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We consider the influence of two resonant laser beams (to be referred to as the control and probe beams) on the mechanical
properties of a degenerate atomic gas. The control and probe beams of light are assumed to have orbital angular momenta
(OAM) and act on the three-level atoms in the electromagnetically induced transparency (EIT) configuration. We have carried
out an explicit analysis of the quantum dynamics of the atoms coupled with the two laser beams. Using the adiabatic approxi-
mation, we have obtained an effective equation of motion for the atoms driven to the dark state. The equation contains a vector
potential type interaction as well as an effective trapping potential. The effective magnetic field is shown to be oriented along
the propagation direction of the control and probe beams containing OAM. Its spatial profile can be controlled and shaped by
choosing the proper laser beams. We have demonstrated how to generate a constant effective magnetic field both in the disc
and ring geometries of the atomic trap. We have also studied situations where the effective magnetic field exhibits a radial
dependence. We have shown that the effective magnetic field can be concentrated within a region where the effective trapping
potential holds the atoms. Furthermore the estimated magnetic length can be considerably smaller than the size of the atomic
cloud.
Keywords: slow light, electromagnetically induced transparency, ultracold atomic gases, degenerate Fermi gases, atomic
Bose–Einstein condensates, effective magnetic field, dark states
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1. Introduction

Recent experimental advances in trapping and cool-
ing atoms have made it possible to produce atomic
Bose–Einstein condensates (BECs) [1–4] and degen-
erate Fermi gases [5–7] forming at temperatures of the
millikelvin range. The atomic BECs and degenerate
Fermi gases are the systems where an atomic physi-
cist often meets the physical phenomena encountered
in condensed matter physics. For instance, atoms in op-
tical lattices are often studied using the Hubbard model
[8] familiar from the solid state physics.

Ultracold atomic gases have turned out to be a re-
markably good medium for studying a wide range of
physical phenomena. This is mainly due to the fact that
it is relatively easy to experimentally manipulate pa-
rameters of the system, such as the strength of interac-
tion between the atoms, properties of a lattice in which
the atoms are trapped, the geometry of an external trap,
etc. Such a freedom of manipulating the parameters is

∗ The report presented at the 36th Lithuanian National Physics Con-
ference, 16–18 June 2005, Vilnius, Lithuania.

usually not accessible in other systems known from the
condensed matter or solid state physics.

Atoms forming quantum gases are electrically neu-
tral particles, and there is no vector potential type cou-
pling of the atoms with a magnetic field. Therefore, a
direct analogy between the magnetic properties of de-
generate atomic gases and solid state phenomena is not
necessarily straightforward. It is possible to produce an
effective magnetic field in a cloud of electrically neutral
atoms by rotating the system so that a vector potential
would appear in the rotating frame of reference [9–11].
This would correspond to a situation where the atoms
feel a uniform magnetic field. Yet stirring an ultracold
cloud of atoms in a controlled manner is a rather de-
manding task.

There have also been suggestions to take advantage
of a discrete periodic structure of an optical lattice to in-
troduce assymetric atomic transitions between the lat-
tice sites [12–14]. Using this approach one can induce
a nonvanishing phase for the atoms moving along a
closed path on the lattice, i. e. one can simulate a mag-
netic flux [12–14]. However, such a way of creating the

c© Lithuanian Physical Society, 2005
c© Lithuanian Academy of Sciences, 2005 ISSN 1648-8504
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effective magnetic field is inapplicable to an atomic gas

that does not constitute a lattice.

A significant experimental advantage would be

gained if a more direct way could be used to induce an

effective magnetic field. In the previous papers [15, 16]

we have shown how this can be done using two light

beams in an electromagnetically induced transparency

(EIT) configuration. Here we present a more detail

analysis of the phenomenon for various spatial distribu-

tions of the laser fields. We demonstrate that if at least

one of these beams contains an orbital angular momen-

tum (OAM), an effective magnetic field appears, which

acts on the electrically neutral atoms. In other words,

the coupling between the light and the atoms will pro-

vide an effective vector potential in the atomic equa-

tions of motion. Compared to the rotating atomic gas,

where only a constant effective magnetic field is cre-

ated [9–11], using optical means will be advantageous

since the effective magnetic field can now be shaped

by choosing the proper control and probe beams. Note

that the appearance of the effective vector potential is a

manifestation of the Berry connection which is encoun-

tered in many different areas of physics [17–19].

