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Self-localization mechanisms and conditions of laser radiation in a cold collisionless plasma of spherical microcavity have

been studied taking into account the striction nonlinearity and the relativistic effects connected with the stimulated oscillatory

movement of electrons. A spherical plasmon localized close to the centre of microcavity has been shown to excite under

nonlinear interaction of whispering-gallery modes with electron plasma. It is determined that the realization of self-localized

spherical structures of electromagnetic field and spherical plasmons inside the microcavity filled with electron plasma is caused

by manifestation of relativistic nonlinearity of the medium.
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1. Introduction

Considerable interest in the problem of nonlinear in-

teraction of laser radiation with spherical particles of

micron size is shown due to the fact that nonlinear opti-

cal effects can be realized with the use of radiation hav-

ing a relatively low intensity [1, 2]. In this case, lasing

can be obtained as a result of the total internal reflection

of radiation from the inside of a microparticle [3], in

the form of a set of densely packed whispering-gallery

modes. The Q-factor of such a microcavity is several

order of magnitude higher than Q-factor of conven-

tional open laser resonators [4]. Beside the known non-

linear effects in this case [5, 6], the self-localization of

electromagnetic radiation in a form of a structure reso-

nance inside a microcavity is of great importance. The

possibility of realization of the spherical structure res-

onance was investigated for the first time in a medium

with a Kerr nonlinearity [7]. An important condition

of formation of such structure is the negativity of the

initial permittivity of the medium, which allows a sug-

gestion that such structures can exist in microcavities

filled with overdense plasma.

The present paper studies the mechanisms and con-

ditions of self-localization of an electromagnetic radia-

tion in the collisionless electron plasma of the spherical

microcavity. The nonlinear interaction of the electro-

magnetic radiation with a cold plasma was investigated

taking into account the striction nonlinearity and the

relativistic effects arising as a result of the induced os-

cillatory motion of electrons. It is shown that the non-

linear interaction of the whispering-gallery modes with

a cold electron plasma results in the appearance of the

spherical plasmon localized near the centre of the mi-

crosphere. It has been established that the relativistic

nonlinearity of the medium is the main condition for

the formation of self-localized spherical structures of

the electromagnetic field and spherical plasmons inside

the microcavity filled with a cold electron plasma.

2. Theoretical model

The basic equations describing the interaction of an

electromagnetic radiation with a collisionless electron

plasma are Maxwell equations and the relativistic mo-

tion equation for electrons [8–12]. On the introduction

of vector A and scalar ϕ potentials describing the char-

acteristics of electromagnetic field (E = c−1∂tA−∇ϕ,

B = ∇ × A), the following system can be obtained

from the Maxwell equations:
(

rot rot + c−2∂2
t

)

A = 4πnec−1v − c−1∇∂tϕ ,

c−1∇∂tA + ∆ϕ = −4πe(n − n0) . (1)
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Equations (1) are closed by the relativistic equation for

the electron motion:

(∂t +v∇)p = −ec−1∂tA−e∇ϕ+ec−1v× [∇×A] ,
(2)

where v, m0, and p = m0γv are the velocity, rest

mass, and the momentum of electrons, respectively,

and γ = (1 − v2/c2)−1/2 is a relativistic factor. Using

the vector identity (v∇)p = m0c
2∇γ − v × [∇× p],

we write Eq. (2) as

∂tp = −ec−1∂tA− e∇ϕ − m0c
2∇γ . (3)

The first two terms in the right-hand side of Eq. (3)

represent the Coulomb force. The last term defines the

ponderomotive force Fpond = −m0c
2∇γ which is an

expression of the magnetic force acting upon the elec-

trons. The nonrelativistic ponderomotive force was de-

rived in [10] as a Lorentz force averaged over the high-

frequency field oscillations, which acts on the electrons

in a weakly inhomogeneous electromagnetic field. The

action of the ponderomotive force in spatially inhomo-

geneous electromagnetic wave results in the redistribu-

tion of electron plasma density, and since this force is

a potential force (ϕpond = −m0c
2e−1γ), it is conve-

nient to relate it to the scalar potential, thus defining

calibration of the potentials in a following way:

A = −c e−1p , ϕ = −m0 c2e−1γ . (4)

Eqs. (1, 3) describe the motion of electrons in the pres-

ence of self-consistent field of the incident wave and

the field induced by the plasma electrons.

