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Retarded accelerations of the self-organized front that separates two steady states of a continuous bistable system are

studied by considering the response of the “bistable” front (BF) to the step-like force of flexible steepness. The driven system

is described by a nonlinear differential equation of reaction–diffusion type, with the rate function approximated by the linear

pieces. The retarded response of BF is examined by considering the lag (delay) time between the driving force and the

propagation velocity of the driven front. The considered delay time is shown to be sensitive both to the rate (steepness) of the

driving force and to the characteristic relaxation time of the system that describes the rate of transient processes within it. At

low rates of driving force the response of BF is almost instantaneous. The delay time monotonically increases with increasing

the rate (steepness) of the driving force and approaches some fixed value that does not exceed the characteristic relaxation time

of the system. The dependence of delay time on the strength of the driving force is weak, insignificant. The derived results

evidently show that the ratchet-like transport of BF, previously discussed in [4], should be significantly suppressed in the case

of fast driving, when the frequency of applied zero-mean force exceeds the characteristic relaxation rates in the system.
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1. Introduction

Continuous bistable systems driven far beyond their

thermal equilibrium are widely studied as the simplest

examples of self-organization. The “bistable” fronts

(BFs), the spontaneously formed front structures join-

ing two steady spatially uniform states in a bistable

system, are widely known in physically diverse sys-

tems and have attracted increasing attention in many

branches of physics, chemistry, biophysics, etc. [1].

The free, undisturbed BF always propagates from the

state with the higher free energy to the state with the

lower free energy. In other words, it propagates in such

a way that the more stable state invades the less stable

one. The picture changes in the case of the system be-

ing acted upon by the temporally oscillating fields, both

noisy and regular ones. A topic currently receiving

much attention is the unidirectional transport of self-

ordered fronts under the temporally oscillating fields

of zero mean [2–4]. Two different mechanisms un-

derlying the “unforced” transport of BFs, two differ-

ent possibilities of the spurious drift have been iden-

tified, namely, the parametrically (externally) and di-

rectly (internally) induced dc motion of the front. The

first, usually described by the “multiplicative” driving

force, comes through the action of the external zero-

mean field on the externally controllable parameter in

the system: the external, symmetrically oscillating field

is transformed into the “internal”, asymmetrically os-

cillating forcing, which “pushes” the front in the sys-

tem (e. g., see [2]). Differently, the directly stimulated

dc motion described by the additive force implies that

the mean value of the driving force, which acts on the

front in the system, equals zero [4]. The response of BF

to the additive force f(t) is described by the following

equation of reaction–diffusion type:

ut − uzz − cuz + R(u) = f(t) . (1)

Here the function u(z, t) denotes the step-like field

of the front propagating at the instantaneous veloc-

ity c(t), z = x − ct is the travelling coordinate, and

the rate function R(u), which characterizes the rate
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of the transient processes in the system, has three ze-

roes at u = u1, u2, u3 (say, u1 < u2 < u3). In

the considered case of bistable system one has that

R′(u1,3) > 0 and R′(u2) < 0, where the prime denotes

the derivative. The front solution of the free, undis-

turbed BF u0(z) joins two fixed points (steady uniform

states) u1 and u3, namely, the following relations hold:

u0(z → −∞) → u1, and u0(z → ∞) → u3.

The deterministic version of “front-ratchet”, namely,

the response of BF to the periodically oscillating force

f(t) of zero mean has been recently discussed in

[4]. Various types of the unforced dc motion of BFs

have been identified within the adiabatic approxima-

tion used. The considered approximation implies that

the driving force is slow enough, if compared to the

characteristic relaxation time of the system τR, i. e.,

TF ≫ τR , where by TF we denote the characteris-

tic time (period) of the driving force f(t). A rough

estimate of the parameter τR, derived by use of the

perturbation technique, was presented in [4]. It reads

τR
∼= min{R′−1(u1), R

′−1(u3)}, where the prime de-

notes the derivative.

The response of BF to the slowly varying force is im-

mediate, almost instantaneous on the time scale of the

characteristic time TF. In contrast, a delay of response

of BF is expected in the case of fast driving, when in-

equality TF < τR is fulfilled. In particular, the propa-

gation velocity of the “rapidly” driven front will follow

the driving force with some retardation. Clearly, the

retardation discussed must influence the “size” of the

spurious drift of BF. The decrease of the average drift

velocity v of BF is expected with a rapidly oscillating

zero-mean force, similarly as in the case of ordinary

ratchets [5].