The outline of the paper is as follows. In Sect. 2

we present the general theory of adiabatic motion of

multilevel atoms. The equations of motion contain the

terms due to effective vector and trapping potentials

describing an effective magnetic field. In contrast to

our previous letter [15], the emerging effective poten-

tials are now fully Hermitian. Yet, the two formula-

tions are equivalent. In Sect. 3 we define a system of

three level atoms in the Λ-configuration and present the

equations of motion for the atoms driven to the dark

state by the control and probe beams of light. In do-

ing this we allow the two beams to have orbital angular

momenta along the propagation axis z. In Sects. 4 and

5 we analyze the effective magnetic field and effective

trapping potential in the case where at least one of the

laser beams contains an OAM. We show that the spatial

profile of the effective magnetic field can be controlled

by applying proper control and probe beams. The con-

cluding Sect. 6 summarizes the findings.

2. General equations of the atomic motion

2.1. Translational motion for the multilevel atom

Let us begin with a general treatment of the transla-
tional motion of an atom taking into account its internal
degrees of freedom. The full atomic Hamiltonian is

Ĥ =
p̂2

2M
+ Ĥ0(r) + V̂ (r), (1)

where p̂ ≡ −i~∇ is the momentum operator for an
atom positioned at r, and M is the atomic mass. Here
the Hamiltonian Ĥ0(r) describes the electronic degrees
of freedom of the atom, and V̂ (r) represents an ex-
ternal trapping potential. Note that the Hamiltonian
Ĥ0(r) can also accommodate effects due to external
light fields (if any). For fixed r the electronic Hamil-
tonian Ĥ0(r) can be diagonalised to give a set of N
eigenvectors |χn(r)〉 and eigenvalues εn(r), with n =
1, 2, . . . , N . The full atomic wave function Φ is then
expanded as

|Φ(r)〉 =
N

∑

n=1

Ψn(r)|χn(r)〉 , (2)

where a composite wave function Ψn(r) describes the
translational motion of the atom in the electronic state
n.

Substituting Eq. (2) into the Schrödinger equation
i~∂Φ/∂t = ĤΦ, one arrives at a set of coupled equa-
tions for the components Ψn. Introducing a column
Ψ = (Ψ1,Ψ2, ...,ΨN )T , it is convenient to represent
these equations in a matrix form:

i~
∂

∂t
Ψ =

[

1

2M
(−i~∇− A)2 + U

]

Ψ, (3)

where A and U are N ×N matrices with the following
elements:

An,m = i~〈χn|∇χm〉 , (4)

Un,m = εn(x)δn,m + 〈χn|V̂ (x)|χm〉 , (5)

i. e. the matrix U includes contribution due to both the
internal atomic energies and the external trapping po-
tential.

2.2. Adiabatic approximation

Since the atomic internal motion is much faster than
the external (translational) one, the difference in the
atomic energies Un,n − Um,m is normally much larger
than the energies of non-adabatic coupling between
these states. In such a situation the translational motion
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of atoms in different internal levels can be considered
to be independent, leading to the adiabatic approxima-
tion. Specifically, let us suppose that a selected atomic
level with n = q is well separated from the remaining
N − 1 atomic levels. Neglecting transitions to the re-
maining states, Eq. (3) provides the adiabatic equation
for the translational motion of the atom in the electronic
state q:

i~∂Ψq/∂t = HeffΨq , (6)

where

Heff =
1

2M
(−i~∇− Aeff)2 + U + φ (7)

is the effective Hamiltonian of the atom in the elec-
tronic state q, with Aeff ≡ Aq,q and U ≡ Uq,q being
defined by the above equations (4) and (5). An addi-
tional scalar potential φ appears due to the exclussion
of a part of the electronic states in the effective equation
of motion (7):

