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The paper is devoted to further developement of the perturbative version of the noncanonical method of molecular orbitals

overviewed recently [V. Gineitytė, Lithuanian J. Phys. 44, 219 (2004)] and called the PNCMO theory. General expressions are

derived for the common one-electron density matrix of saturated organic molecules in the basis of 1sH AOs of hydrogen atoms

and sp
3-hybrid AOs of the remaining atoms and for respective total energies. Explicit algebraic representations are obtained

for intrabond effects taking place in the above-specified systems due to interbond interaction. The concepts of homolytic

and heterolytic predissociation of bonds are introduced to describe these effects. Interdependences are demonstrated between

increments of various intra- and interbond effects to the total energy of the systems under study. Moreover, the final stabilization

energy of the system versus the respective set of isolated bonds and lone electron pairs is shown to result from a certain

“balance” between increments of opposite signs. In particular, the stabilizing contributions of newly-formed bond orders

between orbitals of different bonds due to their interaction are shown to be necessarily accompanied by destabilizing increments

of intrabond type that are traced back to the homo- and heterolytic predissociation of bonds. The results obtained are compared

to those of particular cases studied previously.
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1. Introduction

Electronic structures of molecules are most com-

monly studied in terms of delocalized molecular or-

bitals (MOs) resulting from the canonical Hartree–

Fock (HF) equation [1–3]. Since the MOs are usu-

ally sought in the form of linear combination of

certain basis functions (e. g., atomic orbitals, AOs),

the canonical HF equation resolves itself into diag-

onalization problem for the Fockian matrix. The

well-known Rayleigh–Schrödinger perturbation theory

(RSPT) [2, 4] is among popular approximate methods

used to obtain the solution. Given that the Fockian ma-

trices are additionally replaced by respective Hückel

model Hamiltonian matrices and the self-consistent na-

ture of the HF equation is ignored, application of the

RSPT yields general algebraic results embracing entire

series of the so-called related molecules. This quali-

tative approach to electronic structures of molecules is

usually referred to as the perturbative MO (PMO) the-

ory [5].

The canonical HF equation, however, is not the only

possible form of one-electron problems for molecules.

Moreover, various representations of an alternative

(noncanonical) one-electron problem are possible [1, 2].

As delocalized MOs are more easily obtainable

from the canonical HF equation, the noncanonical one-

electron problem is usually adapted [6] to look for or-

bitals localized mostly on separate fragments of the

molecule (orbitals of this type are more closely related

to chemical concepts of bonds, lone electron pairs, etc.

[6–8]).

In this context, the Brillouin theorem [1, 6] is of

particular interest. Indeed, application of this theo-

rem is equivalent to solution of the noncanonical HF

equation as shown in [1]. On the other hand, the

Brillouin theorem yields a new and more general ma-

trix problem after turning to the matrix representation

[9–15], namely, the block-diagonalization problem for

the Fockian matrix or for its approximations including

the Hückel model Hamiltonian matrix. Moreover, this

problem proved to be solvable in terms of entire subma-

trices (blocks) of the initial matrix without specifying

either the internal constitutions or dimensions of these

blocks [12–15]. To this end, a special formalism of the

perturbation theory was developed that was called the
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noncommutative RSPT (NCRSPT) [15, 16]. Applica-

tion of the latter actually resulted into general expres-

sions for noncanonical MOs (NCMOs) in the form of

linear combinations of two subsets of basis functions

with matrix coefficients [17].

The one-electron density matrix (DM) also is among

the most fundamental characteristics of a molecule de-

scribing charge distribution and related to numerous

observed properties [2, 3]. A general perturbative ex-

pression for this matrix was shown to be obtainable on

the basis of the projector to the entire subset of occu-

pied NCMOs [17]. Moreover, the same power series

for the DM may be derived directly from solution of the

so-called commutation equation by means of the NCR-

SPT [14]. For the total energy of molecule ε, an analo-

gous power series [18, 19] followed from the relation of

this characteristic to the DM P (ε = Tr (PH), where

H is the Hamiltonian matrix). These results and their

applications have been overviewed recently in [16].

The approach under discussion was called there the

perturbative NCMO (PNCMO) theory of molecules.

An important feature of this new theory is that no ex-

plicit definition of the principal basis set was required

when deriving its principal expressions [14]. The only

condition imposed on this basis was the possibility

of revealing two subsets of basis functions within the

set {ϕ} so that the energy differences between orbitals

of different subsets exceed considerably the intersubset

interactions (resonance parameters) and one of these

subsets is initially occupied in addition. As it turned

out later [16], orbitals localized on separate fragments

of a system under study usually meet this requirement.

In the case of saturated organic molecules, the above-

specified orbitals coincide with bond orbitals (BOs)

defined as eigenfunctions of separate two-dimensional

Hamiltonian matrix blocks associated with pairs of

atomic or hybrid orbitals pertinent to the same bond.

It is also worth mentioning here that neither AOs nor

hybrid AOs (HAOs) meet the above-specified require-

ments.

Given that BOs are chosen to play the role of basis

functions in the PNCMO theory, the resulting charac-

teristics of electronic structures (viz. the NCMO rep-

resentation matrix, the DM, and the total energy) are

expressed in terms of certain principal matrices G(k)

(k = 1, 2, 3, . . .) describing the direct (through-space)

and indirect (through-bond) interactions of these or-

bitals [14]. These expressions allowed us to reveal the

role of various interbond interactions in the formation

of the actual electronic structure of the system under

study.