In the present report the delay of response of BF to

the fast driving is studied by considering the tempo-

ral relaxation of instantaneous velocity of the rapidly

driven front being under the action of step-like force of

a flexible “profile”. We approximate the step-like force

by the exponential forcing function f(t) that is charac-

terized by adjustable parameters: the switching time TF

and the magnitude F0 that govern the rate (steepness)

and the strength of the driving force, respectively. The

main subject of the present study is the speed relaxation

time τS that characterizes the relaxation rate (rapidness)

of the instantaneous velocity c(t) of the front being un-

der the action of the step-like force. The “size” of retar-

dation discussed is described by the characteristic delay

time τD defined by the relation τD := τS − TF. The in-

troduced parameter τD describes the lag time between

the driving force f(t) and the instantaneous velocity

of the driven front, c(t). In considering the retarded

accelerations of BF we derive the needed characteris-

tics τS − TF and τS − F0 that are studied in a wide

interval of parameters TF and F0, for arbitrary rates

and strengths of the driving force. More exactly, the

immediate, instantaneous (τD = 0) response that takes

place in the limit TF → ∞ is described analytically,

within the adiabatic approximation discussed. Differ-

ently, the retarded response, the case of fast driving

has been examined numerically by direct solution of

Eq. (1). By comparing the both discussed cases of the

quasi-statically slow and the fast driving that describe

instantaneous and retarded response, respectively, we

derive the required delay time τD. The retardation ef-

fects in the dynamics of self-organized fronts, as far as

we know, have not been considered as yet.

An analytic solution of the governing Eq. (1) with an

arbitrary rate function is not feasible even in the case

of the free (f ≡ 0) system. Thus, when considering

the instantaneous response we introduce some simpli-

fying assumptions. The free front solutions of BF have

been derived analytically only in a few cases of the

rate function approximated by the cubic-polynomial,

sine-type and piecewise-linear functions. In the present

report the “pseudolinear” model of bistable system is

used. We approximate the rate function R(u) by linear

pieces, similarly as in the case of “front-ratchet” device

(see Refs. [4, 6]). The primary goal of the present study

is to present the main outlines of the retarded response

that may influence the “size” of the spurious drift.

Thus, we deal with the most frequently studied case of

the symmetrical (symmetrically shaped) rate functions

satisfying the relation R(u2 − ∆u) = R(u2 + ∆u),

where the quantity ∆u denotes the free variable (see

[4]). We note that both the cubic-polynomial and

the sine-type rate functions usually used in theoretical

studies of the driven fronts are symmetrical ones.

In Sect. 2 we discuss the model and the approxima-

tions. Section 3 deals with the retarded accelerations

of the front being under the action of step-like force.

The desired characteristics that describe dependence of

the lag time between the driving force and the propa-

gation velocity of BF on both the steepness (rate) and

the strength of step-like force are presented. The in-

fluence of retardation effect on the spurious drift of BF

is briefly discussed, too. Finally, we present the main

conclusions.
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2. Model, approximations, and techniques used

As noted, the pseudolinear model of bistable system

is used. Thus, we write

R(u) =



























α1(u − u1) , u < uM ,

−α2(u − u2) , uM < u < um ,

α3(u − u3) , u > um ,

(2)

where the free parameters ui and αi satisfy the relations

uM < u2 < um < u3 and αi > 0 (i = 1, 2, 3), and

the extrema of the rate function, RM ≡ R(uM ) and

Rm ≡ R(um), are given by the expression RM,m =
α2(u2−uM,m). The free (f ≡ 0) front solutions of the

pseudolinear model have been derived in [6].

Some interesting peculiarities of the spurious drift

of BFs have been identified with the periodically os-

cillating square-pulse force described by a “superposi-

tion” of the step-like functions f(t) = F0Θ(t − tn).
The square-wave ac force appeared to be very “effec-

tive”; the unforced dc drift induced by such an ex-

tremely steeply pulsating force is much more strongly

pronounced if compared to that in the case of a multi-

harmonic force (e. g., see [4]). Thus, we approximate

the driving force f(t) by the step-like function of a flex-

ible shape:

f(t) =











0 , t < t0 ,

F0{1 − exp[−γ(t − t0)]} , t > t0 .