φ =
1

2M

N
∑

l 6=q

Aq,lAl,q

=
~

2

2M
(〈∇χq|∇χq〉 + 〈χq|∇χq〉〈χq|∇χq〉) . (8)

The quantity Aeff , called the Berry connection [17],
represents an effective vector potential acting on the
electrically neutral atoms. The effective vector poten-
tial Aeff appears due to the spatial dependence of the
electronic state |χq〉.

3. Formulation

3.1. A system of atoms

Let us now define the atomic system. We shall con-
sider an ensemble of atoms characterized by two hy-
perfine ground levels 1 and 2, as well as an electronic
excited level 3. The atoms interact with two resonant
laser beams in the EIT configuration (see Fig. 1). The
first beam (to be referred to as the control beam) drives
the transition |2〉 → |3〉, whereas the second beam (the
probe beam) is coupled with the transition |1〉 → |3〉, as
shown in Fig. 1(a). The control laser has a frequency
ωc, a wave-vector kc, and a Rabi frequency Ωc. The
probe field, on the other hand, is characterized by a cen-
tral frequency ωp = ckp, a wave vector kp, and a Rabi
frequency Ωp. Of special interest is the case where
the probe and control beams can carry OAM along the

(a)

(b)

Fig. 1. (a) The level scheme for the Λ type atoms interacting with
the resonant probe beam Ωp and control beam Ωc. (b) Schematic
representation of the experimental setup with the two light beams
incident on the cloud of atoms. The probe field is of the form
Ωp ∼ e

ilφ, where each probe photon carry an OAM ~l along the
propagation axis z.

propagation axis z. In that case, the spatial distribution
of the beams is [20, 21]

Ωp = Ω(0)
p ei(kpz+lpφ) (9)

and

Ωc = Ω(0)
c ei(kcz+lcφ) , (10)

where Ω
(0)
p and Ω

(0)
c are slowly varying amplitudes for

the probe and control fields, ~lp and ~lc are the corre-
sponding orbital angular momenta per photon along the
propagation axis z, and φ is the azimuthal angle.

3.2. Hamiltonian for the electronic degrees of freedom
of atom

Adopting the rotating wave approximation, the Ha-
miltonian for the electronic degrees of freedom of an
atom interacting with the control and probe fields in
the rotating frame is

Ĥ0(r) = ǫ21|2〉〈2| + ǫ31|3〉〈3|
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−~(Ωp|3〉〈1| + Ωc|3〉〈2| + H. c.) , (11)

where ǫ21 = ~(ω2 − ω1 + ωc − ωp) and ǫ31 =
~(ω3 − ω1 − ωp) are, respectively, the energies of the
detuning from the two- and single-photon resonances,
with ~ωj being the electronic energy of the atomic level
j. Note that the spatial dependence of the Hamiltonian
Ĥ0(r) emerges through the spatial depandence of the
Rabi frequencies Ωp ≡ Ωp (r) and Ωc ≡ Ωc (r).

Neglecting the two-photon detuning, the Hamilto-
nian (11) has the eigenstate

|D〉 =
1

√

1 + |ζ|2
(|1〉 − ζ|2〉) (12)

representing a coherent superposition of two hyperfine
dark states. Here

ζ =
Ωp

Ωc
(13)

is the ratio of the amplitudes of the probe and control
fields.

The state |D〉 is known as the dark state [22–25]. It
is characterized by zero eigenenergy: Ĥ0(r)|D〉 = 0.
Since the dark state has no contribution by the ex-
cited electronic state |3〉, it is immune from the spon-
taneous emission. We shall be interested in a situation
where the atoms are driven to their dark states. If an
atom is in the dark state |D〉, the resonant control and
probe beams induce the absorption paths |2〉 → |3〉 and
|1〉 → |3〉, which interfere destructively, resulting in
the electromagnetically induced transparency [22–25].
In such a situation, the transitions to the upper atomic
level 3 are suppressed. That’s why the dark state has no
contribution by the excited electronic state |3〉.

