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This work is aimed at the multiconfiguration Hartree–Fock calculations of the 6s ionization energies of lanthanides with
configurations [Xe]4fN

6s2. Authors use the ATSP MCHF version in which there are new codes for calculation of spin-
angular parts of matrix elements of the operators of intraatomic interactions written on the basis of the methodology developed
by Gaigalas, Rudzikas, and Froese Fischer, based on the second quantization in coupled tensorial form, the angular momentum
theory in three spaces (orbital, spin, and quasispin), graphical technique of spin-angular integrations and reduced coefficients
(subcoefficients) of fractional parentage. This methodology allows us to study the configurations with open f -shells without
any restrictions, thus providing the possibility to investigate heavy atoms and ions as well as to obtain reasonably accurate
values of spectroscopic data for such complex many-electron systems.

Keywords: complex many-electron systems, ionization energies, lanthanides, multiconfiguration Hartree–Fock method

PACS: 03.65Ge, 31.15Ar, 31.25.Eb

1. Introduction

There is considerable interest in understanding the
physics and chemistry of heavy atoms and ions. The
main problem in the investigation of such systems is
their complexity, caused by a large number of elec-
trons and the importance of both the correlation and
relativistic effects. Therefore, accurate description
of heavy atoms and ions requires generaly the cor-
rect treatment of the correlation as well as the rel-
ativistic effects. There are a number of approaches
developed for this purpose: configuration interac-

tion (CI) [1] and multiconfiguration methods such as
multiconfiguration Hartree–Fock (MCHF) [2], Dirac–
Fock (MCDF) methods, many-body perturbation the-

ory (MBPT) [3], etc. However, the domains of their
applicability are very different. Some of these methods
so far may be applied only for atoms and ions having
closed electronic shells or one electron above closed
shells.

Relativistic nature of motion implies the use of rela-
tivistic wave functions and relativistic Hamiltonian [1].
However, complete and rigorous treatment of the cor-
relation effects together with the relativistic nature of
the motion for heavy atoms and ions is, unfortunately,
practically outside of today’s computation possibili-
ties.

Fortunately, there exists a fairly large variety of
atoms and their ionization degrees, for which the rel-
ativistic effects are small compared to the nonspheri-
cal part of Coulomb interactions and, therefore, may
be accurately taken into account as corrections of the
order α2 (α is the fine structure constant) in the Pauli
approximation, considered in detail in [1]. This is par-
ticulary true for the spectroscopic properties and pro-
cesses connected with the outer electronic shells of an
atom or ion. Also, there are some spectroscopic quan-
tities which are described as the difference of two large
numbers. The ionization energies belong to such cate-
gory of quantities. Relativistic effects are most impor-
tant for the electrons in inner shells. The latter prac-
tically do not “feel” the loss of the outer electron in
the process of the ionization, therefore, the main rela-
tivistic effects cancel out while calculating ionization
energies. This supports the use of the approach de-
scribed in this paper. Moreover, analysis of the en-
ergy spectra of atoms considered clearly shows that
the fine structure of the terms is really “fine”, there
are even no traces of splitting of a shell fN into rel-
ativistic subshells fN1

−
fN2

+ , typical of the relativistic
approach. All this gives us the confidence that the
main attention while studying the ionization energies
must be paid to efficient accounting for correlation ef-
fects.
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Thus, this paper is supposed to show that some prop-
erties (such as ionization energies of valence electrons)
of heavy atoms can be quite accurately determined us-
ing the nonrelativistic wave functions, accounting for
correlation effects by the MCHF method and for rel-
ativistic effects as corrections of the order of α2. In
addition, in the paper we describe a method of selec-
tion of the basis for accurate accounting for the cor-
relation effects important for the property under con-
sideration, namely, the determination of 6s ionization
energies (IE) of lanthanides.

The authors were able to find only one consistent and
rigorous study of ionization energies of lanthanides [5]
including the correlation effects, performed using ab

initio methods. In the study [5] the CI method with
Gaussian-type functions was applied. This approach is
typically used in molecular physics. The authors sup-
pose that it is relevant to study the ionization energies
of lanthanides using the accurate methods common in
atomic physics.

