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In this work a theory of the degenerate four-photon parametric scattering (FPS) is developed in a liquid suspension of
transparent microspheres (heterogeneous medium), the nonlinearity of which is caused by the change in the microsphere
concentration under the action of gradient forces in the electromagnetic field of interacting waves. It is shown that the water
suspension of latex spheres with diameter d = 0.234 µm and concentration N0 = 6.5·1010 cm−3, in effect of the FPS process,
corresponds to a cubic nonlinear medium with the optical Kerr coefficient n2 that is larger by a factor of 105 than in the case
of CS2.
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1. Introduction

The nonlinearity of a liquid suspension of transpar-
ent microspheres (heterogeneous medium) is explained
by the fact that their concentration changes under the
action of gradient forces in an electromagnetic field of
interacting waves. It is known that the gradient forces
arising in a liquid suspension of microspheres under the
action of a laser radiation interference field draw mi-
crospheres with a large refractive index n0 > n̄ (where
n0 and n̄ are refractive indices of the microspheres and
the liquid, respectively) into the region with a maxi-
mum radiation intensity (interference field antinode).
The increasing concentration of microspheres in the
region with higher radiation intensity leads to an in-
crease in the refractive index of the suspension and, ac-
cordingly, to a corresponding decrease in this index in
the region with a lower radiation intensity (interference
field nodes). In the case where n0 < n̄ the gradient
forces draw microspheres into the region with a lower
intensity and, by doing so, also increase the refractive
index of the suspension in the region with higher radia-
tion intensity. Thus, independently of ratio M = n0/n̄,
a liquid suspension of transparent microspheres – a het-
erogeneous medium formed artificially – behaves like a
nonlinear self-forming medium with a positive optical
Kerr coefficient n2 > 0 [1]. The possibility of using

such heterogeneous medium as a nonlinear optical ma-
terial was noted for the first time in [2].

The concentration nonlinearity of a heterogeneous
medium, which is due to the spatial modulation of rela-
tively large particles (microspheres) in the viscous liq-
uid, is characterized by a markedly longer time of its
establishment as compared to the nonlinearity of or-
dinary “atomic” media [3]. Since microspheres have
large sizes (∼ µm), their spatial modulation by gradi-
ent forces results in the appearance of unusually large
nonlinear coefficient [1].

Below is the theory, developed by us, of four-
wave mixing (FWM) which is based on a joint sys-
tem of reduced wave equations and a two-dimensional
Smoluchowski equation for the concentration of mi-
crospheres, the solution of which is presented in the
form of Fourier series with time-dependent amplitudes
of concentration gratings with multiple periods induced
by interacting waves. The gradient forces arising in
an interference field of co- and counter-propagating
waves were calculated in the Rayleigh–Hans approxi-
mation. The effect of suppression of four-wave mixing
because of the reduction of the resulting components of
the gradient forces to zero for microspheres of certain
sizes and certain angles of convergence of interacting
waves has been predicted. A stationary regime of four-
wave mixing has been analyzed in the diffusion
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Fig. 1. Geometry of four-wave mixing: 2Θ is the angle of conver-
gence of the interacting waves, L is the length of cell with suspen-

sion.

limit and the conditions of the appearance of parametric
generation of a pair of mutually conjugate waves have
been determined, with account for the radiation losses
caused by the Rayleigh scattering on microspheres [4].

2. Basic equations

The process of four-wave mixing in a liquid suspen-
sion of transparent microspheres will be considered in
the Rayleigh–Hans approximation [5]:

|m − 1| ≪ 1 and 4πa|m − 1| ≪ λ , (1)

where a is the radius of a microsphere, λ is the radiation
wavelength. If inequality (1) is fulfilled, the diffraction
of radiation on the microspheres can be ignored [5] for
a given acting field, i. e., the so-called electrostatic ap-
proximation can be used [6].

