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The nonlinear perfectly matched layer (NL-PML) boundary conditions were successfully applied to the nonparaxial beam

propagation method. It is demonstrated that the NL-PML is extremely effective in absorbing the outgoing spatial solitons that

impinge the boundary of computation domain for a wide angular spectrum of wave propagation. Using of sufficiently smooth

conductivity profiles and termination of NL-PML media by controlled transparent boundary conditions offer further significant

improvement in the accuracy of the numerical solutions of the nonparaxial beam propagation method at the grazing angles.
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1. Introduction

It is of great importance to have powerful and flexi-

ble tools of analysis to simulate, design and optimize

photonic circuit devices. The finite-difference time-

domain (FDTD) simulation tools of optical devices and

optical storage systems [1] usually suffer from ineffi-

ciency due to long computation times and requirements

of large memory for storage. FDTD algorithm is suit-

able for modelling of wave propagation in the small

volumes and for the short propagation times [2]. The

beam propagation method (BPM) based on paraxial ap-

proach [3] is the most popular technique employed to

investigate light propagation in integrated optical de-

vices. The drawback of this technique is the necessity

to accurately guess reference indices to satisfy slowly

varying envelope approximation (SVEA) and the in-

ability to treat reflections generated by refractive index

variations. Paraxiality limitation of conventional BPM

is removed by using nonparaxial, wide-angle formula-

tion of BPM [4]. The nonparaxial BPM can simulate

fields with rapidly changing envelopes and there is no

need to accurately guess reference indices. This allows

the simulation of multiple waves travelling at very dif-

ferent angles, wave mixing with large phase mismatch-

ing, wide-angle interactions and scattering in subwave-

length structures of optical devices.

In implementation of nonparaxial and bidirectional

BPM for simulation of open space propagation, bound-

ary conditions play very important role, because pop-

ular technique, transparent boundary conditions (TBC)

[5], have very limited effectiveness [6]. Novel bound-

ary conditions, perfectly matched layer (PML) ones,

were proposed by Bérenger [7]. The effectiveness of

PML boundary conditions was subsequently verified

by other groups [8, 9], also for linear [10] and nonlinear

[11] nonparaxial BPM. In this paper, the investigation

of effectiveness of nonlinear PML (NL-PML) bound-

ary conditions terminated by different realisations of

TBC (adaptive, controlled, and uniform TBC) is re-

ported. NL-PML boundary conditions terminated by

controlled TBC, which extremely improve the outgo-

ing wave absorption for small tilted propagation angles,

were proposed. These boundary conditions are most

suitable for nonparaxial simulations.

2. Boundary conditions for the nonparaxial beam
propagation method

As an example for testing of NL-PML boundary

conditions for nonparaxial BPM we will consider three

wave mixing process in parametric downconversion

configuration [12–14] in bulk media of periodically

poled lithium niobate (PPLN). We will investigate

tilted propagation of pump, signal, and idler beams,
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with frequencies ω1, ω2, ω3 (ω1 = ω2 + ω3) and with

envelopes of electric field written in the form

E(l)(x, z, t) = (1)

1

2

{

E(l)(x, z) exp(i(ωlt − k0lnzlz)) + c. c.
}

,

where we use l = 1, 2, 3 for pump, signal, and idler

waves, respectively, k0l = ωl/c are the free space

wavenumbers; c is the speed of light in vacuum; i =√
−1, and nzl = nl cos Θl are the reference indices,

Θl are tilt angles measured in respect to the propaga-

tion direction z. The evolution of these field envelopes

can be described by a set of Helmholtz equations with

nonlinear propagation operator P̂NL
(l) :
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where nl(x, z) are the distributions of indices for each

frequency and G(l)(x, z) are nonlinear coupling terms

defined by

G(1)(x, z) =

χ
(2)
m (x)E(2)(x, z)E(3)(x, z) exp(−i∆βzz) ,

G(2)(x, z) =

χ
(2)
m (x)E(1)(x, z)E(3)∗(x, z) exp(i∆βzz) , (4)