The problem in both CI and MCHF methods is to
find the bases of atomic functions satisfying two con-
ditions: one is to yield accurate data and the other
is to be manageable by today’s computation possi-
bilities. The right choice of the basis would allow
us not only to reproduce the ionization energies and
other atomic data by ab initio methods, but it would
also lead us to better understanding of the impor-
tance and structure of the correlation and relativistic
effects.

For this purpose we perform MCHF calculations
using the multiconfiguration Hartree–Fock code from
the atomic structure package (ATSP MCHF) [2, 6] in
which there are new codes for calculation of spin-
angular parts of matrix elements of the operators of
intraatomic interactions written on the basis of the
methodology by Gaigalas, Rudzikas, and Froese Fis-
cher [7, 8], based on the second quantization in cou-
pled tensorial form, the angular momentum theory in
three spaces (orbital, spin, and quasispin), graphical
technique of spin-angular integrations and reduced co-
efficients (subcoefficients) of fractional parentage. The
tables of such coefficients are presented in [8]. They al-
low us to study configurations with open f -shells with-
out any restrictions. The basic concepts of our ap-
proach are presented in Section 2.

We assume that in the case of lanthanides with con-
figurations [Xe]4fN6s2 the relativistic and correlation
effects between the electrons of “inner shells” (core–
core correlations) are the same for the neutral atom
and ion and then these effects (corresponding ener-

gies) cancel out in calculation of ionization energy

(EI). The mean distance to the nucleus of “outer” elec-
trons (calculated, for example, by single-configuration

Hartree–Fock (HF) method [9, 10]) is much larger
than that of “inner” electrons. Therefore, we ex-
pect that the correlations between “inner” and “outer”
electrons (core–valence correlations) will be negligi-
ble. For the same reason we expect relativistic ef-
fects for “outer shells” to be not so much important
as for “inner shells” (the mean value of electron ve-
locity is inversely proportional to the mean distance to
the nucleus) and they can be treated rather accurately
by adding relativistic corrections to the nonrelativistic
Hamiltonian. Then it may be possible to get quite ac-
curate values of the ionization energies by MCHF ap-
proach while accounting for relativistic effects as cor-
rections.

Section 3 is aimed at checking this assumption. In
Section 4 we present our final results. The results
are compared with the previous theoretical investiga-
tions [5] and with the values of IE compiled from ex-
perimental data [11–14]. The details of the experi-
mental investigation of the ionization energies of lan-
thanides can be found in [15–17]. Section 5 presents
for conclusions.

2. Approach

We define the ionization energy as EI = Eion −Eg,
where Eg and Eion are the ground state energies of
neutral and singly ionized atoms correspondingly. The
ground state of a neutral lanthanide atom is

1s22s22p63s23p63d104s24p64d105s25p64fN6s2

≡ [Xe]4fN6s2, (1)

and that of a singly ionized one is

1s22s22p63s23p63d104s24p64d105s25p64fN6s1

≡ [Xe]4fN6s1. (2)

Here N corresponds to 3, . . . , 7 for Pr, . . . , Eu, and to
9, . . . , 14 for Tb, . . . , Yb.

In our calculations we account for the relativistic ef-
fects by the following relativistic shift operator (nota-
tions for Hi are taken from [1]):

HRelCor = H1 + H2 + H3 + H′

5 + Hmp. (3)
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Here the mass correction term H1 and orbit–orbit

term H2 are given by

H1 =−
α2

8

N∑

i=1

p
4
i , (4)

H2 =−
α2

2

N∑

i<j

[
(pi · pj)

rij
+

(rij · (rij · pi)pj)

r3ij

]
. (5)

The H3 stands for the one-particle (H′

3) and two-
particle (H′′

3) Darwin terms. They are given by

H3 =H′

3 + H′′

3

=
Zα2π

2

N∑

i=1

δ(ri) − πα2
N∑

i<j

δ(rij), (6)

and spin–spin contact term H′

5 is

H′

5 = −
8πα2

3

N∑

i<j

(si · sj)δ(rij). (7)

The operators (4)–(7) are of the order of α2.
The mass-polarization correction term Hmp is given

by

Hmp = −
1

M

∑

i<j

(pi · pj). (8)

The expressions (4–8) are presented in atomic units.
We expect the operator (3) to enable us to take into

account the main relativistic corrections to ionization
energy.