Let us represent the acting electromagnetic field in
the form of a sum of linearly polarized plane waves
with a frequency ω:

E =
1

2

4
∑

l=1

El(z, t)ei(ωt−~kl~r) + c. c. , (2)

where El(z, t) is the wave amplitude, ~kl is the wave
vector (see Fig. 1). We will assume that the interacting
waves are polarized in the duration orthogonal to the
plane (z, x).

In the case of four-wave mixing, for microspheres
the weak radiation forces of the light pressure can be
ignored in the theory considered [6, 7]. In this case,
a decisive contribution to the process of light-induced
formation of the concentration response is made by the
gradient forces, the amplitude of which is determined
by expression [8]

~F∇ = α0

∫

V

~∇|Ē|2dV , (3)

where

α0 =
3

4π
n̄2 m2 − 1

m2 + 2
(4)

is the specific polarizability of a microsphere,

|Ē|2 =
1

2

{

|E0|2 +
[

E1E
∗
2ei2(kzz+kxx)

+ E3E
∗
4ei2(kzz−kxx) + (E1E

∗
4 + E∗

2E3)e
i2kzz

+ (E1E
∗
3 + E∗

2E4)e
i2kxx + c. c.

]}

(5)

is the time averaged intensity of the acting radiation,
|E0|2 =

∑4
l=1 |El|2, V = (4π/3)a3 is the volume of

a microsphere, kz = k cos Θ and kx = k sin Θ are the
corresponding projections of the wave vector ~k, k =
(ω/c)n̄. The integral in (3) in essence is the integral of
overlap of a microsphere with the nonuniform field of
the acting radiation.

We will assume that the products of the complex
conjugate amplitudes of interacting waves are slow
functions of the longitudinal coordinate,

∂|ElE
∗
l′ |

∂z
≪ kz|ElE

∗
l′ | . (6)

In this approximation the integral in (3) can be exactly
calculated in spherical coordinates with the use of (5)
[9]. Integrating (3), we find the gradient force

~F∇ = ĵFx + k̂Fz , (7)

where ĵ and k̂ are orthogonal unit vectors,

Fκ = Fκ0e
i2(kzz−kxx) + Fκ1e

i2(kzz+kxx)

+ Fκ2e
i2kκκ + c. c. (8)

are the components of the gradient force vector ~F∇,
κ ∈ {x, z}. The amplitudes of the harmonics of the Fκ

components are determined by the relations

Fx0 = −iα0kxE3E
∗
4V0 = −(kx/kz)Fz0 ,

Fx1 = iα0kxE1E
∗
2V0 = (kx/kz)Fz1 ,

Fx2 = iα0kx(E1E
∗
3 + E∗

2E4)Vx ,

Fz2 = iα0kz(E1E
∗
4 + E∗

2E3)Vz , (9)

where

V0 = (aΛ0)
3/2J3/2(2πa/Λ0) ,

Vκ = (aΛκ)3/2J3/2(2πa/Λκ) . (10)
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Here J3/2(ξ) is the cylindrical Bessel function, Λ0 =
π/k and Λκ = π/kκ are the periods of the interfer-
ence pattern of the corresponding pairs of waves. The
constant coefficients V0 and Vκ in (9) appear on in-
tegration of (3) and account for the nonuniformity of
radiation inside the microspheres. It is easy to show
that, at ξ ≪ 1, V = V0 = Vκ. It is apparent that
|Fx/Fz | ∝ tan Θ and, consequently, in the region of
small angles Θ ≪ π/2 a dominating part in the for-
mation of the concentration response is played by the
longitudinal component (z component) of the gradient
force. As it follows from (10), for a certain ratio be-
tween the radius a of the microspheres and the period
Λ0,κ of interference pattern, namely, at 2πa/Λ0,κ = ξi

(where ξi are roots of the cylindrical Bessel function
J3/2(ξ), i = 1, 2, . . .), independently of their position,
the corresponding component of the gradient force is
equal to zero.

