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HOLE SPIN SURFACES IN A3B5 SEMICONDUCTORS
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The Hamiltonian of A3B5 semiconductors apart from quadratic in wave vector k terms also contains linear terms. The
latter originate from the spin–orbit interaction in semiconductors without inversion symmetry. The paper investigates hole spin
properties of A3B5 semiconductors – GaAs, InAs, GaP, InP, GaSb, and InSb – paying special attention to contribution of the
linear-k terms. It is shown that the general properties of the hole spin surfaces in the mentioned compounds are similar to
those in elementary semiconductors investigated recently. It has been found that the influence of linear-k terms on band spins
is weak and, as a result, the deformation of the spin surfaces is insignificant.
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1. Introduction

In the last decade, in the rapidly developing area
of the spintronics, especially in the 2D semiconduc-
tor and metal spintronics, the main attention was fo-
cused on the properties of the electron rather than hole
spin properties. The current status of the spintronics is
fully reflected in the Proceedings of the PASPS Con-
ference [1]. The main advantage of the electron spin-
tronics against valence-band hole spintronics is long
lifetime of electron spin in the elementary and com-
pound semiconductors: hundreds or more collisions
with phonons and impurity atoms are needed for an
electron to loose its spin memory. In contrast, due to
strong spin–orbit interaction in the valence bands of el-
ementary, A3B5 and other compound semiconductors,
the hole spin is lost after a few collisions with the lattice
phonons. However, in the ultrafast and coherent spin-
tronics, where spin-switching times are shorter than
the carrier momentum scattering time, this drawback
may not be detrimental in the operation of the ultra-
fast spintronic devices. Recently, by solving the time-
dependent Schrödinger equation for coupled valence
bands, it was shown that the intervalence tunnelling of
holes in high electric fields can induce flipping of the
hole spin [2–4]. Such flipping can be achieved if op-
timized π-type electric pulses (such pulses transfer the
hole from one to the other band with the probability
equal one) are applied.

In the case of the electrons the spin dynamics, due
to the simplicity of the conduction band, usually takes
place on a single spherically-shaped spin surface. How-
ever, in the case of holes, as shown recently in [2–4],
the spin flipping or switching occurs between different
spin surfaces that describe different (heavy-mass, light-
mass or split-off) bands. In papers [3, 4] it was also
shown that in p-type silicon the spin switching time
may be shorter than a picosecond for heavy–light band
transitions and a hundred of femtoseconds for heavy–
split-off band transitions. Since in the spin-flipping dy-
namics in valence bands the transitions between differ-
ent spin surfaces predominate, in the optimization of
spin switching times one should pay special attention
to the form of the initial and final spin surfaces coupled
by controlling field during switching.

As mentioned, in the conduction bands the elec-
tron spin surfaces both in the elementary and com-
pound semiconductors are spherically shaped or very
close to a sphere. However, for valence bands, due
to strong spin–orbit interaction, the spin surfaces may
substantially deviate from the sphere as shown recently
in [5, 6]. In an extreme case the spin surface may
shrink to a line, for example, when the heavy-mass
hole propagates in high-symmetry direction, especially
in [001]-type directions. Here the reader should be re-
minded that the terms “electron spin” and “hole spin,”
as it is common in the spintronics, are not strict enough.
In fact it would be better to use the term “total an-
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gular momentum.” In the case of conduction band
electrons of elementary and A3B5 semiconductors this
makes no difference, since the orbital quantum number
of the conduction band is L = 0. However, for valence
bands one has L = 1, and the total angular momentum,
J = L+ S, is different from S. In this paper we shall
be interested in the properties of J . The pure spin S
in p-type semiconductors may be important, for exam-
ple, in the exchange interaction of a free hole with a
magnetic centre, say, in GaAs heavily doped with Mn
impurities, where due to the proximity of the hole and
Mn atom, the pure spin S rather than orbital motion de-
termines the strength of the magnetic interaction [7]. In
this paper, weakly doped semiconductors will be con-
sidered, where the ballistic hole injected into one of the
valence bands is characterized by some wave vector k.
In this case J rather than S determines the magnetic
properties of the hole.