For the calculation of ionization energy we used the
MCHF method. In this approach, the atomic state func-
tion Ψ(γLS) is expressed as a linear combination of
configuration state functions (CSFs) Φ(γiLS), i. e.

Ψ(γLS) =
∑

i

ciΦ(γiLS). (9)

A set of orbitals, or an active set (AS), determines
the set of all possible CSFs or the complete active space

(CAS) for MCHF calculation. The size of the latter
grows rapidly with the number of electrons and also
with the size of the orbital AS. Most MCHF expan-
sions are therefore limited to a restricted active space

(RAS) [2]. The RAS is spanned by all CSFs that can be
generated from a given active set of orbitals, with some
constrains. The constrains are derived from the notions
of different types of correlations discussed below. No
“relaxation” effects were included.

For complex atoms and ions, considerable part of the
effort must be devoted to integrations over spin-angular

variables, occurring in the matrix elements of the oper-
ators under consideration. In the papers [1, 7, 18] an
efficient approach for finding matrix elements of any
one- and two-particle operator between complex con-
figurations is suggested. It is based on the extensive
exploitation of the symmetry properties of the quanti-
ties of the theory of complex atomic spectra, presented
in the secondly quantized form, in orbital, spin, and
quasispin spaces. It is free of shortcomings of previ-
ous approaches. This approach allows one to generate
fairly accurate databases of atomic parameters [19, 20],
and will be used in our paper.

According to the approach of [7, 18], a general ex-
pression of the submatrix element for any scalar two-
particle operator between functions with u open shells,
valid for both nonrelativistic and relativistic wave func-
tions, can be written down as follows:
(
ψu(LS)

∥∥Ĝ(κ1κ2k,σ1σ2k)
∥∥ψu(L′S′)

)

=
∑

nili,nj lj ,n′

i
l′
i
,n′

j
l′
j

(
ψu(LS)

∥∥Ĝ(nili, njlj , n
′

il
′

i, n
′

j l
′

j)

×
∥∥ψu(L′S′)

)

=
∑

nili,nj lj ,n′

i
l′
i
,n′

j
l′
j

∑

κ12,σ12,κ′

12
,σ′

12

∑

Kl,Ks

(−1)∆

× Θ′(niλi, njλj, n
′

iλ
′

i, n
′

jλ
′

j ,Ξ)

× T (niλi, njλj, n
′

iλ
′

i, n
′

jλ
′

j ,Λ
bra,Λket,Ξ,Γ)

×R(λi, λj , λ
′

i, λ
′

j ,Λ
bra,Λket,Γ), (10)

where Γ refers to the array of coupling parameters con-
necting the recoupling matrix R(λi, λj , λ

′

i, λ
′

j ,Λ
bra,

Λket,Γ) to the submatrix element T (niλi, njλj, n
′

iλ
′

i,
n′jλ

′

j ,Λ
bra,Λket,Ξ,Γ), λi ≡ lisi, parameter Ξ implies

the array of coupling parameters that connect Θ to the
tensorial part, Λbra ≡ (LiSi, LjSj, L

′

iS
′

i, L
′

jS
′

j)
bra is

the array for the bra function shells’ terms, and sim-
ilarly for Λket. The expression (10) has summations
over intermediate ranks κ12, σ12, κ′12, σ′12, Kl, Ks in
T (niλi, njλj, n

′

iλ
′

i, n
′

jλ
′

j ,Λ
bra,Λket,Ξ,Γ).

In calculating the spin-angular parts of the submatrix
element using Eq. (10), one has to compute the follow-
ing quantities (for more details, see [7]):

1. Recoupling matrix R(λi, λj, λ
′

i, λ
′

j ,Λ
bra,Λket,Γ).

This recoupling matrix accounts for the change
in going from the matrix element (ψu(LS)‖ ×
Ĝ(nili, nj lj, n

′

il
′

i, n
′

jl
′

j)‖ψu(L′S′)), which has u
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open shells in the bra and ket functions, to the
submatrix element T (niλi, njλj , n

′

iλ
′

i, n
′

jλ
′

j ,Λ
bra,

Λket,Ξ,Γ), which has only the shells being acted
upon by the two-particle operator in its bra and ket
functions.