G(3)(x, z) =

χ
(2)
m (x)E(1)(x, z)E(2)∗(x, z) exp(i∆βzz) ,

where χ
(2)
m (x) are Fourier coefficients of nonlinear sus-

ceptibility modulated with period Λ of sign reversal

[15] for quasi-phase matching (QPM) of three wave

mixing in the mth diffraction order in PPLN material,

∆βz is phase matching condition projection on propa-

gation direction z of field envelopes. For tilted prop-

agation of three waves at Θl angle we have ∆βz =
k02nz2 + k03nz3 − k01nz1 + gzm, where gz is pro-

jection of modulus of nonlinear grating wavevector

|g| = 2π/Λ on propagation direction z. SVEA approx-

imation can be obtained from Eq. (2) by neglecting the

|∂2E(l)/∂2z| term with respect to |2ik0ln0l|∂E(l)/∂z
and getting the set of Fresnel equations which can be

solved by the simple paraxial finite-difference BPM

[3, 4] (FD-BPM).

As suggested for nonparaxial equations in [11] and

for single linear Helmholtz equation in [4, 16], we can

derive Padé approximants of Eq. (2) through some re-

currence relations and write these equations in a useful

propagator form

∂E(l)

∂z
= −ik0lnzl

N̂ (l)

D̂(l)
E(l) , (5)

where the expressions of the N̂ (l), D̂(l) operators for

the Padé (1, 1) approximant are

N̂ (l) =
P̂NL

(l)

2
, D̂(l) = 1 +

P̂NL
(l)

4
. (6)

The finite-difference equations may be derived from

Eqs. (5) by introducing a discretization lattice x =

i∆x, z = p∆z for electric field envelopes E
(l)
i,p,

applying the implicit quasi-Crank–Nicholson finite-

difference approximation of derivative [3, 4] in the di-

rection of propagation z, using central finite-difference

approximation of the derivatives in the transverse x di-

rection, and evaluating nonlinear coupling terms in the

previous propagation layer,

D̂(l)
E

(l)
i,p+1 − E

(l)
i,p

∆z
= (7)

−iN̂ (l)
[

αE
(l)
i,p+1 − (1 − α)E

(l)
i,p

]

,

which form a tridiagonal linear system of equations and

can be solved by the Thomas algorithm, where α is

quasi-Crank–Nicholson parameter [13].

To simulate open space propagation in finite size

computation domain, the proper nonreflecting bound-

ary conditions should be applied at the upper and lower

boundaries of computation domain to remove spuri-

ous wave reflections from boundaries that dramatically

degrade the quality of results. The oldest method

to introduce absorbing boundary conditions (ABC) in

BPM is to put medium with complex refraction index

nl(x, z) = Renl(x, z) + i Im nl(x, z) at boundaries

[17]. But this method is numerically very expensive

because it requests a large number of grid points at

boundaries and careful optimization of complex index

profiles.

The most popular and efficient method for parax-

ial simulation is to use transparent boundary condi-

tions (TBC) where field at boundary is approximated
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by plane wave with the value guessed from the known

field on the previous propagation z-step [5],

E(l)(x0)/E
(l)(x1) = βl exp(ikxl∆x) , (8)

and a sign of kxl is checked to ensure only radiation

outflow. In this work we will test performance of three

realizations of TBC for nonparaxial BPM. In the first

formulation, adaptive TBC, no restrictions on βl were

applied. In the second one, controlled TBC, the value

of βl was checked and for cases of βl > 1 the substitu-

tion βl = 1 was used. In the third one, uniform TBC,

for all cases βl = 1 was used, which corresponded to

uniform single plane wave approximation at the bound-

ary of computation domain.

The third method to introduce efficient nonreflecting

boundaries is to use PML boundary conditions [7, 8].