In papers [5, 6], spin properties of the tetrahedral
semiconductors such as p-type silicon or germanium,
the elementary cell of which possesses the inversion
symmetry, was considered. In such semiconductors all
bands are doubly degenerate all over the Brillouin zone.
In this paper the spin properties of holes in A3B5 com-
pounds, the elementary cell of which is not invariant
with respect to inversion, are presented. The absence
of the inversion gives rise to linear-k terms in the va-
lence band Hamiltonian, what results in the removal of
double degeneracy of the valence bands, or the appear-
ance of the so-called spin splitting. The spin splitting
may be important in the behaviour of the freely prop-
agating hole spin. The purpose of this paper is to in-
vestigate to what extent the shape of hole spin surfaces
is influenced by inclusion of the linear-k terms in the
Hamiltonian of A3B5 compounds. As known, in optics
such linear-k terms give rise to electrooptic Pockels ef-
fect.

2. Linear-k terms

As mentioned, the lack of the inversion symmetry
in A3B5 semiconductors brings about linear-k terms
in the valence band Hamiltonian. Linear-k mixing
within Γ8 valence states (heavy- and light-mass bands)
was considered by Kane [8, 9] and its contribution was
evaluated by k · p and LMTO (linear muffin-tin or-
bitals) methods by Cardona et al. [10, 11]. The linear-k
Hamiltonian for both Γ8 and Γ7 (split-off) valence
bands in bulk semiconductors and heterostructures was
recently evaluated by Foreman [12], who demonstrated
that its contribution in heterostructures is by an order
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Fig. 1. Heavy- and light-mass hole dispersion curves for InP when
k‖〈111〉. In this direction the spin splitting occurs in the heavy-
mass band only. The dashed vertical line shows that a ballistic hole
with the wave vector k0 may have an uncompensated spin in the
mixed state. The horizontal line shows how compensation of the

hole spin occurs at thermal equilibrium.

larger than in the bulk semiconductors. Rewritten in
the Luttinger–Kohn [13] basis |J,m〉, where J is the
total angular momentum and m represents its projec-
tions, the linear-k part of the Hamiltonian in the atomic
units (e = ~ = m0 = 1) reads [12]

Ĥ1 =
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The basis function |J,m〉 ordering in the matrix (1)
is |32 , 3

2〉, |32 , 1
2〉, |32 ,−1

2 〉, |32 ,−3
2〉, |12 , 1

2〉, |12 ,−1
2〉. In

Eq. (1),

κ=
1

2
c(kx + iky),

λ= ckz,

µ=
1

2
√

2
c′(kx + iky),

ν =
1√
2
c′kz.

The wave vector k = (kx, ky, kz) is reference to crys-
tallographic axes. The empirical coefficient c cou-
ples Γ8 state manifold, while the coefficient c′ couples
Γ7 states to Γ8 states.
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Table 1. Valence band parameters γ1, γ2, γ3, and ∆, k-linear coefficient c, spin
splitting energy ∆εss, and the maximum wave vector kmax

〈111〉 = π/a at L point of
the Brillouin zone of A3B5 semiconductors. Valence band parameters and lattice
constant a were taken from [15]. The coefficient c was taken from [11]. ∆εss cor-

responds to hole wave vector k = 0.283(1, 1, 1) nm−1.