Bond orbitals, however, are not the optimum basis

functions in respect of describing the influence of inter-

bond interactions upon internal characteristics of sepa-

rate bonds, e. g., bond orders, bond dipole moments,

etc. Moreover, the alternative representation of the DM

in the basis of AOs and/or HAOs (usually referred to as

the charge–bond order matrix) describes the intrabond

characteristics in a far more convenient way [20–24] as

compared to the above-discussed matrix in the basis of

BOs.

Recent investigations of charge–bond order matrices

of some particular systems have shown that the inter-

bond interactions give rise to definite intrabond effects

[20, 21, 23]. These may be exemplified by the so-called

rebonding effect [23] taking place in hydrocarbons and

involving reduction of internal bond orders of separate

bonds due to interbond interaction so that the extent of

lowering is proportional to sums of squares of newly-

formed bond orders between orbitals of the bond under

consideration and those of other bonds. Moreover, the

intrabond effects under discussion were shown to play

an important role in chemical reactions [25, 26]. In this

context, derivation of expressions for intrabond effects

as general as possible becomes of importance.

It should be noted that retransformation of the re-

sults of the PNCMO theory into the AO (HAO) basis

underlying the above-expected derivation is not a triv-

ial problem. The point is that BOs are defined in terms

of local pairs of AOs (HAOs), whereas members of

the power series of the PNCMO theory are expressed

in terms of entire submatrices (blocks) of the initial

Hamiltonian matrix [16]. That is why we had to confine

ourselves to local retransformation matrices in [21, 24].

In this paper, we are about to suggest a retransforma-

tion procedure of a quite general scope of applicabil-

ity that refers to any saturated molecule and embraces

also the particular types of hydrocarbons studied before

[20, 22]. On this basis, we expect to be able to intro-

duce some new concepts concerning intrabond effects

in saturated organic molecules, as well as to consider

the results obtained previously [20–23] from a more

general point of view.

The paper is organized as follows. We start with

the common Hückel model Hamiltonian matrix of sat-

urated molecules represented in the basis of HAOs

and/or AOs. To be able to apply the expressions of the

PNCMO theory, we transform this matrix into the ba-

sis of BOs and discuss the resulting one-electron DM P̃

(Section 2). Thereupon, members of the power series

for the matrix P̃ are retransformed into the HAO (AO)

basis again and the intrabond effects following from the
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charge–bond order matrix P are analysed (Section 3).

Section 4 is devoted to the analogous consideration of

the total energy.

2. One-electron density matrix of saturated organic

molecules in the basis of bond orbitals

Let us start with specifying the systems under

study. The term “saturated organic molecules” used

throughout this article embraces systems containing

more or less localized two-centre chemical bonds and

lone electron pairs. The more precise definition con-

sists in the first-order magnitude of the nonneigh-

bouring resonance parameters versus those between

strongly-overlapping (neighbouring) pairs of orbitals

[13, 27–32] in the initial basis of 1sH AOs of hydrogen

atoms and sp3-hybrid AOs (HAOs) of the remaining

atoms. For simplicity let us call them both the HAO

basis.

Let our basis set of HAOs {χ} to contain an even

total number of orbitals (2N ), where N stands for the

number of bonds and lone electron pairs. In the lat-

ter case, an even total number of basis orbitals may

be ensured by introducing respective faked antibond-

ing orbitals [14]. These additional orbitals are pre-

sumed to be situated at sufficiently high one-electron

energies so as to exert no influence upon the final re-

sults.

Let the 2N -dimensional basis set {χ} to be di-

vided into two N -dimensional subsets {χ′} and {χ′′}
so that the strongly overlapping pairs of the neigh-

bouring orbitals find themselves in the different sub-

sets. Furthermore, let us enumerate the basis func-

tions in such a way that the neighbouring pairs of or-

bitals acquire the coupled numbers i and N + i. Fi-

nally, orbitals described by larger absolute values of

Coulomb parameters (α) will be included into the first

subset.

The common Hückel model Hamiltonian matrix of

saturated molecules may be then presented as a sum of

zero-order (H(0)) and first-order terms (H(1)), viz.

H= H(0) + H(1)

=

∣∣∣∣∣∣

A(0) B(0)

B(0) C(0)

∣∣∣∣∣∣
+

∣∣∣∣∣∣

A(1) B(1)

B+
(1) C(1)

∣∣∣∣∣∣
, (1)

where submatrices correspond to subsets {χ′} and

{χ′′}, and to their interaction. In particular, submatri-

ces A(0), C(0), and B(0) of the zero-order term H(0)

are of diagonal constitution consisting of Coulomb

parameters of HAOs χ′

i and χ′′

N+i (A(0)ii = αI1,

C(0)ii = αI2) and of resonance parameters between

the latter (B(0)ii = βI ). Submatrices A(1), C(1), and

B(1) of the first-order term H(1) are square matrices

of arbitrary structure. The superscript + is used here

and below for Hermitian-conjugate (transposed) matri-

ces.

The energy reference point and the energy unit will

be assumed to be chosen so that the above-enumerated

parameters (αI1, αI2, and βI ) take positive values for

any bond and the inequality αI1 ≥ αI2 is valid (a neg-

ative energy unit is assumed to be actually accepted).

Inasmuch as the Coulomb and the intrabond resonance

parameters always may be entirely included into the

zero-order matrix H(0), the diagonal elements of the

first-order submatrices A(1), C(1), and B(1) will be

supposed to take zero values, i. e. A(1)ii = C(1)ii =
B(1)ii = 0 for any i.