Contrary to the first case of ABC, PML is an artifi-

cial absorbing material layer placed at the boundaries

[10]. The idea is not to use a physical absorber with

complex refraction index, but to change the propaga-

tion equations by introducing anisotropic conductivi-

ties σxl(x) for x coordinate in PML media and by per-

forming complex anisotropic mapping of Eqs. (3). In

this media we will use and test the nonlinear propaga-

tion operators P̂NL−PML
(l) for χ(2) nonlinear PML (NL-

PML) media written as

P̂NL−PML
(l)

=
1

k2
0ln

2
zl

( 1

1 − iµlσxl(x)

∂
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[ 1
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+ k2
0l(n

2
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)

, (9)

where µl = η0/k0n
2
pl, η0 is vacuum impedance, npl

are constant refractive indices of NL-PML media for

pump, signal, and idler waves, which can be chosen

to be equal to the index of the χ(2) media adjacent to

the nonlinear perfectly matched layer. Further, we will

also test termination of NL-PML by Dirichlet boundary

conditions, E(l)(x0) = 0 (NL-PML-D), and by TBC

(NL-PML-TBC).

3. Numerical results

In our test simulations of boundary conditions for

open space nonlinear nonparaxial propagation all three

interacting beams were extraordinary waves with wave-

lengths λ1 = 0.8 µm, λ2 = 1.55 µm, λ3 = 1.653 µm,

respectively, for pump, signal, and idler waves. We

studied the first order QPM interaction of these extraor-

dinary waves through the diagonal nonlinear coefficient

of LiNbO3 d33 = 36 pm/V (χ
(2)
33 = 2d33) [18]. From

Sellmeier equations [12] we defined refraction indices

of bulk LiNbO3 for three interacting waves as follows:

n1 = 2.175, n2 = 2.137, n3 = 2.134. Reference in-

dices in Eqs. (2, 3) were equal to those of bulk LiNbO3,

nz1 = n1, nz2 = n2, nz3 = n3 at the relevant frequen-

cies as for non-tilted propagation. BPM treats the prop-

agation of optical field along z as an initial value prob-

lem. We launched collineary Gaussian pump and signal

beams having half-waists w1 = w2 = 2.828 µm, and

no initial beam for idler was considered. Spatial soli-

tons were excited by pump and signal waves at powers

P1(0) = 8·1010 W/m and P2(0) = 8·107 W/m, re-

spectively, and with phase mismatch ∆β = 97.6 m−1

produced by χ(2) grating with period Λ = 20.316 µm

and duty cycle 0.5.

It is defined [14] that the paraxial FD-BPM model

can be used up to 15◦ tilt, and nonparaxial BPM based

on Padé (1, 1) approximants (Eqs. (5)) – up to 30◦

tilt beam propagation. Therefore we investigated the

effectiveness of boundary conditions for nonparaxial

propagation at 5◦ and 30◦ tilted propagation. In the

PML medium, we assumed a distribution of conduc-

tivities for pump, signal, and idler waves as σx1(ρ) =
σx2(ρ) = σx3(ρ) = σm(ρ/δ)N , where σm is the max-

imum conductivity, δ is the PML layer thickness, N is

the order of the polynomial used for conductivity pro-

file function, ρ is the distance from the beginning of

the PML. For both angles of test beam propagation the

thickness of the PML layer is δ = 0.8 µm, polynomial

order N = 2, and width of computation window 20 µm

including two PML layers. For 5◦ tilt, discretization is

∆x = ∆z = 0.04 µm and computation window length

is 300 µm. For 30◦, ∆x = 0.03 µm, ∆z = 0.02 µm,

and window length is 50 µm. At these propagation dis-

tances spatial solitary waves experience a single reflec-

tion from boundary. To quantitatively assess the effec-

tiveness of boundary conditions we study the global in-

tegral errors defined as follows:

ε
(l)
integ =

∑

z

∑

x

∣

∣I
(l)
comp(x, z) − I

(l)
exact(x, z)

∣

∣

2

∑

z

∑

x

∣

∣I
(l)
exact(x, z)

∣

∣

2
, (10)

where I
(l)
comp(x, z) are computed intensities of optical

fields, I
(l)
exact(x, z) are reference intensities of optical

field defined as exact, i. e. without soliton reflection

from the boundary and computed by the nonparaxial

method for the computation window width 160 µm.
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(a) (b)

Fig. 1. Integral global errors (y axis) for various formulations of boundary conditions for paraxial (FD-adaptive, uniform, and controlled

TBC) and nonparaxial (Padé-adaptive, uniform, and controlled TBC and NL-PML) propagation of pump wave component of spatial soliton

at the (a) 5◦ and (b) 30◦ tilt angles.

While performing evaluation of ε
(l)
integ the mesh points

of PML media are not included.

NL-PML media can be terminated by Dirichlet

boundary conditions (PML-D), i. e. the field at the

boundary mesh point is evaluated by E(l)(x0) ≡ 0, or

by TBC. If RTBC/D is a reflection coefficient of the

PML layer outer limit, terminated by TBC or Dirich-

let boundary conditions, respectively, then for Dirichlet

boundary conditions RD = 1 and for TBC RTBC ≪ 1.

Thus, one could usually expect smaller reflectivity for

termination of PML media by TBC. This above state-

ment about TBC reflectivity is working properly only

for paraxial FD-BPM simulation (see Fig. 1(a, b)). In

contrast, the nonparaxial formulation using Padé ap-

proximants of the propagation operator permits super-

posed waves with very different kxl values, and the

single plane wave approximation at boundary then be-

comes very poor [4]. It is well known [9] that TBC

fails for highly diverging beam and for the cases of

interference at boundary of multiple outgoing plane

waves. Figure 1 shows the global integral errors for

pump wave component of spatial soliton induced by re-

flection from boundary versus soliton propagation an-

gle and formulation of boundary conditions. For parax-

ial FD-BPM the adaptive TBC shows the best perfor-

mance. Big ε
(l)
integ of all formulations of FD-TBC for

30◦ tilt angle is mainly caused not by boundary condi-

tions but by failure in the direction of propagation of

spatial soliton simulated by paraxial FD-BPM. On the

contrary, for nonparaxial numerical technique based

on Padé (1, 1) approximant, adaptive TBC demonstrate

the worst performance both for 5◦ and 30◦ tilt angles.

Uniform and controlled TBC give comparable perfor-

mance for paraxial as well as nonparaxial propagation

at the 5◦ tilt angle. The controlled TBC show better

results than uniform TBC. Figure 1 also includes re-

sults on ε
(l)
integ for NL-PML boundary conditions termi-

nated by Dirichlet boundary conditions and controlled

TBC applied in the nonparaxial numerical technique.

Simulations were performed for NL-PML-TBC with

σm = 2·105 (Ω·m)−1 and σm = 2·104 (Ω·m)−1 for

5◦ and 30◦ tilt angles, respectively. For NL-PML-D we

used σm = 4·105 (Ω·m)−1 and σm = 105 (Ω·m)−1

for 5◦ and 30◦ tilt angles, respectively. It is clear that

NL-PML together with controlled TBC give the best

results.