3.3. Effective Hamiltonian for the dark-state atoms

Suppose that the control and probe fields are tuned
to the two-photon resonance: ǫ21 = 0. The remaining
two-photon mismatch (if any) can be accommodated
within the trapping potential

V̂ (r) = V1(r)|1〉〈1|+V2(r)|2〉〈2|+V3(r)|3〉〈3| , (14)

where Vj(r) are the trapping potentials for an atom in
the electronic state j, with j = 1, 2, 3.

According to the treatment presented in the previ-
ous section, the dynamics of the dark-state atoms is
described by the following effective Hamiltonian (see
Eq. (7)):

Ĥeff =
1

2M
(−i~∇− Aeff)2 + Veff , (15)

where

Aeff = i~〈D|∇D〉 (16)

and

Veff = U + φ (17)

are the effective vector and trapping potentials, with

U =
V1(r) + |ζ|2V2(r)

1 + |ζ|2 , (18)

φ =
~

2

2M

(

〈D|∇D〉2 + 〈∇D|∇D〉
)

. (19)

Since V1(r) and V2(r) are the trapping potentials for an
atom in the electronic states 1 and 2, U represents the
external trapping potential for an atom in the dark state.

In this way, the effective trapping potential Veff is
composed of the external trapping potential U and the
geometric scalar potential φ. The former U is deter-
mined by the shape of the trapping potentials V1(r)
and V2(r), as well as the intensity ratio |ζ|2. The lat-
ter geometric potential φ is determined exclussively by
the spatial dependence of the dark state |D〉 emerging
through the spatial dependence of the ratio of the Rabi
frequencies ζ = Ωp/Ωc. Note that the effective vector
potential Aeff has a geometric nature as well, because it
also originates from the spatial dependence of the dark
state.

3.4. Adiabatic condition

The separation between the energies of the dark state
and the remaining (bright) atomic states is character-

ized by the total Rabi frequency Ω =
√

Ω2
p + Ω2

c . As-

suming that the control and probe fields are tuned to the
one- and two-photon resonances (ǫ31, ǫ21 ≪ ~Ω), the
adiabatic approach holds if the non-diagonal matrix el-
ements in Eq. (3) are much smaller than the total Rabi
frequency Ω. This leads to the following condition:

F ≪ Ω , (20)

where the velocity-dependent term

F =
1

1 + |ζ|2 |∇ζ · v| (21)

reflects the two-photon Doppler detuning. Note that the
condition (20) does not accommodate effects due to the
decay of the excited atoms. The dissipation effects can
be included by replacing the energy of the one-photon
detuning ǫ31 by ǫ31− i~γ3, where γ3 is the excited state
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decay rate. In such a situation the dark state can be
shown to acquire a finite lifetime

τD ∼ γ−1
3 Ω2/F 2 , (22)

which should be large compared to other characteristic
times of the system.

The condition (20) implies that the inverse Rabi fre-
quency Ω−1 should be smaller than the time an atom
travels a characteristic length, over which the amplitude
or the phase of the ratio ζ = Ωp/Ωc changes consider-
ably. The latter length exceeds the optical wavelength,
and the Rabi frequency can be of the order of 107 to
108 s−1 [26]. Consequently, the adiabatic condition
(20) should still hold for atomic velocities of the order
of tens of metres per second, i. e., up to extremely large
velocities in the context of ultracold atomic gases. The
allowed atomic velocities become lower if the sponta-
neous decay of the excited atoms is taken into account.
According to Eq. (22), the atomic dark state accquires
then a finite lifetime τD which equals to γ−1

3 times the
ratio Ω2/F 2. The atomic decay rate γ3 is typically of
the order of 107 s−1. Therefore, in order to achieve
long-lived dark states the atomic speed should not be
too large. For instance, if the atomic velocities are of
the order of a centimeter per second (a typical speed of
sound in an atomic BEC), the atoms should survive in
their dark states up to a few seconds. This is compara-
ble to the typical lifetime of an atomic BEC.