Let us define now the bonding and antibonding BOs

of the Ith bond as eigenfunctions of the respective

two-dimensional Hamiltonian matrix block in the ba-

sis {χ′

i, χ
′′

N+i}, i. e.

ϕ(+)i = zIχ
′

i + vIχ
′′

N+i,

ϕ(−)i = vIχ
′

i − zIχ
′′

N+i,

(2)

where the expressions for coefficients zI and vI take

the form [31]

zI = cos

(
γI

2

)
, vI = sin

(
γI

2

)
(3)

and

γI = arctan

[
2βI

αI1 − αI2

]
, 0 ≤ γI ≤

π

2
. (4)

As a result, passing from the basis of HAOs {χ} to that

of BOs {ϕ} will be described by the following unitary

(and Hermitian) matrix:

U = U+ =

∣∣∣∣∣∣

Z V

V −Z

∣∣∣∣∣∣
, (5)

where Z and V are N -dimensional diagonal subma-

trices consisting of coefficients zI and vI of Eq. (3),

respectively. The transformed Hamiltonian matrix H̃

takes then the form

H̃= U+HU

= U+H(0)U + U+H(1)U

= H̃(0) + H̃(1) (6)
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and contains a diagonal zero-order member H̃(0). As

a result, the total matrix H̃ meets the requirements

of the PNCMO theory [14, 16]. This, in turn, al-

lows us to invoke the expressions for the relevant

one-electron DM P̃ derived in [14] in the form of

a power series. The corrections P̃(k) of this se-

ries are also expressible in terms of four submatrices,

viz.

P̃(k) =

∣∣∣∣∣∣∣

Q̃(k)+ −2G(k)

−2G+
(k) Q̃(k)−

∣∣∣∣∣∣∣
, (7)

where k here and below stands for the order param-

eter. The blocks Q̃(k)+ and Q̃(k)− correspond here

to N -dimensional subspaces of bonding BOs (BBOs)

and of antibonding BOs (ABOs), respectively, and de-

termine the kth-order increments to occupation num-

bers of these orbitals along with intrasubspace bond or-

ders.

The submatrices −2G(k) (k = 1, 2, . . .) taking the

off-diagonal positions within the correction P̃(k) coin-

cide with the principal matrices of the PNCMO theory

(Section 1) up to the factor of −2. At the same time,

these determine the kth-order increments to the inter-

subspace bond orders referring to pairs of BOs of op-

posite initial occupation.

The zero-order member P̃(0) of the power series for

the DM P̃ takes a diagonal form containing the ini-

tial occupation numbers of BOs. These coincide with

2 and 0 for BBOs and ABOs, respectively. Hence, the

submatrix Q̃(0)+ = 2I is the only nonzero block of the

matrix P̃(0).

Separate elements (G(k)il) of the principal matri-

ces G(k) were shown to be expressible algebraically

[14] provided that a zero-order member of diagonal

constitution may be revealed in the total Hamilto-

nian matrix of the system under study. Our matrix

of Eq. (6) corresponds to just this case and thereby

the expressions for G(k)il of [14] may be invoked

here.

Let the one-electron energies of BBOs and of ABOs

taking the diagonal positions within the matrix H̃(0),

to be denoted by E(+)i and E(−)l, respectively. Then

the expressions for elements G(1)il and G(2)il take the

form

G(1)il =−
〈ϕ(+)i|Ĥ |ϕ(−)l〉

E(+)i − E(−)l
, (8)

G(2)il =
1

E(+)i − E(−)l

×

[
BBOs∑

m

〈ϕ(+)i|Ĥ|ϕ(+)m〉〈ϕ(+)m|Ĥ |ϕ(−)l〉

E(+)m − E(−)l

−
ABOs∑

r

〈ϕ(+)i|Ĥ|ϕ(−)r〉〈ϕ(−)r|Ĥ |ϕ(−)l〉

E(+)i − E(−)r

]
,

(9)

where the numerators of fractions contain resonance

parameters between BOs indicated within the bra- and

ket-vectors.

Elements G(1)il of Eq. (8) have been interpreted as

direct (through-space) interactions between BOs ϕ(+)i

and ϕ(−)l . Accordingly, G(2)il of Eq. (9) represent

indirect (through-bond) interactions of the same BOs,

where both BBOs (ϕ(+)m) and ABOs (ϕ(−)r) of other

bonds are able to play the role of mediators.

Finally, the diagonal elements G(1)ii and G(2)ii

deserve a separate discussion. Thus, the above-

introduced definition of BOs ensures zero values for

intrabond resonance parameters 〈ϕ(+)i|Ĥ |ϕ(−)i〉 and

thereby for first-order elements G(1)ii. The second-

order element G(2)ii, in turn, describes the indirect

intrabond interaction between BOs of the Ith bond

by means of orbitals of other bonds that will be

referred to as the intrabond coupling for simplic-

ity. As seen from Eq. (7), the intrabond coupling

G(2)ii determines the bond order between BOs ϕ(+)i

and ϕ(−)i of the Ith bond due to interbond interac-

tion.