Semiconductor γ1 γ2 γ3 ∆ c ∆εss kmax

〈111〉

eV meV·Å meV nm−1

GaAs 6.98 2.06 2.93 0.341 −3.4 0.47 5.56
InAs 20.0 8.5 9.2 0.39 −11.2 1.57 5.19
GaP 4.05 0.49 1.25 0.08 −5.5 0.76 5.76
InP 5.08 1.6 2.10 0.108 −14.4 2 5.35

GaSb 13.4 4.7 6.0 0.76 +0.7 0.1 5.15
InSb 34.8 15.5 16.5 0.81 −8.2 1.13 4.85

The total six-band valence Hamiltonian consists of
two terms:

Ĥ = Ĥ0 + Ĥ1. (2)

The first one Ĥ0 is the well-known matrix which is
made up of the elements quadratic in the wave vec-
tor elements [13, 14]. It is characterized by three em-
pirical parameters γ1, γ2, γ3, and by the strength ∆
of spin–orbit splitting between Γ8 and Γ7 bands at
the point k = 0. Ĥ0 is the main contribution in the
elementary semiconductor valence-band Hamiltonian
that represents the doubly degenerate heavy-mass (h),
light-mass (l), and split-off (s) energy bands as well
as the spin properties in these semiconductors [6]. In
general, the total Hamiltonian (2) with the linear-k
part H1 included yields nonparabolic, nonspherical,
and nondegenerate (except at some high symmetry
points) energy bands. As an illustration, in Fig. 1
heavy- and light-mass bands in InP along 〈111〉 di-
rection are plotted, with the linear-k terms included.
γ1, γ2, γ3, and ∆ values were taken from the re-
cent review [15] on A3B5 semiconductors and their
alloys. The parameter c was taken from [11, 12] (see
also Table 1). To author’s knowledge the magni-
tude of the parameter c′ is not known as yet. In
calculations it was assumed that c′ = 0.05c. Fig-
ure 1 shows that for k‖〈111〉 only the heavy-mass
band suffers spin splitting. The light-mass band re-
mains doubly degenerate. This is in agreement with
the group-theoretical calculations in [16], from which
follows that in Td symmetry crystals the light-mass
band does not split at the points that lie on the third-
order axes. In general, symmetry considerations show
that the spin splitting due to linear-k terms may oc-
cur in all Brillouin zone points where k 6= 0, except
the points which lie on the fourth-order axes, e. g., on
[100]-type or equivalent axes. Thus, all bands will be

spin split if, for example, k is pointing in [110] direc-
tion.

In Table 1, the column next to the last shows the
magnitude of the spin splitting ∆εss in the heavy-
mass band at the wave vector k = (kx, ky, kz) =
0.283(1, 1, 1) nm−1, which is about 5% off the centre
of the Brillouin zone. From this table it follows that the
spin splitting in the commonly used A3B5 semiconduc-
tors is of the order of 1 meV. This justifies the neglect
of the spin splitting of the bands in the calculation of
hole transport properties [17].

Figure 1 also explains the meaning of Kramers de-
generacy that is related with valence band spin. The
Kramers degeneracy [18] requires a state |k ↓〉, where
the arrow indicates the down spin, to have the same en-
ergy as another state |−k ↑〉 in solids. Thus, at k = k0

only the states with energies ε(k0 ↓) = ε(−k0 ↑) on
the horizontal line shown in Fig. 1 are degenerate due
to time reversal. This is, partly, because the time re-
versal symmetry duplicates some of the important fea-
tures of the inversion symmetry. As a result, in thermal
equilibrium the total magnetization of p-type semicon-
ductor is zero. However, the Kramers degeneracy is ab-
sent if one considers the ballistic hole that propagates
in the spintronic device and has a well-defined wave
vector k0 (the vertical line in Fig. 1). Such hole can
be in one of the pure states, |k0 ↑〉 or |k0 ↓〉 that are
characterized by different eigenenergies, or in a mix-
ture of these states. Normally, the spin splitting energy
∆εss = ε(k0 ↑) − ε(k0 ↓) is much smaller than the
hole thermal energy kT , therefore, the hole will be in
a mixture of the mentioned pure states, i. e. its energy
will be slightly smeared. The degree of the smearing,
or mixing of the states |k0 ↑〉 and |k0 ↓〉, as we shall
see in the next section, is closely related with the hole
spin surfaces. It will be shown that the spin splitting in
A3B5 compounds plays much greater role in spintron-
ics as compared to hole transport properties.
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3. Spin surfaces in A3B5 compounds

The shapes of hole spin surfaces for the wave vectors
having various symmetry when spin splitting is absent
was considered in detail in [6]. Here only the main
steps which are needed to understand the results with
the spin splitting included are described.