(3)

Here, as previously, the adjustable parameters γ and

F0 describe the rate (steepness) and the strength (mag-

nitude) of the driving force, respectively, and the quan-

tity t0 denotes the initial moment at which the driv-

ing force was switched on. The obvious relations hold:

TF = γ−1 and f(t; γ → ∞) → F0Θ(t− tn). The lim-

iting case of the quasi-statically slow driving that de-

scribes the instantaneous response implies that γ → 0
and τD ≡ τS − γ−1 → 0. The required delay time τD

that characterizes the retarded accelerations of BF may

be derived by a direct comparison of relaxation rates of

both functions, c(t;F0, γ → 0) and c(t;F0, γ).
In what follows we shall use the scaled units.

Namely, we introduce the scaled “variables” s(t) and

f∗(t) defined by the following relations: s(t) :=
c(t)/cP and f∗(t) := f(t)/∆R, where cP = 2

√
α2

and ∆R = RM − Rm. It was shown in [4] that the

instantaneous velocity s(t) scaled in the units of the

marginal velocity cP of the “pushed” front did not de-

pend on the “height” of the rate function ∆R if the

driving force f(t) was taken in the units of the height

∆R. Thus, in what follows we take that ∆R = 1.

Hence, it follows that f∗(t) ≡ f(t). Finally, the crite-

rion of the global stability of BF reads: |F0| < FC ≡
min{RM ,−Rm}, the strength of the driving force (3)

cannot exceed the critical value FC.

The immediate, instantaneous response takes place

in the limit TF → ∞. This implies that the lag time

between drive and response equals zero; the instan-

taneous velocity s(t) immediately follows the driving

force f(t), without any delay, namely, τD = 0. When

considering the case of quasi-statically slow driving we

drop the time derivative in Eq. (1). Then we get that

uzz + cuz − RF [u; f(t)] = 0 , RF := R(u) − f(t) .
(4)

The considered (adiabatic) approximation has already

been applied to the front-ratchet “device”; the unforced

transport of BF being under the action of a “slowly”

oscillating square-wave ac force has been recently dis-

cussed in [4]. As already noted, the adiabatic approx-

imation works well for large values of switching time

TF. For the considered case of a pseudolinear rate func-

tion the approximate criterion of slow driving reads:

γ ≪ τ−1
R ≡ min{α1,3}.

Quite similarly as in the case of the free system,

equation (4), when used in conjunction with the rate

function (2), is solvable by the rigorous analytic tools.

Both the front solution and the propagation velocity of

slowly driven BF may be derived analytically by the

direct solution of Eq. (4) used in conjunction with the

appropriate boundary and matching conditions. More

specifically, the propagation velocity of slowly driven

BF is described by the “speed equation” that may be

presented in the following manner (see [4]):

Sn(s)

exp[−ϕ(s)] sin Φ(s)
=

hR − (1 + hR)f(t)

1 + (1 + hR)f(t)
, (5)

where the parameter hR := −RM/Rm denotes the ra-

tio of extreme values of the rate function, and the aux-

iliary functions are described by relations

ϕ(s) =
sΦ(s)

Q2(s)
,

Φ(s) =

{

arctan Tg(s) , T g(s) > 0 ,

π − arctan[−Tg(s)] , T g(s) < 0 ,

Sn(s) = FSn/FV , T g(s) = FSn/FCn . (6)
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Here the unknown functions are given by the following

expressions:

FSn = Q2(s)[δ1K1(s) − δ3K3(s)] ,

FCn =−
[

Q2
2(s) + G1(s)G3(s)

]

,

FV = Q2
2(s) + G2

1(s) ,

G1,3 =−s + δ1,3K1,3(s) , (7)

where

Q2(s) =
√

1 − s2 , K1,3 = −s ±
√

r1,3 + s2 . (8)

Here and in what follows we use the denotation r1,3 ≡
1/δ1,3 = α1,3/α2. Without loss of generality, the

following boundary conditions have been used in the

derivation of speed equation (5): u(z, t) → v1(t) if

z → −∞, and u(z, t) → v3(t) if z → ∞, where the

time-dependent quantities v1,3 = u1,3 + α1,3f(t) de-

note zeroes of the modified rate function RF. Clearly,

equation (4) neglects the retardation. As a conse-

quence, the asymptotic values of the front solution,

u(t; z → ±∞) → v1,3(t), immediately follow the

driving force f(t), without any delay. Furthermore,

Maxwellian rule holds: the instantaneous velocity of

slowly driven BF satisfies the relations s(t) > 0 if

SF > 0 and s(t) < 0 if SF < 0, where the quantity SF

denotes the area enclosed by the RF–u characteristic in

the interval [v1, v3] of the variable u, as shown in [4].