Let us turn now to submatrices Q̃(k)+ and Q̃(k)− of

Eq. (7). For the first-order correction P̃(1), the relevant

blocks Q̃(1)+ and Q̃(1)− coincide with zero matrices

[14], whereas those corresponding to higher values of

the order parameter are expressible in terms of prod-

ucts of the principal matrices G(k) of lower orders. In

particular, the most important second-order corrections

Q̃(2)+ and Q̃(2)− take the form

Q̃(2)+ =−2G(1)G
+
(1),

Q̃(2)− = 2G+
(1)G(1).

(10)

These relations imply the following explicit forms

for alterations in occupation numbers of the BBO

ϕ(+)i and of the ABO ϕ(−)i of the Ith bond against
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their initial values (equal to 2 and 0, respectively),

viz.

X(+)i ≈ Q̃(2)+,ii = −2
ABOs∑

p
(G(1)ip)

2,

X(−)i ≈ Q̃(2)−,ii = 2
BBOs∑

m
(G(1)mi)

2.

(11)

The above expressions evidently correspond to con-

finement to second-order corrections. In the frame-

work of this approximation, alterations in occupation

numbers of BOs prove to be determined by squares

of direct interactions between BOs of the bond un-

der consideration and those of other bonds, the lat-

ter contributing additive increments to both X(+)i and

X(−)i. From Eq. (11) it follows also that the ini-

tially occupied BO ϕ(+)i always loses some popula-

tion, whilst the initially vacant BO ϕ(−)i acquires it

as a consequence of the interbond interaction. Fi-

nally, the alterations in occupation numbers of BOs

shown in Eq. (11) may be traced back to emergence

of bond orders of intersubspace type within the first-

order matrix P̃(1). (Note that the latter are deter-

mined by elements of matrices −2G(1) as Eq. (7) in-

dicates.)

Now, no more is required as to retransform the ma-

trix P̃ defined by Eqs. (7)–(11) into the HAO basis

again. This procedure is performed in the next section.

3. Analysis of the retransformed one-electron

density matrix. The principal intrabond effects

in saturated molecules

It is evident that each correction P̃(k) of the DM P̃

may be retransformed into the basis {χ} separately us-

ing the matrix U of Eq. (5), viz.

P(k) = UP̃(k)U
+. (12)

Substituting Eqs. (5) and (7) into Eq. (12) yields the

following expression for the kth-order correction P(k)

of the charge–bond order matrix P:

P(k) =

∣∣∣∣∣∣

T′

(k) + Π′

(k) Ω(k) + Λ(k)

Ω+
(k) + Λ+

(k) T′′

(k) + Π′′

(k)

∣∣∣∣∣∣
, (13)

where the N×N -dimensional submatrices of the right-

hand side take the form

T′

(k) =ZQ̃(k)+Z + VQ̃(k)−V,

T′′

(k) =VQ̃(k)+V + ZQ̃(k)−Z,
(14)

Π′

(k) =−2(VG+
(k)Z + ZG(k)V),

Π′′

(k) = 2(ZG+
(k)V + VG(k)Z),

(15)

and

Ω(k) = ZQ̃(k)+V − VQ̃(k)−Z,

Λ(k) = 2(ZG(k)Z − VG+
(k)V).

(16)

The intrabond characteristics (i. e. the occupation num-

bers of HAOs and the neighbouring bond orders) evi-

dently are determined by diagonal elements of subma-

trices of matrices P(k). The latter, in turn, imbibe the

interbond interactions G(1)il and G(2)il as Eqs. (10),

(11), and (13)–(16) indicate. This offers us a possi-

bility of revealing the intrabond effects caused by the

interbond interaction in the general case without speci-

fying the structure of the molecule under study.

The diagonal constitution of matrices Z and V al-

lows us to conclude immediately that diagonal ele-

ments of submatrices T′

(k) and T′′

(k), as well as those

of Ω(k) are determined by corrections to occupa-

tion numbers of BOs (Q̃(k)+,ii and Q̃(k)−,ii), whilst

the analogous elements of the remaining submatrices

(Π′

(k), Π′′

(k), and Λ(k)) are proportional to respective

intrabond interactions of BOs (G(k)ii).

Let us dwell now on consideration of the Ith bond

and confine ourselves to the second-order increments.

Let us define the following new characteristics of this

bond:

∆X(2)I = Q̃(2)+,ii + Q̃(2)−,ii, (17)

∆R(2)I = Q̃(2)+,ii − Q̃(2)−,ii. (18)

The term ∆X(2)I represents the total population lost

(acquired) by the Ith bond owing to interbond interac-

tion. This characteristic actually consists of difference

between absolute values of population lost by the BBO

ϕ(+)i and of that acquired by the ABO ϕ(−)i. Again,

the increment ∆R(2)I is determined by the sum of the

same absolute values and thereby describes the total re-

distributed population referring to the Ith bond. It is

seen that negative contributions to ∆R(2)I arise owing

to both the additional occupation of the ABO ϕ(−)i and

the partial deocupation of the BBO ϕ(+)i as Eq. (11)

indicates. Hence, a negative sign of the total redis-

tributed population ∆R(2)I follows. Along with the

above-discussed characteristics ∆X(2)I and ∆R(2)I ,

our bond is also represented by respective diagonal el-

ements of matrices Π′

(k), Π′′

(k), and Λ(k). For k = 1,

these elements vanish owing to zero direct intrabond in-

teraction G(1)ii. This implies that the relevant second-
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order increments (Π′

(2)ii, Π′′

(2)ii, and Λ(2)ii) should be

considered that are determined by the intrabond cou-

pling G(2)ii.