2. Submatrix element T (niλi, njλj, n
′

iλ
′

i, n
′

jλ
′

j ,

Λbra,Λket,Ξ,Γ) for tensorial products of creation/
annihilation operators that act upon a particular
electronic shell. So, all the advantages of tensorial
algebra and quasispin formalism may be efficiently
exploited in the process of their calculation.

3. Phase factor ∆.

4. Θ′(niλi, njλj , n
′

iλ
′

i, n
′

jλ
′

j,Ξ), which is propor-
tional to the radial part and corresponds to one
of Θ(nλ,Ξ), . . . ,Θ(nαλα, nβλβ, nγλγ , nδλδ,Ξ).
It consists of a submatrix element (niλinjλj‖ ×
g(κ1κ2k,σ1σ2k)‖n′iλ

′

in
′

jλ
′

j), and in some cases of
simple factors and 3nj-coefficients.

The above-mentioned method of the definition of
spin-angular parts becomes especially important in the
investigation of the complex systems in both relativistic
and nonrelativistic approaches.

The usage of MCHF as well as MCDF methods
gives accurate results only when the RAS is formed
properly. Therefore, the next section is devoted to the
analysis of this problem.

3. RAS construction

Large scale systematic MCHF calculations (except
for Er [10] and Gd [9]) of EI of lanthanides have
not been done yet. Therefore, following the method-
ology of [2], it is important to investigate the struc-
ture of ground configurations, to impose the core and
valence shells and to evaluate valence–valence (VV),
core–valence (CV), and core–core (CC) correlations.

It is always a question when we can assume that a
shell is part of the core, and when it should be treated
as a valence shell. The answer is not trivial even for
boron-like ions, and in our case it is even more com-
plicated because of the complexity of configurations
under consideration. Our purpose is to take care of
the correlation effects that do not cancel each other be-
tween the ion and atom.

In this section we will discuss some practical pos-
sibilities of RAS construction using Er as an exam-
ple [10].

Table 1. Results of single-configuration HF calculations for Er.
Ground state energies and mean values of various operators in a.u.

(values for Er+ presented in parentheses).

nl 〈1/r〉 〈r〉 〈r2〉

1s 67.45598 0.02229 0.00066
2s 15.76448 0.09452 0.01048
2p 15.76098 0.08018 0.00780
3s 6.01686 0.24164 0.06657
3p 5.94849 0.23182 0.06215
3d 5.84288 0.20492 0.04918
4s 2.55502 0.54479 0.33457
4p 2.45573 0.55702 0.35245
4d 2.24072 0.58791 0.40085
4f 1.72460 0.75423 0.73896
5s 0.94798 1.37069 2.17737

(0.93256) (1.38534) (2.16005)
5p 0.81825 1.56941 2.80348

(0.81981) (1.56529) (2.78491)
6s 0.25106 4.63012 24.27349

(0.29939) (4.09340) (18.75251)

Energy:
Er −12498.1528
Er+ −12497.9809

3.1. Single-configuration HF calculations

We can get the first insight into the structure of Er
and Er+ ground states from the single-configuration
HF calculations. The resultant ground state energies
and mean values of various operators of nl radial func-
tions are presented in Table 1. Resultant energies are
practically the same as those presented in [21, 22].

The fact that the mean values 〈r〉, 〈r2〉 of the corre-
sponding operators are much higher, and at the same
time the value of 〈1/r〉 is much smaller for the 6s-
function than those for 5s-, 5p-, and 4f -functions,
shows that the 6s-function is much more remote from
the nucleus than the others.

Similar analysis shows that the open 4f -shell is
closer to the nucleus than 5s or 5p.

The same situation remains for the Er+ ion (the
corresponding values are presented in parentheses).
Therefore, we have a difficulty in treatment of “outer”
electrons: usually the open shells are considered as
outer (valence) ones, but sometimes the closed shells
(6s2 in our case) are included, too [2]. For the light
atoms these shells are spatially “outer”.

The same qualitative picture is valid for other lan-
thanides considered.

It is interesting to notice that 2p- and 3p-, 3d-
electrons are spatially closer to the nucleus than respec-
tively 2s or 3s. This fact may be explained by the in-
creasing role of relativistic effects for inner electrons in
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Table 2. Results of MCHF calculations. Numbers of CSFs (NCSF) and values of EI (in eV).