4. Analysis of the effective vector and trapping
potentials

Using the expression (12) for the dark state, Eq. (16)
for the effective vector potential takes the form

Aeff = i~
ζ∗∇ζ − ζ∇ζ∗

2(1 + |ζ|2) . (23)

Then the effective magnetic field reads:

Beff = ∇× Aeff = i~
∇ζ∗ ×∇ζ

(1 + |ζ|2)2 , (24)

and the geometric scalar potential is

φ =
~

2

2M

∇ζ∗∇ζ

(1 + |ζ|2)2 . (25)

4.1. Representation in terms of the amplitude and
phase

Let us to express the ratio of Rabi frequencies ζ in
terms of amplitude and phase:

ζ =
Ωp

Ωc
= |ζ|eiS . (26)

The effective vector potential, the effective magnetic
field, and the effective scalar potential are then

Aeff =−~
|ζ|2

1 + |ζ|2∇S , (27)

Beff = ~
∇S ×∇|ζ|2
(1 + |ζ|2)2 , (28)

φ =
~

2

2M

(∇|ζ|)2 + |ζ|2(∇S)2

(1 + |ζ|2)2 . (29)

4.2. Representation in terms of the mixing angle

It is convenient to introduce the mixing angle α via
the following relationships:

sin α =
1

√

1 + |ζ|2 , cos α =
|ζ|

√

1 + |ζ|2 . (30)

Specifically, if |ζ| is much larger than unity, then α ≈
1/|ζ|. On the other hand, if |ζ| is much smaller than
unity, then α ≈ π/2 − |ζ|.

The dark state can now be represented as

|D〉 = sin α|1〉 − cos αeiS |2〉 . (31)

The effective vector and scalar potentials can also be
rewritten in terms of the mixing angle:

Aeff = −~ cos2 α∇S = −~

2
(1 + cos(2α))∇S (32)

and

φ =
~

2

2M

[(

1

2
sin(2α)∇S

)2

+ (∇α)2
]

(33)

=
~

2

8M

[(

1 − cos2(2α)

)

(∇S)2 +
(∇ cos(2α))2

1 − cos2(2α)

]

.

i. e., both potentials can be expressed through the quan-
tity

cos(2α) =
|ζ|2 − 1

|ζ|2 + 1
. (34)

The same applies to the effective magnetic field:

Beff = ∇× Aeff =
~

2
∇S ×∇ cos(2α) . (35)
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4.3. Co-propagating control and probe beams with
OAM

If the co-propagating probe and control fields carry
OAM, their amplitudes Ωp and Ωc are given by
Eqs. (9), (10). The phase of the ratio ζ = Ωp/Ωc then
reads

S = lφ , (36)

where l = lp − lc. Note that although both the control
and probe fields are generally allowed to have non-zero
OAM by Eqs. (9), (10), it is desirable for the OAM
to be zero for one of these beams. In fact, if both lp
and lc were non-zero, the amplitudes Ωp and Ωc should
simultaneously go to zero along the z axis. In such

a situation the total Rabi frequency Ω =
√

Ω2
p + Ω2

c

would also vanish, leading to the violation of the adia-
batic condition (20) along the z axis.

Substituting Eq. (36) into Eqs. (32), (34), and (35),
one has

Aeff = −~ cos2 α
l

ρ
eϕ , (37)

φ =
~

2

2M

[(

1

2
sin(2α)

l

ρ

)2

+ (∇α)2
]

, (38)

and

Beff =
~

2

l

ρ
eϕ ×∇ cos(2α) , (39)

where eϕ is the unit vector in the azimuthal direction,
and ρ is the cylindrical radius.