Let us replace now the diagonal elements of matrices

Z and V of Eqs. (14)–(16) by coefficients zI and vI of

Eq. (3). For the zero-order increments to characteristics

of the Ith bond, we then obtain

T ′

(0)ii(T
′′

(0)ii) = 1 ± cos γI ,

Ω(0)ii = sin γI .

(19)

The relevant first-order corrections prove to yield no

contributions to characteristics under study, whilst the

second-order increments are as follows:

T ′

(2)ii(T
′′

(2)ii) =
1

2
∆X(2)I ±

1

2
∆R(2)I cos γI , (20)

Ω(2)ii =
1

2
∆R(2)I sin γI , (21)

Π′

(2)ii(Π
′′

(2)ii) =∓2G(2)ii sin γI , (22)

Λ(2)ii = 2G(2)ii cos γI , (23)

where the upper signs of the right-hand sides of

Eqs. (20) and (22) correspond to matrices denoted by

the superscript ′, whilst the lower ones refer to matrices

supplemented with the superscript ′′. The definitions

of Eqs. (17) and (18) are also invoked when deriving

Eqs. (20)–(23).

Let us turn now to interpretation of these expres-

sions. Let us start with the zero-order increments. The

zero-order dipole-like increment ± cos γI to popula-

tions of HAOs χ′

i and χ′′

N+i resulting from elements

T ′

(0)ii and T ′′

(0)ii of Eq. (19) is inherent in the bond un-

der consideration whatever the structure of the whole

molecule (γI is defined by Eq. (4)). This dipole co-

incides with the respective value for an isolated bond.

Hence, it may be called the primary dipole moment

of the Ith bond [21]. In accordance with the expec-

tation, the population of the HAO χ′

i of the more elec-

tronegative atom becomes increased, whereas that of

the HAO χ′′

N+i is accordingly reduced as compared

to 1. Similarly, the increment sin γI following from the

element Ω(0)ii may be referred to as the primary bond

order of the Ith bond.

Alterations in occupation numbers of HAOs as well

as in intrabond bond orders due to interbond interac-

tion are determined by second-order contributions as

the above-derived expressions indicate. Thus, let us

consider these terms in more detail.

Let us start with diagonal elements of matrices T′

(k)

and T′′

(k) defined by Eq. (20). It was mentioned al-

ready that these elements originate from redistribution

of population among BOs. In addition, the sum of these

elements equal to

T ′

(2)ii + T ′′

(2)ii = ∆X(2)I (24)

coincides with the total lost (acquired) population of

the Ith bond. Consequently, the elements T ′

(2)ii and

T ′′

(2)ii describe the actual way of distribution of the lost

(acquired) population of the Ith bond among the two

HAOs. It is no surprise in this connection that the

expressions for these elements contain uniform incre-

ments (∆X(2)I/2) equal to half of the total population

lost (acquired) by this bond and a dipole-like increment

(±d(2)I ), where

d(2)I =
1

2
∆R(2)I cos γI . (25)

It is seen that this dipole depends on the total redis-

tributed population ∆R(2)I and vanishes for homopo-

lar bonds described by uniform Coulomb parameters

(given that αI1 = αI2, γI = π/2, and cos γI = 0).
Moreover, the a priori negative sign of d(2)I for any I
follows from the negative sign of ∆R(2)I . This im-

plies that the HAO χ′

i pertinent to the more electroneg-

ative atom loses its population owing to formation of

the dipole ±d(2)I , whereas the HAO χ′′

N+i acquires an

additional population. Therefore, the primary dipole

moment of the Ith bond becomes reduced after “em-

bedding” this bond into any molecule. In this connec-

tion, the term ±d(2)I has been called the depolarization

dipole moment [21].

Opposite orientations of the primary dipole and of

the depolarization one may be easily accounted for by

shapes of BOs ϕ(+)i and ϕ(−)i. Thus, the shape of the

BBO ϕ(+)i of Eq. (2) ensures the primary reduction

of population of the HAO χ′

i when this BO is deoccu-

pied. Accordingly, the additional population acquired

by the ABO ϕ(−)i becomes localized mainly on the

HAO χ′′

N+i. Both of these effects evidently contribute

to reduction of the primary dipole moment of our bond.

The diagonal element Ω(2)ii of the matrix Ω(2)

shown in Eq. (21) represents the second-order incre-

ment to the internal bond order of the Ith bond and

is also determined by the total redistributed population

∆R(2)I . The negative sign of the latter implies reduc-

tion of the primary bond order under the influence of

the interbond charge redistribution. This result also

causes no surprise if we recall an additional occupa-

tion of the antibonding BO ϕ(−)i and a certain deoc-
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cupation of the bonding BO ϕ(+)i underlying the total

redistributed population ∆R(2)I .

It is seen, therefore, that two interdependent in-

trabond effects originate from charge redistribution

among BOs, namely the depolarization of an initially

heteropolar bond and the related reduction of the inter-

nal bond order. In the case of an initially homopolar

bond, lowering of the internal bond order only is ob-

served. The above-mentioned simultaneous effects ev-

idently reflect a trend towards a homolytic dissociation

of the given bond after including it into the molecule

under study. In this connection, the term “homolytic

predissociation” will be used to refer to these interde-

pendent effects.