Finally, the velocity s(t) of the quasi-statically driven

BF is a function of the relative parameters r13 and hR,

but not a function of the absolute values of slope co-

efficients {αi} and the heights RM and Rm. Namely,

one has that s(t) = s[r1, r3, hR; f(t)]. Speed equation

(5) describes the instantaneous response and has been

used in derivation of the delay time τD that describes

the retarded accelerations of BF.

The retarded response, namely, both the front solu-

tion and the instantaneous velocity of the driven BF

have been studied numerically, by direct solution of

the governing equation (1). The numerical simulations

have been used to derive the speed relaxation time τS

for arbitrary rates and strengths of the driving force

(3). Let us touch briefly on the most important fea-

tures of the numerical technique [7]. We introduced a

uniform grid to find the numerical solution of Eq. (1).

Differential equation (1) was approximated by the fi-

nite difference scheme in the co-moving coordinates,

z = x − c(t) t,

ut(z, t)→ h−1
t [u(zi, tj+1) − u(zi, tj)] ,

uzz(z, t)→ h−2
z [u(zi+1, tj) − 2u(zi, tj)

+ u(zi−1, tj)] . (9)

Here hz > 0 and ht > 0 are steps of the grid, i and j
are integers, and the variables zi and tj are described

by the relations zi = ihz and tj = jht. The “size”

of the nucleus (kernel) of BF, λF, which characterizes

the spatial extension of the separation wall of BF, is de-

scribed by the derivative uz(z, t). Using the co-moving

frame we define the centre of “mass” of BF, zC, by the

relation

zC = N−1

L
∫

−L

dz z uz(z) , with

N =

L
∫

−L

dz uz(z) ≈ v3 − v1 , (10)

where the quantity L that indicates the spatial exten-

sion of the moving grid satisfies the relation L ≫ λF.

Hence, the instantaneous velocity of BF is given by the

expression

c(tj) ≈ c(tj−1) + h−1
t [zC(tj) − zC(tj−1)] . (11)

Taking the limits L → ∞ and ht → 0 one gets that

c(tj) → c(t). Further, the speed relaxation time τS is

derived from the following equation:
∣

∣

∣

∣

s∞ − s(τS)

s∞

∣

∣

∣

∣

= δs , (12)

where the quantity s∞ := s(t → ∞) ≡ s(F0) denotes

the limiting (extreme) value of the instantaneous veloc-

ity of the driven BF, and by δs we denote the relative

deviation satisfying the relation δs ≪ 1. The required

parameter s∞ may be derived using both the govern-

ing equation (1) and the speed equation (5). Our direct

calculations have shown that both discussed values of

s∞, derived from (1) and from (5), coincide within the

accuracy of few tenths of percent. Clearly, the speed re-

laxation time τS that is defined by relation (8) depends

on the parameter δs. To derive the “correct” value δs
we have considered the particular case of the slow driv-

ing that satisfies the relation γ ≪ αi. Evidently, the

instantaneous velocity of slowly driven BF almost in-

stantaneously follows the driving force f(t), thus, the

following relation should be satisfied: τS ≈ TF ≡ γ−1.

The “adequate” value of the deviation δs has been de-

rived by use of both discussed relations. This implies

that the discussed parameters τS and TF practically co-

incide in the limit of slow driving. Our direct calcula-



A. Raguotis et al. / Lithuanian J. Phys. 45, 153–160 (2005) 157

(a)

(b)

Fig. 1. Relaxation speed of the instantaneous velocity of BF for

some fixed values of the parameter α. All curves corresponding

to the different values of the parameter, α = 0.2, 1.0, 5.0, strictly

coincide. The particular cases of (a) slow driving (β = 0.2), (b)

fast driving (β = 5.0) are presented. Parameter values are hR = 1,

F0 = −0.3, and t0 = 0. The results derived from numerical

solution of Eq. (1) are shown by curves 1, and curves 2 show the

results received by the use of speed equation (5).

tions carried out by use of Eqs. (1) and (5) have shown

that the criterion of slow driving is fulfilled within the

accuracy of few percent if one takes that γ ≤ 0.1αi

(e. g., see Figs. 1 and 2 below).