Basis NCSFEr NCSFEr+ EEr (a.u.) EEr+ (a.u.) EI Er EI Ho

Ia 2838 2769 −12498.58517 −12498.38073 5.563 –
Ib 12811 12054 −12498.66977 −12498.46502 5.572 –

IIa 236 8 −12498.17664 −12497.96000 5.895 6.041
IIc 2600 23 −12498.17741 −12497.96451 5.793 5.932
IId 5565 32 −12498.17743 −12497.96456 5.793 5.927
IIe 10347 43 −12498.17744 −12497.96457 5.792 –

IIIa 70 4 −12498.17657 −12497.95988 5.896 19.189
IIIb 272 7 −12498.17729 −12497.96428 5.796 5.929
IIIc 733 11 −12498.17733 −12497.96446 5.792 –
IIId 1569 15 −12498.17735 −12497.96451 5.792 5.923
IIIe 2938 20 −12498.17735 −12497.96452 5.792 5.922

CI [5] −12498.6887 – 5.077 5.040
Nonrelativistic HF [5] 4.677 4.621
Experiment [14] 6.108 6.022

heavy atoms, which may already need proper account
for the so-called indirect relativistic effects.

3.2. Core I

In this case we use core I, [Xe] 1S, and we treat 4f
and 6s as valence shells. We treat 4f -shell as a valence
shell because it is open, and 6s because the correspond-
ing radial function is much more remote from the nu-
cleus than others. This approach is close to the advices
given in [2].

The basis for the MCHF expansion was formed us-
ing the CSFs of the configurations made of single and
double (S, D) excitations from the valence shells to
some destination set. There were two types of desti-
nation sets used:

a= {5d, 5f, 5g, 6p, 6d}, (11)

b= a+ {6f, 6g, 6h, 7s, 7p, 7d}. (12)

Further on we denote the basis as a core having a
subscript of the destination set. For example, Ia denotes
the basis consisting of CSFs of the configurations made
by S, D excitations from 4f126s2 for Er and 4f126s1

for Er+ to the destination set a and cores [Xe]. The
numbers of CSFs in the bases (NCSF) are presented in
Table 2.

The weight for the main CSF was found to be 0.977
for Ia (and similar for Ib). This value is close to that
(0.949) found by the CI method [5]. The mean dis-
tances of radial functions from the nucleus are found to
be up to 2% smaller than those for single-configuration
HF calculations. For example, 〈r〉4f = 0.752 a.u.
for Ia (0.748 a.u. for Ib), and 〈r〉6s = 4.550 a.u. for Ia
(4.534 a.u. for Ib).

3.3. Cores II and III

In this case, only 6s is treated as a valence shell,
because of its spatial location. We expect this strat-
egy to be more efficient for the calculations of 6s ion-
ization energy because, as we can see from single-
configuration HF calculations, the mean distance of 4f
radial functions is not much different for Er and Er+.
As the cores we use core II, [Xe]4f12, with term not
fixed, and core III, [Xe]4f12, with a fixed term 3H .

There were five types of destination sets used with
these cores, namely, (11) and (12) as for core I and
three more

c= b+ {7f, 7g, 7h, 7i, 8s, 8p, 8d}, (13)

d= c+ {8f, 8g, 8h, 8i, 8k, 9s, 9p, 9d}, (14)

e= d+ {9f, 9g, 9h, 9i, 9k, 9l, 10s, 10p, 10d}. (15)

The results of MCHF calculations (Er and Er+

ground state energies and ionization energies) are also
presented in Table 2. The weights of the main CSFs in
MCHF expansions are in the range of 0.960–0.980 for
all bases with cores II and III. The mean distance from
the nucleus for the 6s radial function is greater than ob-
tained from single-configuration HF calculations, but
smaller than obtained using the bases with core I. For
example, 〈r〉6s = 4.560 a.u. for IIIa and 4.564 a.u.
for IIIb,d,e.