In what follows the intensity ratio |ζ|2 is considered
to depend on the cylindrical radius ρ only. In that case
the effective scalar potential and magnetic field reduce
to

φ =
~

2

2M

[(

1

2
sin(2α)

l

ρ

)2

+

(

∂α

∂ρ

)2]

(40)

and

Beff = −~

2

l

ρ

∂

∂ρ
cos(2α)ez . (41)

Consequently, the effective magnetic field is directed
along the z axis.

4.4. Magnetic flux

Suppose the probe beam has an OAM (lp 6= 0) and
the control beam has not (lc = 0). In this case the
intensity of the probe beam (and hence the ratio |ζ|2 =
|Ωp/Ωc|2) goes to zero as ρ → 0. If the intensity of the
control field changes slowly within an atomic cloud,

the ρ-dependence of the ratio |ζ| is determined by the
probe beam only.

The effective magnetic flux through a circle of the
radius ρ0 is now given by

Φ =

∮

Aeff dl = −2π~
l|ζ0|2

1 + |ζ0|2
, (42)

where 2π~ is the Dirac flux quantum, and |ζ0|2 is the
intensity ratio at the radius ρ = ρ0. The flux Φ reaches
its maximum of 2π~l if the ratio |ζ0|2 ≫ 1, i. e. if the
intensity of the probe field exceeds the control field at
the selected radius ρ0. Since the winding number of
light beams can currently be as large as several hun-
dred, it is possible to induce a substantial flux Φ in the
atomic cloud. This might enable us to study phenom-
ena related to filled Landau levels with a large number
of atoms in the quantum gases.

5. Specific cases

5.1. The polynomial case

If we take

|ζ| = aρ + bρ2 , (43)

then

cos(2α) =
(aρ + bρ2)2 − 1

(aρ + bρ2)2 + 1
.

Consequently, one has

Aeff =−~l
ρ(a + bρ)2

1 + ρ2(a + bρ)2
eϕ , (44)

φ =
~

2

2M
(45)

×(l2 + 1)a2 + 2(l2 + 2)abρ + (l2 + 4)b2ρ2

(1 + ρ2(a + bρ)2)2
.

In this case the effective magnetic field

Beff = −~l
2(a + bρ)(a + 2bρ)

(1 + ρ2(a + bρ)2)2
ez (46)

exhibits a radial dependence.

5.2. Bessel beam

Suppose the probe field represents a Bessel beam
and the Rabi frequency of the control beam is almost
constant within an atomic cloud. In such a case we
have

ζ = bJl(aρ)eilϕ , (47)
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where b is a dimensionless constant determining the
relative strength of the probe field. Then the effective
scalar vector and scalar potentials are

Aeff =−~
b2Jl(aρ)2

1 + b2Jl(aρ)2
l

ρ
eϕ , (48)

φ =
~

2b2

2M
(49)

×4l2Jl(aρ)2 + a2ρ2(Jl−1(aρ) − Jl+1(aρ))2

4ρ2(1 + b2Jl(aρ)2)2
.

In this case the effective magnetic field

Beff =−~
ab2l

ρ

×Jl(aρ)(Jl−1(aρ) − Jl+1(aρ))

(1 + b2Jl(aρ)2)2
ez (50)

also exhibits a radial dependence. Furthermore, from
Eq. (50) it follows that the sign of the effective mag-
netic field alternates, i. e., the regions with the effective
magnetic field aligned along z axis are replaced by the
regions in which the effective magnetic field is directed
opposite to the z axis and vice versa.

Next we shall examine situations where the effective
magnetic field appears to be constant.