Let us turn now to the remaining second-order in-

crements shown in Eqs. (22) and (23) and determined

by the intrabond coupling G(2)ii. The sign of the latter

cannot be established a priori (i. e. without specifying

the structure of the system) in contrast to population

alterations of BOs. The same refers also to the sign of

the secondary dipole moment (±p(2)I ) resulting from

the elements Π′

(2)ii and Π′′

(2)ii of Eq. (22) and defined

as follows:

p(2)I = −2G(2)ii sin γI . (26)

Nevertheless, an interdependence is evident between

the sign of this dipole and that of the related alteration

in the bond order of the Ith bond described by the in-

crement Λ(2)ii of Eq. (23). Moreover, reduction of the

bond order (predissociation) is expected to take place

for a negative value of the intrabond coupling (G(2)ii),

and this effect is predicted to be accompanied by emer-

gence of a positive dipole p(2)I > 0. Just this fact

makes the term “polarization dipole moment” used to

refer to the increment ±p(2)I [21] even more appropri-

ate. Inasmuch as the total dipole moment of our bond

grows in this case, we have actually to do here with the

trend towards a heterolytic dissociation or, more con-

veniently, with the heterolytic predissociation of an ini-

tially heteropolar bond.

The case of an initially homopolar bond deserves

separate consideration in this respect. Indeed, forma-

tion of a nonzero secondary dipole ±p(2)I due to intra-

bond coupling is possible also for the above-specified

bond. In particular, dipole moments of this type were

shown to be responsible for the secondary (induced)

dipoles of C–C (C–H) bonds under the influence of a

heteroatom-containing bond [21]. Emergence of such

a secondary dipole, however, is not accompanied by

reduction of the internal bond order (Λ(2)ii = 0 in this

case). Hence, the secondary polarization of homopolar

bonds does not imply their heterolytic predissociation.

In other words, the heterolytic predissociation is among

consequences of interbond interaction only so far as the

initially heteropolar bond is concerned.

The additive nature of increments representing the

homo- and heterolytic predissociation of bonds is also

among the conclusions of this section.

4. Contributions of intrabond effects to total

energies of saturated organic molecules

In this section, we will look for alterations in total

energies representing the homo- and heterolytic predis-

sociation of bonds. In this connection, we start with an

overview of the general results of the PNCMO theory

concerning the total energy [16, 18, 19].

As already mentioned (Section 1), the total energy

of the system under study ε has been expressed in the

form of a power series in the framework of the PNCMO

theory. Moreover, any correction of this series ε(k) was

shown to consist of a sum of two interrelated compo-

nents ε
(α)
(k) and ε

(β)
(k) defined as follows:

ε
(α)
(k) = Tr (P(k)H(0)), ε

(β)
(k) = Tr (P(k−1)H(1)).

(27)

The above-mentioned relation takes the form

(k − 1)ε
(β)
(k) = −kε

(α)
(k) . (28)

Opposite signs of both components result from this

principal relation along with the following inequality

for their absolute values:

∣∣ε(β)
(k)

∣∣ >
∣∣ε(α)

(k)

∣∣. (29)

The possibility of expressing the total correction ε(k)

in terms of either ε
(α)
(k) or ε

(β)
(k) is also evident from the

above results, viz.

ε(k) = −
1

k − 1
ε
(α)
(k) , ε(k) =

1

k
ε
(β)
(k) . (30)

Finally, stabilization of the system due to interaction

(the latter is assumed to be contained within the first-

order Hamiltonian matrix H(1)) was shown to be deter-

mined by the second-order correction ε(2). Given that

a negative energy unit is accepted, the above statement
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along with Eq. (30) resolves itself into the following

relations:

∆εstab = ε(2) = ε
(α)
(k) + ε

(β)
(k) = −ε

(α)
(k) > 0,

ε
(α)
(k) < 0,

ε
(β)
(k) =−2ε

(α)
(k) > 0,

(31)

where ∆εstab stands for the stabilization energy.

As with other expressions of the PNCMO theory,

the relations of Eqs. (27)–(31) originally refer to the

basis of BOs. In contrast to the power series for the

DM, however, Eqs. (27)–(31) are invariant against uni-

tary transformation of the basis set. That is why the

labels ˜ used in Eqs. (6) and (7) for characteristics re-

presented in the basis of BOs are omitted here.

The above-discussed invariance of Eqs. (27)–(31)

allows us to substitute the corrections P(k) of

Eqs. (13)–(16) along with the zero- and first-order

members of the initial Hamiltonian matrix of Eq. (1)

directly into Eq. (27). As a result, we are able to de-

rive the expressions for both the total corrections ε(k)

and their separate components ε
(α)
(k) and ε

(β)
(k) in terms of

characteristics of our system represented in the basis of

HAOs {χ}. For the zero- and first-order members, the

result is as follows:

ε(0) = ε
(α)
(0) =

∑

I

ε
(α)
(0)I , ε(1) = 0, (32)

where ε
(α)
(0)I is the primary energy of the Ith bond, viz.

ε
(α)
(0)I = (αI1 +αI2)+ (αI1 −αI2) cos γI +2βI sin γI .

(33)

Let us turn now to the second-order energy ε(2) re-

sponsible for stabilization of our system versus the set

of isolated bonds and lone electron pairs. Let us start

with a brief discussion of its separate components ε
(α)
(2)

and ε
(β)
(2) .

Thus, zero values of diagonal elements of submatri-

ces A(1), B(1), and C(1) of Eq. (1) ensure zero con-

tributions to the correction ε
(β)
(2) originating both from

the internal bond orders and from the populations of

HAOs. This implies the component ε
(β)
(2) to be deter-

mined by nonneighbouring bond orders that are formed

between pairs of HAOs of different bonds due to their

interaction. Hence, the increment ε
(β)
(2) will be called

the interbond component of the second-order energy.