The so-called “zero-force” effect is due to the equal
action of its oppositely directed components acting on
the corresponding elements of a microsphere. This ef-
fect has been theoretically predicted independently in
[6, 9]. It follows from (10) that at certain values of pa-
rameters of the system (for example, at 2kxa = ξ1,
2kza = ξ2) the components of gradient forces Fx2 are
equal to zero (i. e. Vκ = 0) independently of the inten-
sity of the acting radiation.

Using the values of the first two roots of the Bessel
function J3/2(ξ) [10], it can be shown that the condi-
tion Vκ = 0 is fulfilled at a/λ = 0.709 and tan Θ =
(ξ1/ξ2) ≈ 0.58 ⇒ Θ ≈ 30◦ in suspensions with a
small relative refractive index, |m − 1| 6 10−2.

Thus, because of the “zero-force” effect, the four-
wave mixing caused by a concentration nonlinearity
can be practically completely suppressed at certain
sizes of the microspheres and certain angles of conver-
gence of interacting waves. Note that, depending on
the radius a of the microspheres, the amplitudes of the
gradient forces (9) are alternating functions. Therefore,
spheres of certain sizes can be drawn into antinodes (at
J3/2(ξ) > 0) or into nodes (at J3/2(ξ) < 0) of the in-
terference pattern of the field. This movement of the
microspheres is explained physically by their tending
to overlap with a maximum number of antinodes [6, 9].

To determine the concentration response of micro-
spheres, induced by the electromagnetic field (1), we
will use the two-dimensional Smoluchowski equation
(see, for example, [11]):

∂N

∂t
= D∆⊥N − b

{

N

(

∂Fx

∂x
+

∂Fz

∂z

)

+

(

Fx
∂N

∂x
+ Fz

∂N

∂z

)}

, (11)

where N is the concentration of the microspheres
[cm−3], D = kBT/(6πνa) is the diffusion coefficient
[cm2/s], kB is the Boltzmann constant, T is the temper-
ature, ν is the viscosity of the liquid, b = D/(kBT ) is
the mobility of microspheres, ∆⊥ = ∂2/∂x2+∂2/∂z2.
Equation (11) is valid in the region t ≫ t∗ under the
condition that the gradient force ~F∇ is a slow function
on the time and space scales t∗ and l∗ determined by
the relations [11, 12]

t∗ = bm and l∗ =

√

kBT

m
t∗ , (12)

where m is the mass of microsphere. In particular, t∗ ≃
3·10−9 s and l∗ ≃ 7·10−9 cm for an aquatic suspension
of latex microspheres of radius a = 1.17·10−5 cm with
the density of 1 g/cm3 at room temperature [1].

Equation (11) is conveniently solved in the form of
the harmonic series

N(x, z, t) =
∞
∑

m,n=−∞

Nmn(t)ei2(mkzz+nkxx) , (13)

where N00 = 〈N〉x,z = N0 = const is the initial con-
centration of the microspheres, 〈. . .〉x,z means spatial
averaging, and N∗

mn = N−m,−n. Substitution of (13)
into (11), in view of (8), gives the following system
of kinetic equations for the amplitudes Nmn(t) of the
concentration harmonics:

(

∂

∂t
+ Wmn

)

Nmn

= amnNm−1,n+1 − a∗mnNm+1,n−1

+ bmnNm−1,n−1 − b∗mnNm+1,n+1 + cnNm,n−1

− c∗nNm,n+1 + dmNm−1,n − d∗mNm+1,n , (14)

where

Wmn = 4D[(mkz)
2 + (nkx)2] ,

amn = 2α0b(mk2
z − nk2

x)E3E
∗
4V0 ,

bmn = 2α0b(mk2
z + nk2

x)E1E
∗
2V0 ,

cn = 2α0bnk2
x(E1E

∗
3 + E∗

2E4)Vx ,

dm = 2α0bmk2
z(E1E

∗
4 + E∗

2E3)Vz . (15)