3. Retarded accelerations of the driven front:

Lag time between drive and response

As noted, the particular case of symmetrical rate

functions is considered, thus, we take that α1 = α2 =
α3 ≡ α. For brevity, we introduce the denotation

β := γ/α. Now, the criterion of the slow driving reads

β ≪ 1, and the limiting case of quasi-static driving

implies that β → 0.

One may expect that the response of BF will be al-

most immediate, namely, the lag time between the driv-

ing force f(t) and the instantaneous velocity s(t) will

be insignificant if the inequality β < 1 is satisfied. A

significant retardation effect is expected in the opposite

case of fast driving when the relation β > 1 holds. The

typical s–t characteristics, which describe the cases of

both the slow (β = 0.2) and the fast (β = 5.0) driving

discussed, are shown in Fig. 1. In considering the dis-

cussed characteristics we have used the scaled variable,

τ = γt; the time is scaled in the units of the switching

time TF. Curves 1 in Fig. 1 represent the “exact” result

derived from the direct solution of the governing equa-

tion (1), whereas s–τ dependences shown by curves 2

have been derived by use of the speed equation (5),

within the adiabatic approximation discussed. As ex-

pected, the retardation effect is much more pronounced

with the fast driving. The response of BF to the slowly

varying force (β = 0.2) is almost instantaneous; both

s–τ dependences shown in Fig. 1(a) practically coin-

cide within the accuracy of a few percent. Furthermore,

the s–τ characteristics on Fig. 1(a) instantaneously fol-

low the driving force shown by the dashed line in this

figure. Quite differently, the considered characteris-

tics presented in Fig. 1(b) (β = 5.0) exhibit a signif-

icant retardation effect. Namely, the s–τ dependence

derived by numerical simulations (curve 1) is much

more gently sloped if compared to that obtained by the

speed equation (5), within the quasi-static approxima-

tion used (curve 2). Moreover, all the s–τ dependences

that have been taken at the different slope coefficients

α strictly coincide if the parameter β is taken fixed, as

shown by the curves on both Figs. 1(a) and 1(b). The

introduced parameter β := γ/α describes the relative

rate (rapidness) of the driving force. Or otherwise, it in-

dicates the ratio of the relaxation rates T−1
F

and τ−1
R of

the driving force and the bistable system, respectively,

namely, one has that β = τR/TF. Thus, we conclude

that the “relative rate” β is the basic parameter that gov-

erns the “size” of the delay; the lag time between drive

and response increases with the increase of parameter

β.

Let us turn to the quantitative characteristics of the

accelerations and discuss the required τS−γ and τS−F0

dependences that describe the “size” of the retardation.

Evidently, the delay time τD may be derived by con-

sidering the speed relaxation time τS, namely, one has

that τD := τS − TF. The typical τS–γ characteristics

derived by the numerical solution of Eq. (1) are shown
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Fig. 2. Dependence of relaxation time τS on the steepness of the

driving force. Solid curves show the results obtained by the use of

governing equation (1); dashed curve shows the result received by

the use of quasi-static approximation. Parameter values are hR =

1, F0 = −0.3; α = 0.2 in curve a; α = 0.5 in curve b; α = 1.0 in

curve c; α = 3.0 in curve d.

by curves a, b, c, and d in Fig. 2. All these encom-

pass both previously discussed cases of the slow and

the fast driving. The dashed curve derived by speed

equation (5) represents the instantaneous response that

satisfies the relation τS = TF ≡ γ−1. As expected, the

relaxation time τS decreases with the increasing rate

(steepness) of the driving force. In the region of small

values of γ satisfying the relation γ ≪ α the consid-

ered τS–γ dependences shown by the curves a, b, c, and

d approach the dashed curve that describes the instan-

taneous response of BF. As a consequence, the delay

time τD tends to zero if the driving force becomes ex-

tremely slow. This implies that the adiabatic approxi-

mation fits well, and the response of BF may be treated

as almost instantaneous one if the inequality β ≪ 1 is

satisfied. Differently, in the limiting region of large γ’s

the considered τS–γ dependences approach the fixed

value τS ≈ α−1, as shown by the curves a, b, c, and d in

Fig. 2. Hence it follows that the delay time satisfies the

approximate relation τD ≈ α−1 − γ−1 if β > 1. Fur-

thermore, the presented dependences evidently show

that the considered relaxation time τS taken at some

fixed value of the parameter γ increases with the de-

creasing slope coefficient α. Hence, the delay time τD

decreases with the increasing α.