Here we would like to point out the fact that in or-
der to accurately account for the correlation effects of
some type (e. g., CC or CV) the destination set should
be large enough. In the calculation of the ionization
energy it is especially important to properly account
for the correlation effects of the same nature for an
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atom and ion. For example, the destination sets a
for the cores II and III are too small and, therefore,
lead to the far from true values in the ionization en-
ergy because the number of CFSs in the ions MCHF
expansion is too small. It becomes particularly ob-
vious in the case of IIIa for Ho, where the obtained
ionization energy EI = 19.189 (see Table 2) is far
from the real one. But the increase of the destina-
tion set up to the b already gives balanced inclusion of
the correlation effects for an atom and ion and reason-
able values of IE. Further increase of the destination set
gives the convergence of IE to the value determined by
the choice of the core and of the approach (Hamilto-
nian).

3.4. Strategy of RAS formation

As we can see from Table 2, the basis formed with
the same destination sets is the largest for core I,
medium for core II, and the smallest for core III. Cor-
respondingly, the energies are the lowest for core I,
medium for core II, and the highest for core II. This
means that the bases of core I account for more corre-
lation effects than the ones of cores II and III. Never-
theless, the ionization energies obtained using cores II
and III are practically the same, and the ones obtained
using core I are much worse. This is due to the fact that
the basis formed using the destination set b for core I
is not sufficient to account for the correlation effects of
4f -electrons, which, when represented in full, cancel
between Er and Er+.

So, the most efficient strategy is to use MCHF ex-
pansions with a frozen core of the type [Xe]4fN 2S+1L
and S, D excitations from 6s. This strategy was used
when forming the bases for EI calculations of other
lanthanides. The corresponding sizes of the bases are
similar to those for Er. For example, the bases of the
type similar to IIIe consisted of 3018 CSFs for Pr, Nd,
Dy, Ho, of 2938 CSFs for Pm, Tb, and of 2240 CSFs
for Sm, Tm.

4. 6s ionization energy

4.1. Nonrelativistic

The nonrelativistic 6s ionization energies of the
atoms considered are presented in Table 3. There EI

stands for the ionization energy value calculated by
the MCHF method, Exp. denotes the experimental re-
sults [14, 17]. For comparison we also present single-
configuration HF and CI [5] results. We were unable to

Table 3. 6s ionization energies of lanthanides (in eV).

Z Atom HF CI [5] EI Exp. [14, 17]

59 Pr 4.254 4.942 4.961 5.464
60 Nd 4.288 4.949 5.086 5.525
61 Pm 4.321 4.941 5.065 5.554
62 Sm 4.352 4.932 5.117 5.644

65 Tb 4.505 4.985 5.355 5.864
66 Dy 4.564 5.000 5.384 5.939
67 Ho 4.621 5.040 5.757 6.022
68 Er 4.677 5.077 5.792 6.108
69 Tm 4.731 5.119 6.101 6.184

σ 0.501 0.314 0.163

Fig. 1. 6s ionization energies in various approximations.

obtain the relevant result for europium due to the prob-
lems with the convergence of MCHF equations.

Figure 1 shows Z-dependence of ionization ener-
gies calculated by single-configuration HF, CI, MCHF
methods, and the experimental one.

The differences between the MCHF energies of the
ground states and the ones obtained by the single-
configuration HF method (∆E) for all Z vary from
0.626 eV to 0.707 eV. Their absolute value is smaller
than that predicted in [5]. So, in general we encounter
less correlation effects for the ground states. For exam-
ple, for Er in [5] there is ∆E = −15.339 eV, and our
value is ∆E = −0.669 eV.

Nevertheless, our computed values of ionization en-
ergies are closer to the experimental ones than CI [5]
(see the root-mean-square deviations σ of the calcu-
lated results from the experimental measurements in
Table 3). For example, for Er in [5] there is 5.077 eV,
and our value is 5.792 eV, whereas the experimental
value is 6.108 eV [14, 17]. So, though we account for
less correlation effects in general, we still get a better
value of ionization energy because we account for more
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Table 4. Results of MCHF calculations of EI with various relativistic corrections
(in eV).