In the case where the radii of the microspheres a ≪
Λ0, the convergence angles Θ ≪ π/2 are small, and
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the gradient force component Fx can be ignored, the
system of equations (14) takes the simpler form

(

∂

∂t
+ Wmn

)

Nmn = 2α0bV mk2
z

× [E3E
∗
4Nm−1,n+1 − E∗

3E4Nm+1,n−1

+ E1E
∗
2Nm−1,n−1 − E∗

1E2Nm+1,n+1

+ (E1E
∗
4 + E∗

2E3)Nm−1,n

− (E∗
1E4 + E2E

∗
3)Nm+1,n] . (16)

The nonlinear polarization of the suspension of micro-
spheres caused by a change in their concentration under
the action of gradient forces is determined by relation
[6]

P =
1

2
α0V N(x, z, t)

4
∑

l=1

El(z, t)e−i(ωt−~kl~r) + c. c.

(17)
Substitution of (2) and (17) into the wave equation
gives the following system of reduced equations for the
amplitudes of interacting waves:

cos Θ
∂E1

∂z
+

1

v

∂E1

∂t
= −ρE1 (18a)

+ iγ(E1 + χ
11

E2 + χ
01

E3 + χ
10

E4) ,

− cos Θ
∂E2

∂z
+

1

v

∂E2

∂t
= −ρE2 (18b)

+ iγ(E2 + χ∗

11
E1 + χ∗

10
E3 + χ∗

01
E4) ,

cos Θ
∂E3

∂z
+

1

v

∂E3

∂t
= −ρE3 (18c)

+ iγ(E3 + χ∗

01
E1 + χ

10
E2 + χ

1,−1
E4) ,

− cos Θ
∂E4

∂z
+

1

v

∂E4

∂t
= −ρE4 (18d)

+ iγ(E4 + χ∗

10
E1 + χ

01
E2 + χ∗

1,−1
E3) ,

where v is the velocity of light in the suspension, γ =
2π(k/n̄2)α0V N0, χmn = Nmn/N0. In (18) the re-
lation N∗

mn = N−m,−n is taken into account and the
factor of amplitude losses caused by the Rayleigh scat-
tering on the microspheres is phenomenologically in-
troduced :

ρ =
8π

3
N0k

4
(

m2 − 1

m2 + 2

)2

a6 . (19)

Fig. 2. Stationary distribution of normalized intensities of weak
waves Ii = |Ei|

2/|E30|
2 (i = 3, 4) for different values of intensity

of the reference waves at m = 1.195, a = 1.25·10−5 cm, N0 =
6.5·10−5 cm−3, k = 1.6·105 cm−1, T = 300 K, Θ = 3.2◦,
L = 10−2 cm (I3 are solid curves, I4 are dotted curves): for 1

curves 2α0V N0/(kBT )|E0|
2 = 3.1·102 , for 2 curves it is 4.9·102,

for 3 curves it is 7.0·102.

It follows from (18) that, of all the excited concentra-
tion gratings (13), two pairs of gratings participate di-
rectly in the four-wave mixing: one pair of orthogonal
gratings Nκ ∝ cos 2kκκ (κ = x, z) leads to a para-
metric connection and an energy exchange between the
waves, and the other pair N± ∝ cos 2(kzz±kxx) leads
to the self-action effects. Because of the spatial aver-
aging of the wave equations, the other concentration
gratings do not contribute directly to the FWM process.
Their role reduces to the influence on the amplitudes of
the main gratings, Nκ and N±.