Again, the diagonal constitution of submatrices

A(0), B(0), and C(0) of the zero-order Hamiltonian

matrix H(0) of Eq. (1) ensures the dependence of the

remaining component ε
(α)
(2) of the correction ε(2) exclu-

sively on intrabond characteristics. In this connection,

the increment ε
(α)
(2) will be referred to as the intrabond

component of the second-order correction to the total

energy.

Let us turn now to the principal relations shown in

Eqs. (28)–(31). From Eq. (31) it follows that the ab-

solute value of ε
(β)
(2) exceeds twice the relevant value

of ε
(α)
(2) . Hence, stabilization of the whole system ver-

sus the set of isolated bonds and lone pairs proves to

be actually determined by the interbond component

ε
(β)
(2) of the second-order energy ε(2) and thereby only

by newly-formed bond orders between pairs of HAOs

of different bonds due to their interaction. Further-

more, the opposite signs of ε
(α)
(2) and ε

(β)
(2) seen from

Eqs. (28) and (31) allow us then to expect that the

above-specified stabilization is necessarily accompa-

nied by intrabond destabilization. Finally, the larger

is the total extent of destabilization of bonds, the more

stabilized the system actually becomes due to the inter-

bond interaction.

In this connection, let us consider the intrabond

component ε
(α)
(2) in more detail. It is evident that the

relevant expression may be presented as a sum of par-

tial increments of separate bonds as shown in Eq. (32),

where

ε
(α)
(2)I =

1

2
(αI1 + αI2)∆X(2)I

+
1

2
(αI1 − αI2)∆R(2)I cos γI

+ βI∆R(2)I sin γI

− 2(αI1 − αI2)G(2)ii sin γI

+ 4βIG(2)ii cos γI (34)

describes the destabilization energy of the Ith bond.

Three types of increments are present in Eq. (34). The

first term containing ∆X(2)I describes the effect of

charge redistribution among separate bonds and lone

electron pairs of our system upon the energy of the

Ith bond. The subsequent two increments contain-

ing ∆R(2)I in the same relation represent the contri-

bution of the homolytic predissociation of the Ith bond

to the same energy. Finally, the last two terms (con-

taining G(2)ii) may be accordingly traced back to the

heterolytic predissociation of the same bond.
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Before passing to the more detailed analysis of these

increments, let us note that the last two terms of the

right-hand side of Eq. (34) actually cancel out each

other. To show this, the alternative form of Eq. (4),

namely

(αI1 − αI2) sin γI = 2βI cos γI , (35)

should be substituted into Eq. (34).

We may conclude on this basis that the heterolytic

predissociation is an energy-free effect in the frame-

work of the Hückel model. This result causes no sur-

prise if we recall that electrostatic forces are not con-

sidered explicitly in this model (just these forces are

expected to protect the bonds from the heterolytic dis-

sociation).

The total intrabond component ε
(α)
(2) of the second-

order correction ε(2) takes then the following final

form:

ε
(α)
(2) =

∑

I

1

2
(αI1 + αI2)∆X(2)I

+
∑

I

[
1

2
(αI1 − αI2) cos γI + βI sin γI

]
∆R(2)I

(36)

and contains two principal contributions describing the

total effects of charge redistribution among bonds and

of their homolytic predissociation, respectively. These

contributions are likely to be of opposite signs within

the total intrabond energy ε
(α)
(2) as it was the case with

the intra- and interbond components within the total

second-order energy ε(2) (see Eq. (31)).

Indeed, the inequalities αI1 ≥ αI2 > 0 and βI > 0
accepted in Section 2 and the a priori negative sign of

any redistributed population ∆R(2)I ensure the nega-

tive sign of the second sum of Eq. (36). Hence, the ho-

molytic predissociation always contributes to the desta-

bilizing nature of the total intrabond component ε
(α)
(2) in

accordance with the expectation. So far as the first sum

of Eq. (36) is concerned, it is likely to take a positive

value and thereby to yield a certain stabilizing incre-

ment to the total intrabond energy ε
(α)
(2) .

The latter anticipation is based on the following

points. First, negative (lost) populations ∆X(2)I < 0
correspond to electron-donating bonds and positive

(acquired) populations ∆X(2)I > 0 refer to electron-

accepting bonds in the first sum of Eq. (36). Second,

the electron-donating bonds usually are those described

by lower mean values of Coulomb parameters, whereas

the electron-accepting bonds coincide with those repre-

sented by higher mean values of the same parameters.

This allows us to expect that the total positive incre-

ment of electron-accepting bonds to the first sum of

Eq. (36) exceeds the absolute value of the total negative

increment of the electron-donating bonds and thereby

the sum under discussion takes a positive value. In

other words, charge is usually transferred from bonds

that are built up of orbitals of lower average electroneg-

ativity to those formed by HAOs of higher electroneg-

ativity and thereby certain stabilization of the system

is expected to result. (In the case of two interacting

bonds 1 and 2, this conclusion may be easily verified

by invoking the equality ∆X(2)1 = −∆X(2)2 based on

the charge conservation condition.) It should be men-

tioned finally that the negative sign of the total intra-

bond component ε
(α)
(2) implies that the increment of the

homolytic predissociation predominates over that of in-

terbond charge redistribution in Eq. (36). Hence, the

intrabond destabilization may be largely traced back to

the homolytic predissociation.