Z Atom RHF [5] CIEst [5] E1
I E2

I E3
I Exp. [14, 17]

59 Pr 4.45 5.24 5.180 5.180 5.178 5.464
60 Nd 4.50 5.28 5.191 5.191 5.190 5.525
61 Pm 4.54 5.31 5.242 5.242 5.240 5.554
62 Sm 4.59 5.33 5.485 5.485 5.482 5.644

65 Tb 4.79 5.45 5.530 5.528 5.528 5.864
66 Dy 4.86 5.47 5.577 5.577 5.575 5.939
67 Ho 4.93 5.52 6.686 6.686 6.680 6.022
68 Er 5.00 5.58 5.878 5.878 5.877 6.108
69 Tm 5.08 5.64 7.566 7.567 7.556 6.184

σ 0.398 0.152 0.215 0.215 0.214

+Q

Fig. 2. Influence of correlation effects ∆EI on EI.

correlation effects that do not cancel between the atom
and the ion.

For smaller Z the results of CI and MCHF calcula-
tions are quite close. For example, for Pr (Z = 59)
the difference between CI and MCHF values is only
0.019 eV (i. e. less than 1%). Meanwhile, the MCHF
results grow faster with increasing Z , and for large Z
they are much closer to the experimental ones. For
example, for Tm (Z = 69) the difference between
CI and MCHF values of EI grows up to 0.982 eV
(i. e. 16%).

Figure 2 shows the Z-dependence of the influence
of correlation effects ∆E on EI calculated by the CI
method with Davidson Q correction (CI+Q) [5] and
by the MCHF method. The Davidson Q correction
is supposed to aproximately account for the higher-
order correlation effects. We define the influence as
∆EI = EI −EI HF, where EI HF stands for the ioniza-
tion energy value calculated by the single-configuration
HF method.

As we see in Fig. 2, the values of ∆EI calculated by
MCHF and CI+Q methods show different Z-behaviour.
While CI+Q results tend to decrease withZ , the MCHF

ones increase. We expect the increase of influence of
correlation effects with Z to be real because of two rea-
sons: the MCHF results are closer to the experimental
ones and it is more realistic to expect that with increas-
ing number of electrons the influence of their correla-
tion effects grows, too.

4.2. With relativistic corrections

The 6s ionization energies calculated with various
relativistic corrections are presented in Table 4. There
Ei

I stands for the ionization energy value calculated by
the MCHF method using nonrelativistic Hamiltonian
with relativistic corrections Hi. Here i = 1, 2, 3, and
H1 = H1+H3+H′

5, H2 = H1+Hmp, H3 = H2+H2.
For comparison we also present ionization energies

calculated using the relativistic Hartree–Fock method
(RHF), the ones of CI with the Davidson Q correction
and estimated relativistic corrections (CIEst) [5] (these
values practically cannot be considered as ab initio), as
well as the experimental results [14, 17] (Exp.).

Two-electron relativistic corrections H2, H′′

3 , and
H′

5 are generally of the same order of magnitude, but
their contribution may have different signs, therefore,
they all must be taken into account simultaneously.
Consequently, the results E3

I in Table 4 must be con-
sidered as the most correct, in spite of the fact that the
data of the columnsE1

I ,E2
I seem to be slightly closer to

the experimental values. The point is that one-electron
operators H1 and H′

3 have large contributions of op-
posite signs, and hence, they are very sensitive to the
accuracy of the wave functions used.

The results of Table 4 also suggest that accounting
for relativistic effects as relativistic corrections of the
order of α2 usually improves the ionization energies of
rare earths (compare with the EI column of Table 3),
but there may occur cases (for example, Ho, Tm) where
such an improvement worsens the final result. There-
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fore, taking into consideration the relativistic effects for
heavy atoms having open f -shells requires further stud-
ies.

The results presented in this section show that our
values of ionization energies are the closest to the ex-
perimental ones with respect to other ones obtained by
pure ab initio methods, and in most cases they are even
better than the ones obtained by using semiempirical
corrections, in spite of the fact that the RAS is formed
in such a way that the corresponding bases are rela-
tively small. The results obtained allow us to evaluate
more precisely the influence of correlation effects to the
ionization energies of the 6s-electrons.

The results of Section 4.2 show that the relativistic
effects accounted in the form of Eq. (3) in the MCHF
approach are not appropriate for the elements Ho, Tm.
The values of their ionization energies with the corre-
sponding corrections are larger than the experimental
ones.

The strategy of RAS formation presented in Sec-
tion 3.4 gives a hint for the formation of the corre-
sponding bases in the relativistic approach, too. The
bases IIIa–IIIe presented in Section 3.4 contain the
minimum number of CSFs, but the correlation effects
are adequately accounted for an atom and ion. So, such
bases (but with the relativistic splitting of subshells)
should be used for the corresponding study by the rela-
tivistic MCHF method as well.