The joint system of wave (18) and kinetic equation
(14) with the corresponding boundary

E1(0, t) = E10(t) , E2(L, t) = E20(t) ,

E3(0, t) = E30(t) , E4(L, t) = 0 (20)

and initial

Nmn(t = −∞) = 0 , where m 6= 0, n 6= 0,

N00(t = −∞) = N0 (21)

conditions describes the four-wave mixing of waves of
arbitrary intensity which is due to the concentration
nonlinearity caused by the action of gradient forces on
the transparent microspheres. Figure 2 illustrates the
results of the numerical solution of the joint system of
Eqs. (18) and (14) in the established regime for input
pulses (20) of rectangular form at |Ej0|2 = |E0|2 ≫
|E30|2.
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3. Theory of four-wave mixing in the diffusion limit

The diffusion approximation [4]

N(z, x, t) = N0 + N̄(z, x, t) , |N̄ | ≪ N0 , (22)

imposes a restriction on the intensity of the interacting
waves and allows the terms proportional to the ampli-
tudes of the concentration gratings Nmn (m,n 6= 0)
on the right-hand side of (14) to be neglected. In this
case, from (14) we obtain the following equations for
the components χmn determining the FWM process:

(

∂

∂t
+ 4Dk2

x

)

χ
01

= 2α0Vxbk2
x(E1E

∗
3 + E∗

2E4) , (23a)

(

∂

∂t
+ 4Dk2

z

)

χ
10

= 2α0Vzbk
2
z(E1E

∗
4 + E∗

2E3) , (23b)

(

∂

∂t
+ 4Dk2

)

χ
11

= 2α0V0bk
2E1E

∗
2 , (23c)

(

∂

∂t
+ 4Dk2

)

χ
1,−1

= 2α0V0bk
2E3E

∗
4 . (23d)

Evidently, in the diffusion limit, the times of estab-
lishment of concentration gratings τ0 = 1/(4Dk2) =
(Λ0/2π)2/D and τκ = 1/(4Dk2

κ) = (Λκ/2π)2/D
are independent of the radiation intensity and are de-
termined by the diffusion coefficient and the periods of
diffractional pattern formed by the interacting waves.
Note that for microspheres having small radii (at V0 =
Vκ = V ) the stationary values of the amplitudes of the
concentration gratings are independent of the angle of
convergence of the interacting waves.

In the stationary regime at t ≫ τκ, the Eqs. (18) in
view of (23) take the form

cos Θ
∂E1

∂z
= −ρE1 + iγ

{

a0b

2D
(Vx + Vz)E

∗
2E3E4

+

[

1 +
a0b

2D
(V0U2 + VxU3 + VzU4)

]

E1

}

, (24a)

− cos Θ
∂E2

∂z
= −ρE2 + iγ

{

a0b

2D
(Vx + Vz)E

∗
1E3E4

+

[

1 +
a0b

2D
(V0U1 + VzU3 + VxU4)

]

E2

}

, (24b)

cos Θ
∂E3

∂z
= −ρE3 + iγ

{

a0b

2D
(Vx + Vz)E

∗
4E1E2

+

[

1 +
a0b

2D
(VxU1 + VzU2 + V0U4)

]

E3

}

, (24c)

− cos Θ
∂E4

∂z
= −ρE4 + iγ

{

a0b

2D
(Vx + Vz)E

∗
3E1E2

+

[

1 +
a0b

2D
(VzU1 + VxU2 + V0U3)

]

E4

}

, (24d)

where Ul = |El|2. Ignoring the influence of the weak
waves E3 and E4 on the powerful reference waves E1

and E2, from (24) at ρ = 0 we find

cos Θ
∂E3

∂z
(25a)

= i

{

κ̄3E3 + βE∗
4E10E20e

iκ̄2L̂+i(κ̄1−κ̄2)ẑ
}

,

− cos Θ
∂E∗

4

∂z
(25b)

= i

{

κ̄4E4 + βE3E
∗
10E

∗
20e

−iκ̄2L̂+i(κ̄2−κ̄1)ẑ
}

,

where

κ̄1 = γ

(

1 +
a0b

2D
V0U2

)

,

κ̄2 = γ

(

1 +
a0b

2D
V0U1

)