The considered τS–γ dependences discussed above

have been verified more accurately. With this aim we

have introduced the scaled parameters defined by the

following relations: τsF := τS/TF and τDF := τD/TF.

Fig. 3. Dependence of the speed relaxation time τsF on the pa-

rameter β (solid curves); dashed curve shows the result derived

by the use of speed equation (5). Parameter values are hR = 1,

α = 0.2, 1.0, 3.0, and F0 = −0.3.

The obvious relation that encompasses both discussed

cases of the slow and the fast driving holds,

τsF ≡ τDF + 1 ≈
{

1 , β ≪ 1 ,

β ≡ γα−1 , β > 1 .
(13)

The required τsF–β dependences derived by the nu-

merical solution of Eq. (1) are presented by the solid

curves in Fig. 3. As previously, the dashed line shows

the result obtained by speed equation (5), within the

adiabatic approximation used. One can see that the pre-

sented characteristics that are taken for a wide interval

of the slope coefficients α give very close agreement

with expression (13). Consequently, the delay time in

non-scaled units, τD, may be evaluated by the follow-

ing expressions: τD ≈ γ−1(β−1) if β > 1, and τD ≈ 0
if β ≪ 1.

In closing the discussion of τD–β dependences let

us touch briefly on the spurious drift of BF. We have

already noted that our previous results derived by the

use of speed equation (5) have showed that the square-

wave ac driving described by the “superposition” of the

step-like forcing functions appeared to be very “effec-

tive”. As noted, the speed equation (5) neglects the

retardation. It is quite obvious that the occurrence of

the lag time between the driving force and the propaga-

tion velocity of the front will shrink the spurious drift

discussed; the “front-ratchet” effect will be suppressed

if the retardation is large enough. From Eq. (13) it fol-

lows that the lag time τD increases with the increasing

β, namely, one has that τD
∼= α−1 if γ ≫ α ∼= τ−1

R .

Thus, one may expect that the spurious drift generated

by the square-wave ac force will decrease with the in-

creasing parameter βT := (αT )−1, where by T we
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Fig. 4. Dependence of relaxation time τsF on the strength of driving

force. Parameter values are hR = 1, α = 1.0; β = 0.2, 1.0, 5.0 in

solid curves a, b, c, respectively; dashed curve d was received by

speed equation (5).

denote the period of the force. This implies that the av-

erage drift velocity of the unforced transport of BF, v,

will decrease with the decreasing period of the driving

force and will vanish in the limit T → 0. Indeed, one

has that τD → τR
∼= α−1 if TF → 0, hence, it follows

that (τD/T ) → ∞ if T → 0. This implies that in the

high frequency range of the driving ac force the con-

sidered retardation, if taken in the relative units of the

period T , becomes extremely large. Our preliminary

results derived by use of the square-wave forcing func-

tion confirm this conclusion: the drift velocity of the

spurious drift, v, decreases with the increasing “rate”

of the driving force, βT . The peculiarities of spurious

drift generated in the cases of both the slow and the fast

driving will be discussed more extensively elsewhere.

Let us turn to τsF–F0 characteristics and discuss the

dependence of the lag time versus the strength of the

driving force f(t). As earlier, we shall use the scaled

units; the relaxation time τS is scaled in the units of

the switching time TF. We have already noted that

the peculiarities of τsF–β characteristics do not depend

on the slope coefficient α (see Fig. 3). Thus, without

loss of generality, we take that α = 1. The consid-

ered τsF–F0 dependences derived by the numerical so-

lution of Eq. (1) are presented by curves a, b, and c in

Fig. 4. The dashed curve d shows the result derived

by the speed equation (5). One can see that the relax-

ation time τsF is a gently sloped function of F0; the

presented characteristics are flattened in the both cases

of slow and fast driving. The relative deviation of the

parameter τsF does not exceed few tenths. Further, in

the case of slow driving (β = 0.2) the propagation ve-

locity of BF immediately follows the driving force for

any strength F0; the presented curves a and d that have

been derived by use of equations (1) and (5), respec-

tively, practically coincide. Finally, the increase of the

parameter β practically does not influence the slope of

τsF–F0 characteristics; the relaxation time τsF slightly

increases with the increasing magnitude of F0 in the

both cases of slow and fast driving (compare curves a
and c). We conclude by noting that the influence of

the strength F0 on the considered lag time is insignif-

icant (within the pseudolinear model). Thus, it seems

to be most likely that the decrease of the spurious drift

of a rapidly driven BF would come basically through

the dependence of retardation on the rate (frequency)

of the applied zero-mean force.