The interaction of electron plasma with a spatially

inhomogeneous electromagnetic wave will be consid-

ered in a quasi-static approximation where the tran-

sient processes related to the redistribution of elec-

tron plasma density are quite rapid compared to the

characteristic time of change in the spatial structure of

the field. In this case the distribution of the electron

density at each instant is assumed to be steady-state;

ponderomotive forces are balanced by the electrostatic

forces caused by the redistribution of plasma density.

In this case, the electrostatic potential may be taken to

be equal to the time-averaged ponderomotive potential

ϕ = 〈ϕpond〉t = −m0c
2e−1〈γ〉t, ∂tϕ = 0, and the

vector potential is transverse (∇A = 0) as for the ini-

tial wave. Thus, the above-mentioned potential cali-

bration (4) makes it possible to uniquely relate, in the

quasi-static approximation, the electromagnetic poten-

tials to the physical components of the system under

consideration: the vector potential decribes the trans-

verse electromagnetic wave propagating in the plasma,

and the scalar potential is related to the electrostatic

field induced by the redistributions of charge density.

With account for the assumptions made, system (1)

can be represented in the form

(

∆ − c−2∂2
t

)

A = 4π n e c−1v , (5)

∆ϕ = −4π e(n − n0) . (6)

Then, Eqs. (4) and (6) give explicit expressions for the

velocity and concentration of the electrons:

n(a) = n0

(

1 + c2ω−2
p0 ∆γ

)

, (7)

v(a) = −c γ−1a , (8)

where the relativistic factor has the form γ =
√

1 + a2,

and the potentials are renormalized as a = em−1
0 c−2A

and Φ = em−1
0 c−2ϕ. The right-hand side of Eq. (5)

describes the interaction of plasma electrons with the

electromagnetic field. The current j = n ev present

here depends nonlinearly on the vector potential a be-

cause of the redistribution of electron plasma density

(see Eq. (7)) in spatially inhomogeneous electromag-

netic field (striction nonlinearity) and the manifestation

of relativistic effects in n(a) and v(a) (relativistic non-

linearity). From Eqs. (4), (5), and (6) the following

nonlinear wave equation for vector potential can be de-

rived:

(

∆ − c−2∂2
t − k2

pγ
−1

(

1 + k−2
p ∆γ

))

a = 0 , (9)

where kp = ωp0/c, and ω2
p0 = 4π n0 e2/m0 is plasma

frequency of the undisturbed plasma.

Futher analysis will be made for the standing mono-

chromatic wave with a frequency ω: a = a0(r) cos ωt,
where a0 is an amplitude of the vector potential. On ne-

glecting the generation of higher harmonics and taking

into account the self-action in the nonlinear medium,

Eq. (9) can be written as

(

∆ + k2
0 − k2

pF (r)
)

a0 = 0 , (10)

where

F (r) =
ω

π

∫ 2π/ω

0

cos2 ωt
√

1 + a2
0 cos2 ωt

×
(

1 + k−2
p ∆

√

1 + a2
0 cos2 ωt

)

dt .

In the case of the amplitude |a0| ≪ 1, on expanding the

nonlinear terms in Eq. (10) into a series and retaining
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the first order of the relativistic amendment, the follow-

ing equation can be obtained:

(∆ + k2)a0 =
3

8
a0

(

∆ − k2
p

)

a2
0 , (11)

where k2 = k2
0 − k2

p . The right-hand side of Eq. (11)

describes the nonlinear interaction of the electromag-

netic radiation with the electron plasma: the first term

is caused by the striction nonlinearity and the second

term is responsible for the relativistic effects.

Let us consider the behaviour of an electrically

transverse (TE) electromagnetic radiation in a spher-

ical microcavity filled with a collisionless electron

plasma. In the general case it can be represented as

an expansion in terms of the vector spherical modes

Mnm(r, θ, ϕ) = Snm(r)Θnm(θ, ϕ), which form a

complete set of orthogonal functions:

a0 =
∑

nm
Snm(r)Θnm(θ, ϕ) ,

Snm(r) =
∫

Ω

a0Θ
∗
nm(θ, ϕ)dΩ , (12)

n ∈ [0,∞) , m ∈ [−n, n] ,

where

Θnm(θ, ϕ) = Nnm eimϕ
(

imPn|m|(cos θ) sin−1 θeθ

− ∂θPn|m|(cos θ)eϕ
)

is the angular part, and the radial functions Snm(r) are

the desired quantities. For example, the radial func-

tions in the case of linear microcavity are spherical

Bessel functions jn(kr) [13]. For the nonlinear prob-

lem, Snm(r) have to be determined from a correspond-

ing system of equations, and in the general case they

are complex quantities, Snm = S∗
n−m.