, (26a)

κ̄3 = γ

[

1 +
a0b

2D
(VxU1 + VzU2)

]

,

κ̄4 = γ

[

1 +
a0b

2D
(VzU1 + VxU2)

]

, (26b)

β = γa0b/(2D)(Vx + Vz) is the parametric coupling
coefficient ẑ = z/ cos Θ, L̂ = L/ cos Θ. The solution
of (25) with the boundary conditions E3(0) = E30 and
E∗

4(L̂) = 0 has the form
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Fig. 3. Series of solutions of the equation β(a, Θ) = 0 at k =
1.6·105 cm−1.

E3(z) = E30 · ei(∆/2+κ̄3)ẑ (27a)

× 2Γ cos[Γ · (L̂ − ẑ)] + i∆ sin[Γ · (L̂ − ẑ)]

2Γ cos[Γ · L̂] + i∆ sin[Γ · L̂]
,

E∗
4(z) = i2βE30

√

U1U2 · e−i(∆/2−κ̄4)ẑ+κ̄2L̂

× sin[Γ · (L̂ − ẑ)]

2Γ cos[Γ · L̂] + i∆ sin[Γ · L̂]
, (27b)

where

Γ =
√

β2U1U2 + ∆2/4 (28)

is the parametric gain increment of weak radiation,

∆ = (κ̄1 − κ̄2 − κ̄3 + κ̄4)

= γ
a0b

2D
(V0 + Vx − Vz) · (U2 − U1) (29)

is the phase mismatch of the interacting waves.
Clearly, the amplitude of the inverse wave E4 is pro-

portional to the coefficient β of parametric coupling.
Using relation (10), it can be shown that the coefficient
β reduces to zero at certain values of the microsphere
radius and the interacting wave convergence angle Θ.
At these values of the parameters a and Θ, because of
“zero-force” effect, the concentration gratings with pe-
riod Λκ that are responsible for the four-wave mixing
are not excited, and so the parametric generation of the
inverse wave E4 does not occur. Figure 3 shows a se-
ries of curves on the plane (a,Θ) that demonstrate the
values of a and Θ at which the parametric coupling co-
efficient β is equal to zero.

It follows from (27) that at ∆ = 0, Γ = Γ0 =
|β|

√
U1U2 the linear FWM theory imposes a restric-

tion on the intensities of reference waves because of the
possibility of parametric generation of a pair of mutu-

ally conjugate waves E3 and E∗
4 , the threshold of which

is determined from condition [13]

Γ0L

cos Θ
=

π

2
. (30)

In view of the definition of the coupling coefficient β,
we obtain from (30)

2kN0
a2

0b

n̄2D
V |Vx + Vz|

√

U1U2
L

cos Θ
= 1 . (31)

It follows from (29) that the condition ∆ = 0 is fulfilled
in two cases, where either U1 = U2 or (V0+Vx−Vz) ≡
V̄ = 0. Note that for microspheres of small sizes, for
which a ≪ Λ0 and V0 = Vκ = V , the condition ∆ = 0
is fulfilled only at Uj = U , j = 1, 2, as in the case of
ordinary media with a Kerr nonlinearity [13].

Figure 4 shows the dependence of the parameter V̄
on the angle Θ for different values of the coefficient
ξ = 2ka. It is seen from Fig. 4 that the parameter
V̄ (Θ) can be equal to zero in the region ξ > 2.5. The
angle Θ = π/2 corresponds to the threshold value of
the coefficient ξ = ξthr ≈ 2.5, at which V̄ = 0. At
ξ > 2.5 the corresponding values of the angle Θ can
be much smaller. Consequently, in the region ξ > 2.5
(a > 0.2λ) the conditions of parametric generation of
a weak radiation at non-equal intensities of the refer-
ence waves (U1 6= U2) can be realized at correspond-
ing values of the convergence angle Θ. Note that at
relatively large angles (18) should contain derivatives
with respect to the transverse coordinate (sin Θ∂/∂x).