Since the matrices Ĥ and Ĵ do not commute, in cal-
culating the average value of the hole spin 〈J〉 one, at
first, should select a concrete representation, either en-
ergy or total angular momentum representation. The
latter representation has been used in the construction
of the linear part of the Hamiltonian (2) [12]. In the
semiconductor physics in the analysis of the transport
properties in high electric fields it is common to assume
that the charge carrier state is characterized by a par-
ticular energy in the energy band. For this reason the
hole wave functions in the energy representation will
be used as a starting point in this paper. In the numer-
ical calculations the following parametrization of the
six-component heavy- and light-mass band spinors in
the energy representation was employed:

fh =
(
ah, e

iφh

√
1 − a2

h, 0, 0, 0, 0
)
, (3)

fl =
(
0, 0, al, e

iφl

√
1 − a2

l , 0, 0
)
. (4)

The following order of bands is assumed:
(
f

(↑)
h , f

(↓)
h , f

(↑)
l , f

(↓)
l , f (↑)

s , f (↓)
s

)
,

where the subscript denotes heavy-, light-mass or split-
off bands and the superscript describes the spin state.
The spinors (3) and (4) are normalized to unity. The
average spin projections on the crystallographic axes
were calculated from

〈Jj〉i = 〈ψi|Jj |ψi〉, (5)

where |ψ〉 is the spinor in the total angular momentum
(or Luttinger–Kohn) representation |J,m〉 and Jj is jth
Cartesian projection of the total 6× 6 angular momen-
tum matrix. The subscript j denotes the Cartesian com-
ponent (x, y or z) and the subscript i denotes the band
(i = h, l or s). The concrete forms of the matrices Jj

can be found in [6]. |ψ〉 is related to |f〉 by unitary
transformation: |ψ〉 = T̂ |f〉, where the transformation
matrix T̂ relates the Hamiltonian (2) in the total angu-
lar momentum representation with its energy-diagonal
counterpart in the energy representation: Ĥd = T̂ †ĤT̂ .
The numerical singular value decomposition [19, 20]
was used to find the matrix T̂ .

Figures 2 and 3 show the spin surfaces of the light-
mass hole for InP and GaP, respectively. The figures

(a)

(b)

Fig. 2. Light-mass spin surfaces for InP (a) in the absence, c = 0,
and (b) in the presence, c = −14.4 meV·Å, of the spin splitting.
k = 0.283(1,−1, 1) nm−1. The direction of the wave vector is

drawn between the two triangle-shaped points.

are typical of other A3B5 compounds, too. The sur-
faces are represented by points at equally spaced val-
ues of al and φl in Eq. (4) in the range al = 0−1
and φl = 0−2π, and steps ∆al = 0.1, ∆φl = 0.1
or smaller. Figure 2 represents the spin surface in three
dimensions and Fig. 3 represents its projection on the
〈Jx〉 − 〈Jy〉 plane. Panels (a) in Figs. 2 and 3 show the
surfaces when the spin splitting is absent (c = c′ = 0)
and panels (b) show the effect of inclusion of linear-k
Hamiltonian Ĥ1 in the total Hamiltonian (2). The pure
states have al = 0 and al = 1 which represent two op-
posite poles on the spin surfaces. From Figs. 2 and 3
it can be concluded that the contribution of the linear-k
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(a)

(b)

Fig. 3. Projection of the light-mass spin surface on 〈Jx〉 − 〈Jy〉
plane for GaP (a) in the absence, c = 0, and (b) in the presence,
c = −5.5 meV·Å, of the spin splitting. k = 0.019(1, 1, 0) nm−1.

term is very small in InP as well as GaP. Calculations
with parameters of other semiconductors in Table 1
gave similar or intermediate graphs to those shown in
Figs. 2 and 3.