5.3. Constant effective magnetic field

If we choose

|ζ|2 =
(ρ/ρmax)

2

1 − (ρ/ρmax)
2 , (51)

the effective vector potential, Eq. (37), takes the form

Aeff = −~lρρ−2
maxeφ . (52)

Consequently, we arrive at a constant effective mag-
netic field

Beff = −2~lρ−2
maxez (53)

with the corresponding cyclotron frequency ωc =
~2l/(Mρ2

max) and the magnetic length lB =
√

~/(Mωc) = ρmax/
√

2l. The scalar potential is now
given by

φ =
~

2

2M

1

ρ2
max

(

l2d + 1/d
)

, (54)

where d = 1 − (ρ/ρmax)
2. For ρ → ρmax the intensity

ratio |ζ|2 goes to infinity, so the equations (51)–(54)
have a meaning only for distances smaller than ρmax.
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Fig. 2. Geometric scalar potential φ (solid line) and the effective
trapping potential Veff (dashed line) for the case where the effec-
tive magnetic field Beff is constant. The trapping potential V1 is
given by Eq. (55) to compensate the quadratic term in φ. The trap-
ping potential for the atoms in the second hyperfine ground state is
chosen to be V2 = κV1, with κ = 9/5. The other constants are

M = 1, ~ = 1, l = 10, ρ0 = 1, and ρmax = 10.

Therefore, Eq. (51) can model an actual intensity dis-
tribution of the control and probe beams only up to a
certain radius ρ0 which is smaller than ρmax. When the
radius ρ0 is close to ρmax, the effective magnetic flux
approaches its maximum value of 2π~l.

The appearing scalar potential φ can be compensated
by the trapping potential. If

V1(r) =
~

2

2Mρ2
max

(

l2 − 1
)

(ρ/ρmax)
2 (55)

and V2(r) = κV1(r), the external trapping potential
U given by Eq. (18) compensates the quadratic term
in Eq. (54). Assuming κ = 1, the overall effective
trapping potential Veff = U + φ is flat almost up to the
maximum radius ρ = ρmax.

Figure 2 shows the geometric scalar potential φ and
the effective trapping potential Veff for the situation
where κ = 9/5. One can see that the effective trapping
potential Veff is almost flat in the centre and increases
with increasing radius ρ, despite the fact that the geo-
metric scalar potential φ decreases and has a minimum
near ρmax.

5.4. Constant effective magnetic field for ring
geometry

In the previous subsection we have analyzed the con-
stant effective field in the case where the atomic motion
is restricted to the distances where ρ < ρmax. Here we
shall consider the situation where the atomic motion is
restricted additionally from below, i. e. ρ > ρmax. In
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Fig. 3. Geometric scalar potential φ for the case of constant ef-
fective magnetic field Beff in the ring geometry. The constants are

M = 1, ~ = 1, l = 10, ρmin = 1, and ρmax = 10.

such a case the constant effective magnetic field is ob-
tained in the case where

|ζ|2 =
ρ2 − ρ2

min

ρ2
max − ρ2

. (56)

The effective vector potential then takes the form

Aeff = −~
ρ2 − ρ2

min

ρ2
max − ρ2

min

l

ρ
eϕ , (57)

giving the following magnetic field strength

Beff = − 2~l

ρ2
max − ρ2

min

ez . (58)

The magnetic field strength is seen to increase with in-
creasing ρmin. Finally, the scalar potential is given by

φ =
~

2

2M

(

l2

ρ2

(ρ2
max − ρ2)(ρ2 − ρ2

min)

(ρ2
max − ρ2

min)
2

+
ρ2

(ρ2
max − ρ2)(ρ2 − ρ2

min)

)

. (59)

The potential φ has singuliarities both at ρ = ρmin

and ρ = ρmax, as illustrated in Fig. 3.

6. Conclusions

We have studied the influence of two beams of light
with orbital angular momenta on a degenerate gas of
electrically neutral atoms (fermions or bosons). We
have derived an equation of motion for atoms driven
to a dark state. The equation contains a vector potential
type interaction as well as an effective trapping poten-
tial. We have analyzed the effective vector and trapping
potentials in the case where at least one of the light

beams contains an OAM. We have shown how to gen-
erate a constant effective magnetic field both in the disc
and ring geometries of the atomic trap. Furthermore,
we have explored a couple of examples of the effective
magnetic field exhibiting a radial distance dependence.
We have demonstrated that the effective magnetic field
can be concentrated in the area where the effective trap-
ping potential holds the atoms. In the case of a homoge-
neous effective magnetic field it is important to realize
that the corresponding cyclotron frequencies and mag-
netic lengths can be similar to typical trap frequencies
and oscillator lengths used when trapping cold atoms in
BEC and degenerate fermion gases. This will require a
high OAM for the light which is also readily available
with present technology.