We expand the right-hand side of nonlinear equation

(11) into a series of spherical vector harmonics:

3

8
a0

(

∆ − k2
p

)

a2
0 = (13)

3

8

∑

iji′j′

klnm

[

giji′j′kl
nm Snm − k2

pf
iji′j′kl
nm SijSi′j′Skl

]

Θnm ,

where f iji′j′kl
nm is a constant and giji′j′kl

nm is a functional

of the desired functions Snm(r):

giji′j′kl
nm =

SklS
−1
nm

∫

Ω

(

ΘklΘ
∗
nm

)

∆
(

SijSi′j′ΘijΘi′j′
)

dΩ ,

f iji′j′kl
nm =

∫

Ω

(

ΘijΘi′j′
)(

ΘklΘ
∗
nm

)

dΩ . (14)

By making use of the expansion (13) and separating

the modes in accordance with their order, the following

system of related equations for individual modes can

be obtained from Eq. (11):

∆Mnm + k2Mnm = (15)

3

8
Mnm

∑

iji′j′kl

(

giji′j′kl
nm − k2

pf
iji′j′kl
nm SijSi′j′SklS

−1
nm

)

.

Separation of variables in Eq. (15) results in a system of

equations for radial functions Snm(r) of the interacting

modes:

r−1∂2
r (rSnm) + Snm

(

k2 − n(n + 1)r−2

− 3

8

∑

iji′j′kl

(

giji′j′kl
nm − k2

pf
iji′j′kl
nm SijSi′j′SklS

−1
nm

)

)

= 0 . (16)

In the case of a single mode in a medium, the system

(16) reduces to the form

r−1∂2
r (rSnm) + Snm

(

k2 − n(n + 1)r−2

− 3

8

∫

Ω

(

Re(SnmΘnm)Θ∗
nm

)

×
(

∆ − k2
p

)

Re(SnmΘnm)2dΩ = 0 . (17)

It should be noted that Eqs. (11, 15–17) describe the in-

teraction of electromagnetic radiation with a cold elec-

tron plasma, taking into account both the striction and

the relativistic nonlinearities. In spite of the assump-

tion made above in the first approximation for the rel-

ativistic effects (|a0| ≪ 1), these equations are valid

in a quite wide range of radiation intensities, which is

important from the practical standpoint. For example,

at ω = 3 · 1015 s−1 they describe in a close approxi-

mation the nonlinear interaction of an electron plasma

with electromagnetic radiation of the intensity up to

I = c3m2
0ω

2/4πe2 ≈ 8.4 · 1018 W/cm2. At the same

time, as it will be shown below, taking into account the

relativistic nonlinearity results in qualitatively new be-

haviour of the system.

3. Numerical simulation

The nonlinear interaction of an electromagnetic ra-

diation with a cold electron plasma will be analyzed

using a vector spherical mode of a lower order (n = 1
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(a) (b) (c)

(d) (e)

Fig. 1. Radial distributions of the (a) field, (b) permittivity, (c) mass, (d) electron velocity, and (e) plasma density for S10 mode in a

microcavity filled with an initially overdense plasma.

and m = 0). In this case, the Eq. (17) yields the fol-

lowing equation for the radial part S10(r):

r−1∂2
r (rS10) + S10

[

k2 − 2r−2 + 0.1125π−1

×
(

k2
p − r−1∂2

r

(

rS2
10

)

+ S2
10r

−2
)]

= 0 . (18)

The results of numerical simulation of the process de-

scribed by Eq. (18) for an overdense plasma (ω < ωp0)

point to the possibility of realization of soliton-like so-

lutions self-localized in a finite volume of a microcav-

ity. The radial distribution of the electric component of

the field (Fig. 1(a)) shows its localization close to the

centre of the microcavity at a distance of several wave-

lengths. In this case, the relativistic nonlinearity re-

sults in the formation of a layer transparent for electro-

magnetic radiation near the centre of microcavity. The

plasma frequency ωp = 4πe2n m−1 inside this layer is

shifted to the long-wave region of a spectrum so that

ωp < ω < ωp0. In this case, the relativistic effect caus-

ing a change in the mass (m = γm0) and velocity of

the electrons (Eq. (8)) plays a dominant role. The ra-

dial distribution of the permittivity ε = 1 − (ωp/ω)2

induced by the field (see Fig. 1(b)) shows that in the

region of field maximum the permittivity becomes pos-

itive. The changes in the mass and the velocity distri-

bution of electrons in the radial direction with taking

into account the relativity are shown in Figs. 1(c) and

1(d) respectively.