Figure 4 shows heavy-mass spin surface in InSb cal-
culated with spinor (3). Now the surface is needle-like,
the points of which are very close to [111] line. In the
plot of the Fig. 4 the cases c = 0 and c = −8.2 meV·Å
are practically indistinguishable. In the limit k → 0,
the points lie exactly on the [111] line. Similar calcula-
tions with the parameters of Table 1 gave nearly iden-
tical results to those shown in Fig. 4 – in all cases the
points were found to lie very close to [111] line. As
shown in [6], for all equivalent directions of k one can
find equivalent spin surfaces. Thus, in analogy to the
wave vector star which reflects the presence of symme-

Fig. 4. Heavy-mass spin surface 〈J〉 for InSb, when c =
−8.2 meV·Å. The surface has a needle-like shape and is nearly

parallel to k‖[111]. If c = 0, then 〈J〉‖k‖[111].

try operation between equivalent k’s, one can construct
a manifold of the equivalent spin surfaces, or the star
of the spin surfaces.

To have a quantitative estimate of the contribution
of linear-k terms in the deformation and rotation of the
spin surface the results for various semiconductors are
summarized in Table 2. For this purpose the average
spin radius at c = 0 and c 6= 0 was introduced,

|〈J〉| =
√
〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2, (6)

as well as its minimum and maximum values, |〈J〉|min

and |〈J〉|max. These parameters describe an over-
all shape of the spin surfaces. The deviations from
|〈J〉|min and |〈J〉|max, when c and c′ are included, were
described by the quantity

∆|〈J〉| = |〈J〉|c 6=0 − |〈J〉|c=0. (7)

In Table 2, ∆|〈J〉|min and ∆|〈J〉|max represent the min-
imum and maximum deviations (7) from the average
values (6). The following points should be noted upon
inspection of the Table 2.

Depending on the magnitude of ah and φh in
spinor (3), the absolute value of the heavy-mass hole
spin |〈J〉|h may have any value in the range from
−3/2 to 3/2. For parabolic and spherical bands the
spin 〈J〉h is line which is parallel to hole wave vec-
tor k [6]. This property is preserved for all directions
of k, although, in real semiconductors the degener-
acy of spin states is lifted and, as result, heavy hole
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Table 2. The minimum |〈J〉|min and maximum |〈J〉|max angular momentum for
degenerate bands of A3B5 semiconductors and the deviations, ∆|〈J〉|min and
∆|〈J〉|max, from |〈J〉|min and |〈J〉|max, respectively, when the spin splitting is

taken into account. Here k = 0.019(1, 1, 0) nm−1

.

Semiconductor Band c = c′ = 0 c 6= c′ 6= 0

|〈J〉|min |〈J〉|max ∆|〈J〉|min ∆|〈J〉|max

GaAs light 0.49 1.11 ∼0% ∼0%
heavy 0.115 1.5 ∼8% ∼0%

InAs light 0.5 1.03 ∼0% ∼1%
heavy 0.03 1.5 ∼0% ∼0%

GaP light 0.455 1.23 ∼0% ∼1%
heavy 0.234 1.45 ∼8% ∼0%

InP light 0.494 1.09 ∼0% ∼4%
heavy 0.09 1.5 ∼0% ∼0%

GaSb light 0.495 1.08 ∼0% ∼0%
heavy 0.08 1.5 ∼0% ∼0%

InSb light 0.5 1.02 ∼10% ∼0%
heavy 0.02 1.5 ∼0% ∼0%

spin surfaces become cigar-shaped ellipsoids. In Ta-
ble 2 this is reflected in the finite value of |〈J〉|min.
In 〈100〉 and 〈111〉 directions the minor axis of the
heavy-mass ellipsoid is very small and, as Fig. 4
shows, the surface is similar to a line. However, in
〈110〉-type directions, the minor axis is larger, espe-
cially in GaP, where the ratio of minor to major axes
reaches 0.14 (see Table 2). The inclusion of spin split-
ting has very little effect on the shape of the heavy-
mass hole spin surface, although, as seen from Fig. 4,
now the cigar is not exactly parallel to the wave vec-
tor.