Our proposed method of creating the effective mag-
netic field has several advantages compared to a ro-
tating system where only a constant magnetic field is
created [9–11]. In our method the magnetic field is
shaped and controlled by choosing the proper control
and probe beams. Furthermore stirring an ultracold
cloud of atoms in a controlled manner is a rather de-
manding task, whereas an optically induced vector po-
tential is expected to be highly controllable.

An effective magnetic field in an ultracold quantum
gas gives rise to some remarkable scenarios. To exper-
imentally verify the presence of an effective magnetic
field one could for instance study the elementary exci-
tations of the trapped cloud of atoms. This is an ac-
curate tool to measure the properties of Bose–Einstein
condensates or trapped Fermi gases. There are indeed
an abundance of more extreme situations where the ef-
fective magnetic field plays a crucial role. The theory
presented here has already been applied analyzing the
de Haas–van Alphen effect in a gas of electrically neu-
tral atoms [15]. It can also be applied to other intriguing
phenomena which intrinsically depend on the magnetic
field. For instance, the quantum Hall effect can now be
studied using a cold gas of electrically neutral atomic
fermions [27]. In addition, if the collisional interaction
between the atoms is taken into account, we can study
the magnetic properties of a superfluid atomic Fermi
gas [28]. Recent advances in spatial light modulator
technology enables us to consider rather exotic light
beams [29]. This will allow us to study the effect of
different forms of vector potentials in quantum gases.
Finally, the combined dynamical system of light and
matter [30] could give an important insight into gauge
theories in general.
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EFEKTYVUSIS MAGNETINIS LAUKAS LABAI ŠALTOSE ATOMŲ DUJOSE
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a Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
b Stratklaido universitetas, Glazgas, Škotija

Santrauka

Nagrinėtas dviejų rezonansinių šviesos pluoštų poveikis šaltų
atomų dujoms. Ištirtas atvejis, kai bent vienas tų pluoštų turi ne-
nulinę orbitinio judesio kiekio momento projekciją išilgai sklidimo
krypties, o šviesai sąveikaujant su atomais, susidaro elektromag-
netiškai sukeltas praskaidrėjimas. Parodyta, kad tuomet šviesos
pluoštų poveikis atomų masių centro judėjimui yra panašus į mag-
netinio lauko poveikį elektringoms dalelėms. Remiantis mikro-
skopiniu lėtai sklindančios šviesos bei atomų aprašymu, buvo iš-
vesta atomų masių centro judėjimo kvantinė lygtis, kurioje atsi-
randa efektyvusis vektorinis potencialas Aeff , imituojantis magne-
tinį lauką. Efektyviojo magnetinio lauko indukcijos Beff erdvinį

pasiskirstymą galima reikiamai suformuoti, pasirenkant atitinka-

mos formos šviesos pluoštus. Išnagrinėta keletas šviesos pluoštų
pavidalų. Rastas pluoštų profilis, sukeliantis pastovų efektyvųjį
magnetinį lauką disko ir žiedo formos atomų gaudyklėse. Efekty-
vaus magnetinio lauko sukūrimas yra svarbus klausimas, kadangi,
kitaip negu elektronai metaluose, atomų Bose ir Einstein’o kon-
densatą ar išsigimusias Fermio dujas sudaro elektriškai neutralios
dalelės (atomai), kurių neveikia tikras magnetinis laukas. Parodyta,
kad efektyvusis magnetinis laukas gali būti pakankamai stiprus ir
jį atitinkantis magnetinis ilgis gali gerokai viršyti bandinio plotį.
Todėl atominėse dujose gali pasireikšti elektronų teorijoje žinomų
magnetinių efektų analogai.


