matrix, because

(XHX)+ = XHX. (25)

This n × n matrix has only r physical eigenvalues that
are not identically equal to zero. These redundant solu-
tions are spurious, but all of them correspond to eigen-
values E ≡ 0, hence one has no problems with them,
because bound states and spurious states are well sepa-
rated.

4. Structure of matrices

The matrix X has a well-defined structure depend-
ing on the harmonic-oscillator energy quantum number
E = e1 + e2 = 0, 2, 4, . . .. It splits into submatrices
X(E) corresponding to different values of E:

X = X(0) ⊕X(2) ⊕ X(4) ⊕ · · · , (26)

i. e. it is diagonal with respect to the oscillator energy
E, while all the off-diagonal matrix elements are iden-
tically zeroes and need not be kept in memory.

As one sees from the previous definition, the ma-
trix X, as well as its submatrices corresponding to dif-
ferent values of E, is a projection operator and pos-
sesses the properties

X(E)X(E) = X(E), X
+(E) = X(E). (27)

The matrix F is obtained from X as follows: the
submatrices of X corresponding to different values of
E are diagonalized, and the matrices of eigenvectors
corresponding to the eigenvalues 1 are calculated. A di-
rect sum of matrices of the eigenvectors corresponding

Table 1. 4He binding energy calculations.

N d f n t E

0 2 2 2 0.11 617.83
2 19 70 27 0.37 230.11
4 93 1.1·103 171 1.10 92.60
6 321 1.1·104 729 4.23 33.55
8 889 6.9·104 2.4·103 24 6.38

10 2114 3.3·105 6.6·103 148 −5.82
12 4494 1.3·106 1.6·104 1033 −14.06
14 8766 4.4·106 3.5·104 5849 −18.45
16 15972 1.3·107 7.1·104 29006 −21.32

to different values of E, as in the structure of X, yields
the matrix F.

The matrix of the reduced Hamiltonian has a simi-
lar structure, i. e. it splits into a direct sum of diagonal
submatrices labelled by the quantum numbers of the
nucleon–nucleon channel jπ2

2 t2.
Finally, the matrix of the reduced Hamiltonian can

be written in the form

H = H(jπ2

2 t2 = 0+1)⊕H(jπ2

2 t2 = 1+0)⊕· · · . (28)

5. Calculations

To illustrate the efficiency of Eq. (9) in solving ma-
trix diagonalizations, we have performed the 4He bind-
ing energy calculations based on the block structure of
F and H matrices. Only the upper or the lower tri-
angle of nonzero submatrices with diagonal elements
included have to be filled in and kept in memory.

In summary, we have to:

(i) calculate the matrix F,
(ii) calculate the matrix H,

(iii) find the expression F
+
HF,

(iv) find several low-lying eigenvalues and corre-
sponding eigenvectors of this matrix.

The results of our calculations are presented in Ta-
ble 1 in the following order: the oscillator excitation
quanta N , the number of states d in our basis, the
number of elements f in the array F, the number of
elements n in the array H, the calculation time t in
seconds, and the last parameter is the 4He binding en-
ergy E.

As an illustration of efficiency of the applied method,
one can mention that for the number of oscillator
quanta N equal to 16 the number of elements in the
matrices X or H is 2.6·108, while applying our mod-
ification the number of elements in the array F is
1.3·107, and the number of elements in the array H

is only 7.1·104. According to this we need much less
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floating-point operations to perform calculations. The
known result of exact calculation for binding energy of
the α-particle with a realistic NN potential is equal to
−24.25 MeV [27].

Our calculations were performed on the ALPHA
1000 MHz 1 GB computer using the realistic nucleon–
nucleon potential Reid93 [1]. The value of the oscil-
lator parameter b = 0.73 fm was chosen so that the
binding energy would be minimal. When the number
of the oscillator quanta is high, the binding energy de-
pends only slightly on the parameter b.
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[24] G.P. Kamuntavičius, P. Navratil, B.R. Barrett,
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Santrauka

Pagrindinė branduolio sandaros fizikos problema yra branduo-
lio savybių apskaičiavimas, remiantis naujausiais aukštos kokybės
tarpnukleoninės sąveikos realistiniais potencialais. Taip skaičiuoti
šiuo metu įmanoma tik lengvuosius branduolius hipersferinių har-
monikų, Fadejevo ir Jakubovskio, Green’o funkcijos Monte Carlo
metodais arba naudojant efektyvines sąveikas sluoksninio mode-
lio harmoninio osciliatoriaus antisimetrinių, transliaciniai inva-
riantinių būsenų bazėje. Pastarasis metodas yra gerai išplėto-
tas, ir jį naudojant gaunami neblogi rezultatai, nagrinėjant fe-

nomenologines efektyvines sąveikas. Tačiau nagrinėjant realisti-
nius tarpnukleoninės sąveikos potencialus, konvergavimas yra la-
bai lėtas, branduolio hamiltoniano matricos eilė greitai didėja,
ir jai diagonalizuoti nepakanka ir galingiausių kompiuterių pajė-
gumų.

Pateiktas metodas, įgalinantis surasti branduolio hamiltoniano
energijos spektrą, išvengiant superdidelių matricų diagonaliza-
vimo. Metodas paremtas detalia hamiltoniano matricos struktūros
analize, jo tikslumas patikrintas ir palygintas su ankstesnių keturių
nukleonų sistemos skaičiavimų rezultatais.