5. Conclusion

The results obtained show that if the correlation ef-
fects of inner shells cancel each other between atom
and ion, then it is possible to get quite accurate data
on ionization energies by the MCHF method while ac-
counting for the correlation effects of the outer elec-
trons only. This assumption is valid in the case of
ionization energy of lanthanides with configurations
[Xe]4fN6s2.

Our results on 6s ionization energy of lanthanides
with configurations [Xe]4fN6s2 are more accurate
than the data found using the CI method [5].

The influence of the correlation efects on the
ionization energy of lanthanides with configurations
[Xe]4fN6s2 is higher than it has been found before
[5], and this influence grows with Z (or with N ). How-
ever, the convergence of the value studied to the true
one is often not smooth with increase of the basis.
This statement is very well illustrated by the interme-
diate value of EI for Ho, 19.189 eV (basis IIIa in Ta-
ble 2).

The results presented demonstrate the ability of the
approach by Gaigalas et al. [1, 7, 8] based on the sec-
ond quantization in coupled tensorial form, the graphi-
cal technique of spin-angular integration, quasispin for-
malism, and reduced coefficients (subcoefficients) of
fractional parentage to obtain reasonably accurate data
on the ionization energies of heavy atoms and ions hav-
ing open f -shells.

Accounting for the relativistic effects as the correc-
tions of the order of α2 improves in general the ion-
ization energies. However, some inhomogeneities in
their behaviour with respect to Z or N indicate that it
is necessary to refine the value of 6s-functions at the
nucleus: to accurately account for the finite size of the
nucleus, or simply to use the relativistic wave func-
tions.

In conclusion, the accurate studies of the structure
and spectral properties of rare earth elements require
further improvement of the accounting for both the
correlation and relativistic effects, but some proper-
ties determined by valence electrons may be success-
fully studied by the nonrelativistic approach (MCHF
method) accounting for relativistic effects as correc-
tions of the order of α2, even for heavy atoms (such
as lanthanides).
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LANTANIDŲ 6s JONIZACIJOS ENERGIJOS TYRIMAI

G. Gaigalas a,b, Z. Rudzikas a, T. Žalandauskas a

a Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
b Vilniaus pedagoginis universitetas, Vilnius, Lietuva

Santrauka

Sunkiųjų atomų bei jonų tyrimai yra viena iš labiausiai plėto-
jamų atomo fizikos sričių. Problemas, su kuriomis susiduriama
tokiuose tyrimuose, daugiausia nulemia nagrinėjamų sistemų su-
dėtingumas (didelis elektronų skaičius) bei reliatyvistinių efektų
svarba.

Teoriškai tirtos lantanidų jonizacijos energijos vertės dau-
giakonfigūraciniu Hartree ir Fock’o metodu. Tirta [Xe]4fN

6s2

(N = 3−7, 9−14) konfigūracijų lantanidų 6s elektronų jonizaci-
jos energija. Tyrimui panaudotas ATSP MCHF programų paketas,
kuriame įdiegti matricinių elementų kampinių dalių skaičiavimo
metodai, paremti antriniu kvantavimu surištu tenzoriniu pavidalu,

judėjimo kiekio momentu trijose (orbitinėje, sukinio ir kvazisuki-
nio) erdvėse, grafine integravimo technika bei subkilminių koefi-
cientų naudojimu. Tokie kampinių dalių skaičiavimo metodai lei-
džia tirti atomines sistemas su atvirais f sluoksniais, apimant ir itin
sunkius atomus bei jonus. Nagrinėjant jonizacijos energijos ver-
tes, apskaičiuotas naudojant įvairias banginių funkcijų bazes, pa-
siūlyti bazių, skirtų išorinių elektronų nulemtoms savybėms tirti,
sudarymo principai. Be to, tyrimo metu nustatyta didesnė negu ma-
nyta iki šiol koreliacinių efektų svarba. Remiantis darbo rezultatais,
galima geriau suvokti sudėtingų atomų (šiuo atveju lantanidų) vi-
dinę sandarą, koreliacinių ir reliatyvistinių efektų svarbą bei įtaką
jonizacijos energijai.