Further improvement of this performance can be ob-

tained by optimizing values of PML layer parameters

N , σm, and δ. Figure 2 presents dependence of inte-

gral global errors of boundary conditions on conductiv-

ity profile polynomial order N . It is clear that optimal

performance for average 5◦ and 30◦ tilted beam prop-

agation is N = 2. Figure 2 also shows effect of non-

linearity on performance of PML. Due to better index

matching at boundaries in nonlinear interaction regime

the NL-PML has lower reflectivity, especially at 5◦ tilt

angles, than linear PML (L-PML). To achieve lowest

reflectivity from boundaries of computation domain, it

is important to correctly choose σm and δ parameters of

PML. Figure 3 depicts results of optimization of these

PML parameters. It is shown that the NL-PML ter-

minated by controlled TBC usually have better perfor-

mance than NL-PML terminated by Dirichlet boundary

conditions. There is an optimal σm to obtain minimal

ε
(l)
integ. In Fig. 1(a) we can see some instability of NL-

PML terminated by controlled TBC. But by increasing

the PML thickness δ (Fig. 3(b)), this instable behaviour

disappears and we can reduce errors almost by two or-
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(a) (b)

Fig. 2. Integral global errors (y axis) versus conductivity profile polynomial order N for linear and nonlinear PML boundary conditions for

nonparaxial propagation of pump wave of parametric spatial soliton at the (a) 5◦ and (b) 30◦ tilt angles.

(a)

(b)

(c)

Fig. 3. Integral global errors (y axis) versus maximum conductivity

σm ([Ω·m]−1, x axis) for (a) 5◦ tilt angle and 0.8 µm PML layer

thickness, (b) 5◦ tilt angle and 1.6 µm PML layer thickness, (c) 30◦

tilt angle and 0.8 µm PML layer thickness, NL-PML terminated by

Dirichlet boundary conditions and controlled TBC.

ders for NL-PML-controlled-TBC as compared to NL-

PML-D. This effect of decreasing of boundary reflec-

tivity is more visible for small angle tilted soliton prop-

agation. For 30◦ tilted propagation of spatial soliton,

(Fig. 3(c)), the difference between minima of ε
(l)
integ is

much smaller. NL-PML-D boundary conditions have

higher reflectivity than NL-PML-controlled-TBC, but

the advantage of termination of NL-PML by Dirichlet

boundary conditions is higher stability and robustness

of these boundary conditions.

4. Conclusion

In this work testing of different formulations of

boundary conditions for paraxial and nonparaxial FD-

BPM was carried out. It is defined that adaptive TBC

formulation is the best one for paraxial beam propaga-

tion but the worst one for the nonparaxial beam propa-

gation method. Introduction of controlled TBC yields

better performance than adaptive TBC for nonparaxial

BPM. The NL-PML is more efficient than linear PML

boundary conditions for small tilt angle nonparaxial

beam propagation, because it reduces index mismatch-

ing at boundaries induced by optical nonlinearity. This

effect is important at small tilt angle propagation of

spatial solitons. It is established that NL-PML termi-

nated by Dirichlet boundary conditions is more robust.

The NL-PML terminated by controlled TBC gives the

best performance for small tilt angle nonparaxial prop-

agation providing optimization of NL-PML thickness

and maximum conductivity.
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EFEKTYVIŲ NETIESINIŲ TOBULAI SUDERINTŲ SLUOKSNIŲ KRAŠTINIŲ SĄLYGŲ
MODELIAVIMAS NEGRETAAŠIAM PLUOŠTO SKLIDIMO METODUI

R. Petruškevičius

Fizikos institutas, Vilnius, Lietuva

Santrauka

Netiesinės tobulai suderintų sluoksnių kraštinės sąlygos sėk-

mingai pritaikytos negretaašiam pluošto sklidimo metodui. Paro-

dyta, kad netiesiniai tobulai suderinti sluoksniai ypač veiksmin-

gai sugeria erdvinius solitonus, krintančius į skaičiavimo srities

kraštą, esant plačiam kampiniam bangų sklidimo spektrui. Naudo-

jant pakankamai glotnius laidumo profilius ir netiesinių tobulai su-

derintų sluoksnių užbaigimą kontroliuojamomis skaidriomis kraš-

tinėmis sąlygomis, galima papildomai žymiai pagerinti skaitmeni-

nių sprendinių tikslumą, nagrinėjant negretaašių pluoštų sklidimą

mažais kampais.