Thus, the induced spherical layer of plasma trans-

parent for electromagnetic radiation makes possible

the existence of the undamped field oscillations inside

this layer and the total internal reflection at its bor-

der [14, 15]. The results of numerical simulation of

the processes performed with account for only the rel-

ativistic nonlinearity (curve 2 in Fig. 1(a)) clearly point

to the fact that it is the relativistic nonlinearity that

plays a dominant role in the realization of self-localized

soliton-like states of the electromagnetic radiation non-

linearly interacting with the cold electron plasma. Tak-

ing into account of only the striction nonlinearity in

Eq. (18) gives indefinitely increasing solutions (curve

3 in Fig. 1(a)). At the same time, the inclusion of the

striction nonlinearity in Eq. (18) determines the exis-

tence of a spherical plasmon as a redistribution of the

initial equilibrium density of the electron plasma ∆ρ
(Fig. 1(e)), and its localization close to the centre due

to the relativistic nonlinearity.

For the case of electron plasma initially transparent

for electromagnetic radiation (ω > ωp0), soliton-like

states localized in a finite volume cannot be realized.

The radial field distribution shown in Fig. 2 (curve 1)

illustrates this situation for the n = 1, m = 0 mode.

Curve 2 in Fig. 2 was calculated with taking into ac-

count only the striction nonlinearity. In the case of

transparent plasma with taking into account of the stric-

tion and the relativistic nonlinearities as well as the case
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Fig. 2. Radial distribution of the field for S10 mode in a micro-

cavity filled with plasma initially transparent for electromagnetic

radiation.

of overdense plasma where only the striction nonlin-

earity was taken into account (curve 3 in Fig. 1(a)) it

should be noted that the behaviour of the system does

not differ qualitatively from the corresponding solu-

tions of the linear wave equation for an electron plasma.

4. Conclusion

A model of an electromagnetic radiation nonlinearly

interacting with a cold electron plasma inside a spher-

ical microcavity has been developed with taking into

account both the striction and the relativistic nonlinear-

ities. The process of nonlinear interaction was numer-

ically simulated on the basis of the equations set with

account of the relativistic effects in the first approxima-

tion. This approach can be used in a quite wide range of

radiation intensities of up to ∼ 1018 W/cm2, which is

important from the practical standpoint. It is shown that

soliton-like solutions self-localized in the finite volume

of a nonlinear microcavity filled with an initially over-

dense electron plasma can be realized. It has been es-

tablished that it is the relativistic nonlinearity that plays

a key role in the realization of self-localized states of

an electromagnetic radiation. The striction nonlinearity

results in the appearance of a spherical plasmon as a re-

distribution of the equilibrium electron plasma density.

At the same time, its localization close to the centre is

caused by the relativistic nonlinearity.
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PLAZMONO LOKALIZACIJA ESANT NETIESINEI ŠNABŽDESIO GALERIJŲ MODŲ SĄVEIKAI SU
SFERINĖS MIKROERTMĖS ELEKTRONŲ PLAZMA

V.V. Kabanov, V.A. Sobolevsky

Fizikos institutas, Minskas, Baltarusija

Santrauka

Išstudijuoti lazerio spinduliuotės savilokalizacijos mechanizmai

ir sąlygos šaltoje sferinės mikroertmės be susidūrimų plazmoje, at-

sižvelgiant į strikcijos netiesiškumą ir reliatyvistinius efektus, susi-

jusius su priverstiniu elektronų virpesiniu judėjimu. Parodyta, kad

sferinis plazmonas, lokalizuotas arti mikroertmės centro, sužadina-

mas, kai šnabždesio galerijų modos netiesiškai sąveikauja su elekt-

ronų plazma. Nustatyta, kad elektromagnetinio lauko savilokali-

zuotų sferinių struktūrų ir sferinių plazmonų susidarymą mikroert-

mėje, užpildytoje elektronų plazma, lemia medžiagos reliativysti-

nis netiesiškumas.