It can be shown that account of the linear losses
(ρ 6= 0) in the case where V̄ = 0 leads to the following
relation determining the threshold of parametric gener-
ation of weak waves:

tan(Γ̂ · L̂) = − Γ̂

ρ
, (32)

where Γ̂ =
√

β2U1U2e−2ρL̂ − ρ2 > 0 .
Figure 5 shows dependence of the threshold value of

Γ0 = |β|
√

U1U2 on the length L̂ for different values
of the amplitude loss factor ρ. It is seen from Fig. 5
that at ρ 6= 0 the optimum value of the length L̂ is
equal to (ρL̂)opt = 0.74. For comparison, we note
that approximate analytical estimations give the value
of (ρL̂)opt = 0.69 for an ordinary medium with a cu-
bic nonlinearity [14]. Comparison of solution (27) with
the ones obtained for a medium with the phase cubic
nonlinearity shows that the optical Kerr coefficient is
n2 ≈ 4·10−3 cm2/MW for an aquatic suspension of
latex microspheres (m = 1.195, N = 6.5·1010 cm−3,
and a = 0.117 µm) at the wavelength λ = 5145 Å (an
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Fig. 4. Dependence of parameter V̄ on the angle Θ for different values of the coefficient ξ = 2ka at k = 105 cm−1.

Fig. 5. Dependence of the normalized threshold intensity Γ0 of the reference waves on the length L̂ for different values of the coefficient ρ.

argon laser). The value n2 = 3.6·10−3 cm2/MW [1]
that is measured experimentally for the same values of
the suspension parameters is close to the theoretical es-
timate. Note that this value of n2 is larger by a factor
of 105 than that for the nonlinear liquid CS2 [13].

4. Conclusion

In this work, a theory of four-wave mixing in a liquid
suspension of transparent microspheres is developed,
the nonlinearity of which is due to a change in micro-
sphere concentration under the action of gradient forces

in the electromagnetic field of interacting waves. The
effect of suppression of four-wave mixing because of
the reduction of the resulting components of the gra-
dient forces to zero for microspheres of certain sizes
and certain angles of convergence of interacting waves
has been predicted. A stationary regime of four-wave
mixing has been analyzed in the diffusion limit, and the
conditions of the appearance of parametric generation
of a pair of mutually conjugate waves have been deter-
mined with account for the radiation losses caused by
the Rayleigh scattering on microspheres. It is shown
that a liquid suspension of dielectric microspheres – an
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artifically created heterogeneous medium, each compo-
nent of which does not exhibit nonlinear optical proper-
ties – can be used as a highly effective wideband non-
linear medium for the low-intensity laser radiation of
long duration.
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KETURBANGIS MAIŠYMAS SKYSTOJE DIELEKTRINIŲ MIKROSFERŲ SUSPENSIJOJE

A.A. Afanas’ev, A.N. Rubinov, S.Yu. Mikhnevich, I.Ye. Yermolayev

Fizikos institutas, Minskas, Baltarusija

Santrauka

Pateikta teorija, aprašanti išsigimusią keturfotonę parametrinę
sklaidą (KPS) skystoje skaidrių mikrosferų suspensijoje (įvairia-
lytėje medžiagoje), kurios netiesiškumą nulemia mikrosferų kon-
centracijos pokytis, susidaręs veikiant gradientinėms jėgoms sąvei-
kaujančių bangų elektromagnetiniuose laukuose. Parodyta, kad

latekso sferų, kurių diametras d = 0, 234 µm ir koncentracija
N0 = 6, 5·1010 cm−3, vandens suspensijoje vykstančios KPS
efektyvumas atitinka kubinę netiesinę terpę, kurios optinis Kero
koeficientas n2 daugiau kaip 105 kartų didesnis už atitinkamą CS2

koeficientą.