It is seen, therefore, that the constitution of the total

energy of saturated organic molecules reflects interde-

pendences between inter- and intrabond effects. More-

over, the final stabilization energy of the system versus

the set of isolated bonds and lone electron pairs is a

result of a certain “balance” between positive and neg-

ative increments. In other words, any of the effects un-

der study causes the respective counter-effect upon the

total energy.

First, formation of new nonneighbouring bond or-

ders between HAOs of different bonds due to inter-

bond interaction gives rise to stabilization of the sys-

tem. This interbond effect, however, necessarily causes

a definite intrabond destabilization that reduces twice

the “original” stabilizing increment of nonneighbour-

ing bond orders. Second, the above-mentioned desta-

bilization is primarily due to the homolytic predisso-

ciation of bonds. To ensure the latter, however, a cer-

tain redistribution of population necessarily takes place

among bonds. As a result, the actual extent of intra-

bond destabilization also becomes somewhat reduced

against its original value.

5. Comparison of the results obtained to those of

previous studies. Concluding remarks

The retransformation procedure suggested in this pa-

per is applied to the total one-electron density matrix of

saturated organic molecules and not to its separate sub-

matrices as it was the case in [21, 24]. Consequently,
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the total charge–bond order matrix of these systems

is obtained in the present study in contrast to expres-

sions for individual occupation numbers of HAOs de-

rived previously [21]. This allows us to consider al-

terations in both occupation numbers and bond orders

caused by the interbond interaction and to introduce

the concepts of homo- and heterolytic predissociation

of bonds. Moreover, a certain analogy may be traced

between the latter concepts and those used when dis-

cussing alterations in internuclear distances due to per-

turbation [33].

The initial Hamiltonian matrix of the present study

(see Eq. (1)) is a generalization of that of hydrocarbons

[20, 22] to the case of nonuniform Coulomb parame-

ters and of dissimilar intrabond resonance parameters.

The same evidently refers to the corresponding results,

too. In particular, the matrix Ω(2) defined by Eq. (16)

proves to be a generalization of the rebonding matrix

of [23]. It is no surprise in this connection that the ho-

molytic predissociation of bonds defined in the present

study embraces the rebonding effect of [23], the latter

consisting in reduction of the neighbouring bond orders

in hydrocarbons due to formation of nonneighbouring

bond orders.

Comparison of the results of the present study

to those of [20, 22, 23] shows that passing from hy-

drocarbons to heteroatom-containing systems is ac-

companied by emergence of an alternative way of

(pre)dissociation of bonds, namely of the heterolytic

(pre)dissociation. Evidently, this result is not unex-

pected as the heterolytic dissociation is peculiar to

heteroatom-containing (heteropolar) bonds. Redistri-

bution of population among separate bonds (interbond

charge transfer) in heteroatom-containing systems fol-

lowing from our study also causes no surprise.

The expression for the intrabond component ε
(α)
(2) of

the second-order energy ε(2) derived in this paper and

shown in Eq. (36) is an alternative form of Eq. (40) of

[18] representing the same energy increment in terms

of charge redistribution among separate bond orbitals.

Passing from this previous result to that of Eq. (36)

actually corresponds to reformulating the charge re-

distribution among BOs in terms of contributions of

separate bonds. In this context, cancellation of the

G(2)ii-containing terms when deriving Eq. (36) from

Eq. (34) is a natural course of things.
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SOČIŲJŲ ORGANINIŲ MOLEKULIŲ CHEMINIŲ JUNGČIŲ TARPUSAVIO SĄVEIKOS ĮTAKOS JŲ

VIDINĖMS CHARAKTERISTIKOMS DĖSNINGUMAI

V. Gineitytė

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Toliau plėtojamas perturbacinis nekanoninis molekulinių orbi-

talių metodas. Gautos labai bendros sočiųjų organinių moleku-

lių vienelektroninės tankio matricos išraiškos atominių ir hibri-

dinių orbitalių bazėje, o taip pat atitinkamos molekulės energi-

jos išraiškos. Jų pagrindu išvestos algebrinės formulės, atspindi-

nčios minėtų molekulių cheminių jungčių tarpusavio sąveikos įta-

kos jų vidinėms charakteristikoms dėsningumus. Parodyta, kad

ši įtaka pasireiškia jungčių susilpnėjimu, kuris gali būti lydimas

arba jungties dipolio mažėjimo, arba jo didėjimo. Kadangi šie

atvejai gali būti traktuojami kaip tendencijos į jungties disocia-

ciją atitinkamai į neutralius atomus ar į jonus, jie buvo pavadinti

atitinkamai homolitine ir heterolitine predisociacija. Tiriant mo-

lekulės energijos išraišką, nustatytos sąsajos tarp narių, apraša-

nčių sąveikas tarp jungčių bei vidinių charakteristikų pokyčius.

Parodyta, jog galutinė molekulės stabilizacija (lyginant ją su hi-

potetiniu izoliuotų jungčių rinkiniu) kyla iš tam tikro priešingo

ženklo energetinių indėlių “balanso”. Pavyzdžiui, stabilizacija, at-

sirandanti dėl sąveikos tarp jungčių, realiai yra dvigubai sumažė-

jusi dėl destabilizuojančio jungčių predisociacijos poveikio. Gauti

rezultatai analizuojami ir lyginami su ankstesnių darbų rezulta-

tais.