As concerns the light-mass band, from Table 2
and from Figs. 2 and 3 it is seen that the spin sur-
faces are not spherical. In the limit of parabolic and
spherical bands the light hole spin surfaces reduce
to the oblate ellipsoid, the major and minor axes of
which are 〈J〉max

l = 1 and 〈J〉min
l = 1/2, with

the minor axis being parallel to k. Table 2 shows
that the largest deviations from these values are in
GaP. The inclusion of the spin splitting, in general,
has little effect on the shape of the spin surfaces in
this case, too. It should be noted that in the va-
lence band spectrum for small values of k, by con-
trast, the linear-k terms are important. It should be
remembered that in the present calculations the third,
spin–orbit split-off band was included too, since, due
to strong light–split-off band interaction, the light-
mass band spin depends indirectly on valence band
parameters, for example, on the split-off energy ∆,
that determine the properties of the split-off band as
well.

Apart from linear-k terms, the hole spin may also
depend on higher-order, e. g., cubic-k terms, especially

if the hole energy is large and the wave vector points
in [110]-type direction [11]. In this direction all bands
experience spin splitting. In this paper the analysis of
the influence of higher-order terms in k was not under-
taken, because of the uncertainty in the coefficient c′

that describes lower, i. e. the first-order Hamiltonian (1)
in the total Hamiltonian.

In conclusion, numerical analysis of spin surfaces of
A3B5 semiconductors shows that the heavy and light
hole spin surfaces deviate from those which follow
from the simple spherical and parabolic band model.
However, inclusion of the linear-k terms in the valence
band Hamiltonian gives that their influence on the hole
spin properties, in general, is small. Therefore, in the
analysis of spin dynamics under ultrashort pulse excita-
tion a simpler band model which neglects spin splitting
and which is frequently used in the transport analysis
can be addressed.
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SKYLĖS SUKINIO PAVIRŠIAI A3B5 PUSLAIDININKIUOSE

A. Dargys

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Puslaidininkių, kurių elementarusis narvelis nepasižymi erdvine
inversija, hamiltonianas yra sudarytas iš kvadratinių ir tiesinių pa-
gal bangos skaičių k narių. Vyraujantis, kartu ir puslaidininkio
savybes lemiantis, dažniausiai yra kvadratinis narys. Todėl, pa-
vyzdžiui, nagrinėjant A3B5 puslaidininkių pernašą, tiesinis narys
atmetamas. Kol kas nėra aišku, ar skylės sukinio savybes taip pat
lemia tik kvadratinė pagal k valentinės juostos hamiltoniano dalis.
Išnagrinėta kvadratinio ir tiesinio pagal k narių įtaka skylės suki-
nio savybėms GaAs, InAs, GaP, InP, GaSb ir InSb junginiuose. Iš
šio darbo matyti, kad išvardintuose A3B5 puslaidininkiuose sky-

lės sukinio savybes taip pat lemia aukštesni, t. y. kvadratiniai pagal
bangos vektorių, nariai valentinės juostos hamiltoniane. Dėl šios
priežasties su sukiniu susietos skylės savybės turėtų būti panašios
į elementarių puslaidininkių, kurių elementarioji gardelė pasižymi
inversijos simetrija, pavyzdžiui, p tipo silicio, savybes. Grafiškai ir
lentelių pavidalu aprašyti sunkiosios bei lengvosios skylės sukinio
paviršiai. Taip pat yra pateikti parametrai, kurie leidžia kiekybiškai
spręsti apie kvadratinių ir tiesinių narių svarbą (ypač žr. 2 lentelę).
Rasta, kad tiesinių narių įtaka sunkiosios masės skylės sukiniui vi-
suose minėtuose junginiuose yra labai maža.