4. Conclusions

The retarded accelerations of the self-organized

front in a continuous bistable system being under the

action of the step-like force have been studied by

considering the lag (delay) time between the driv-

ing force and the propagation velocity of the driven

front. The propagation of the “bistable” front sep-

arating two steady states of the bistable system has

been described by the nonlinear differential equation of

reaction-diffusion type, with the rate function approxi-

mated by linear pieces. The basic characteristics of the

retarded response, namely, the dependences of the de-

lay time on both the rate (steepness) and the strength

(magnitude) of the driving force have been derived in

a wide interval of governing parameters of the step-

like force, for arbitrary strengths and rates of the force.

By tuning the adjustable parameters of both the driving

force and the rate function we have found that the delay

time depends both on the steepness of the force and on

the slope coefficients of piecewise-linear rate function.

In contrast, the considered delay time practically does

not depend on the strength of the driving force. The

derived characteristics show that the considered retar-

dation is small if the characteristic relaxation rates in

the system significantly exceed the rate of the driving

force. The delay time increases with the increasing rate

of the driving force and approaches some fixed value

given by the slope coefficients of the rate function when

the step-like driving becomes extremely steep. The pre-

sented characteristics evidently show that the spurious

drift of BF in “front-ratchet” device should be sensi-

tive to the rate of zero-mean force. A decrease of the

average velocity of spurious drift is expected with the

increasing rate (frequency) of the ac force.
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VĖLUOJANTIS SAVAIMINĖS FRONTINĖS SANDAROS ATSAKAS Į SPARČIAI KINTANČIĄ JĖGĄ

A. Raguotis a, F. Ivanauskas a,b, R. Bakanas c

a Matematikos ir informatikos institutas, Vilnius, Lietuva
b Vilniaus universitetas, Vilnius, Lietuva
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Santrauka

Nagrinėjamas bistabilaus fronto (savaiminės frontinės sanda-

ros) atsakas į sparčiai kintančią jėgą. Veikančioji jėga aprašoma

laipto pavidalo jėgos funkcija, kurios įjungimo trukmė, nusakanti

jėgos kitimo spartą, ir jos amplitudė, atitinkanti jėgos stiprį, yra

laisvai parenkami parametrai. Fronto sklidimas aprašomas ne-

tiesine reakcijos-difuzijos tipo diferencialine lygtimi, naudojant

“pseudotiesinį” bistabilios terpės modelį, kurio spartos funkcija

yra visur tiesinė, išskyrus šios funkcijos ekstremumo (lūžio) taš-

kus, kuriuose funkcijos išvestinė yra trūki. Naudojant skaitinius

bei analizinius metodus, parodyta, kad fronto atsakas (jo akimirki-

nio greičio relaksacija) smarkiai vėluoja jėgos atžvilgiu, jeigu jėgos

įjungimo trukmė pakankamai maža, o jėgos sparta didelė. Būdinga

atsako vėlinimo trukmė, randama palyginimo būdu, – lyginant vei-

kiančios jėgos bei fronto sklidimo greičio relaksacijos spartas, pri-

klauso tiek nuo jėgos įjungimo trukmės, jos augimo greičio, tiek

ir nuo spartos funkcijos parametrų, nusakančių “vidinių” relaksa-

cijos vyksmų spartą bistabilioje terpėje. Parodyta, kad vėlinimo

trukmė beveik nepriklauso nuo veikiančios jėgos stiprio (ampli-

tudės). Gautieji rezultatai yra svarbūs, aprašant dažnines “front-

ratchet’ų” charakteristikas, kurios iki šiol dar nėra tyrinėtos. Tie-

sioginio veikimo “ratchet”-mechanizmas buvo aprašytas ankstes-

niuose mūsų darbuose [4], naudojant kvazistatinį lėtai kintančios

jėgos artinį. Vėluojančio frontų atsako charakteristikos, pateiktos

šiame darbe, rodo, kad kryptingas bistabilaus fronto dreifas “nuli-

nės” jėgos lauke turėtų gerokai sumažėti, esant pakankamai dide-

liems jėgos dažniams, viršijantiems būdingas relaksacijos trukmes

sistemoje.


