
Lithuanian Journal of Physics, Vol. 45, No. 3, pp. 183–189 (2005)

DEFORMATION POTENTIAL LIMITED SPIN RELAXATION

IN CUBIC SEMICONDUCTORS ∗

A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania

E-mail: dargys@pfi.lt

Received 13 April 2005

The scattering of valence band hole spin by acoustical and optical phonons due to deformation potential interaction is
considered. Six-band deformation potential matrix, which takes into account doubly degenerate heavy-mass, light-mass, and
split-off energy bands, is used to evaluate the matrix elements for spin conserving and flipping transitions. The concept of the
spin surface was addressed to define the initial and final states of the hole spin. It was found that, in agreement with experiment,
the spin conserving and flipping transitions are of comparable magnitude in both intravalence and intervalence band scattering
mediated by acoustical as well as optical phonons.
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1. Introduction

Due to enormous potentiality of applications of the
spin-based or so-called “spintronic” devices, intense
experimental and theoretical efforts are concentrated
on the physics of electron spin in semiconductors and
metals best reflected in the recent review by Žutić et
al. [1]. However, to realize a useful spintronic device
the spin memory of the device should be long, or at
least longer than an elementary working cycle of the
device. Therefore, the understanding of physics of spin
relaxation mechanisms and ways to control relaxation
is of the paramount importance in the development of
any spintronic device.

A large class of spintronic devices (spin transistors,
spin filters, spin LEDs) are based on a coherent spin
transport through channels bridged by ferromagnetic
contacts and/or quantum wells. There are three ba-
sic spin relaxation mechanisms for free electrons and
holes in 2D channels as well as in the bulk of these
devices suggested some time ago by Elliott and Yafet
(EY) [2, 3], D’yakonov and Perel (DP) [4], and Bir,
Aronov, and Pikus (BAP) [5]. At present, the impor-
tance of the proposed mechanisms is confirmed exper-
imentally [1].

∗ The report presented at the 36th Lithuanian National Physics Con-
ference, 16–18 June 2005, Vilnius, Lithuania.

In the EY mechanism the flipping of charge car-
rier spin is related with the spin–orbit (SO) interaction.
Here the spin flipping comes from one of the spinors
(initial or final) which is expanded to a higher order in
the scattering matrix to include SO interaction, while
the other (final or initial) spinor may not necessarily
include the SO interaction. Thus, in EY mechanism
the wave functions take into account the SO interac-
tion, while the interaction operator does not necessarily
includes it. In the DP mechanism the spin lifetime is re-
lated with motional spectral line narrowing. In noncen-
trosymmetric semiconductors the conduction band is
spin-split. The beating between the two closely spaced
spin-split conduction bands gives rise to a slow pre-
cession of the spin polarization. However, the electron
collisions with lattice phonons change the direction of
spin precession axis randomly. If electron–phonon col-
lisions are fast in comparison with an average preces-
sion period, the spin lifetime becomes long due to mo-
tional line narrowing effect [6], where a compensation
of the wave function dephasing between random scat-
tering events takes place. The DP mechanism is absent
in diamond-type semiconductors, where bands remain
doubly degenerate at all electron energies. In the BAP
mechanism, the spin flipping comes from exchange in-
teraction between the spins of free electrons and holes,
or acceptors during collisions. Usually the last of the
mechanisms is effective only at large doping levels.
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Recently Song an Kim [7] have reviewed all three spin
relaxation mechanisms and have constructed a kind of
phase diagrams where they have depicted graphically
which mechanism is dominant in each portion of semi-
conductor parameter space.

Up to present, most attention was paid to the con-
duction band electron spin relaxation since the elec-
tron spin lifetime is comparatively long. In the case
of valence bands the situation is different. Here the
SO interaction is strong enough to transform the va-
lence band structure and spin properties radically. As
a result, the spin is no longer a good quantum number
in transition matrix elements and the meaning of “spin
conserving” and “spin flipping” transitions requires a
more critical analysis. Due to rearrangement of the
bands, the hole spin may experience strong scattering
after a single momentum randomizing collision, as the
experiments show [8–10].

In this article, a new approach based on a concept
of spin surface [11–13] is used to calculate spin con-
serving and flipping matrix elements of the hole un-
der deformation potential interaction. The spin surface
represents all possible spin directions and lengths of
polarization vector of the hole that propagates ballisti-
cally in either heavy-mass, light-mass or split-off band.
The parametrization of the spin surface circumvents
the complicated procedure of constructing the six-band
hole spinors from the semiconductor constants. The
knowledge of the spin conserving and flipping matrix
elements allows one to easily obtain the spin relaxation
time from the momentum relaxation time. The latter
has been thoroughly investigated in p-type semicon-
ductors [14–17]. The interaction considered here is of
EY-type [2, 3].

2. Deformation potential matrices. Initial and final spinors

The scattering of spin will be considered in a model of doubly degenerate heavy-mass, light-mass, and split-off
bands that are typical to elementary semiconductors. To calculate the spin-dependent intra- and intervalence transi-
tion probability one must know the deformation potential matrices. For parabolic and degenerate four-band (heavy-
and light-mass) model, such deformation potential matrices for the acoustic and optical phonons can be found in the
monograph by Bir and Pikus [18]. These matrices can be generalized for six band optical [19] and acoustical [20]
deformation potentials, where spin–orbit split-off band is included. In the total angular momentum basis |J,m〉,
which will be written in the order (|32 , 3

2〉, |32 , 1
2〉, |32 ,−1

2 〉, |32 ,−3
2〉, |12 , 1

2〉, 1
2 ,−1

2〉), both the acoustical and optical
deformation potential matrices have the same structure:
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In case of acoustical deformation potential, the el-
ements of the matrix (1) are expressed through three
deformation potential constants l, m, and n, and the
strain tensor components εij in the following way:

f =
l +m

2
(εxx + εyy) +mεzz, (2a)

g=
1

3
(f + 2m(εxx + εyy) + 2lεzz), (2b)

h=
n√
3
(iεxz − εyz), (2c)
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j =
1√
3

(

l −m

2
(εxx − εyy) + inεxy

)

. (2d)

In practice, a different set of the deformation poten-
tial constants is frequently used: a = (l + 2m)/3,
b = (l − m)/3, d = n/

√
3. In the continuum limit,

the strain tensor εij is proportional to acoustic wave
polarization vector p and wave vector q components:
εij ∝ 2(pjqi + piqj). For longitudinal acoustic (LA)
phonons the vectors p and q are parallel and only di-
agonal components matter. Then the strain tensor is
diagonal,
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For transverse acoustic wave polarizations TA1 and
TA2, the vectors p(TA1) and p(TA2) are perpendicu-
lar to q and at the same time they are mutually per-
pendicular. These properties yield the following strain
tensors [18]:
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The momentum and energy conservation in the hole–
phonon collisions was used to eliminate phonon wave
vector q in the favour of the vector k. The collisions
were assumed to be elastic.

In the case of optical deformation potential the ma-
trix elements in (1) are

f = 0, (6a)

g= 0, (6b)

h= d0(iδλy + δλx), (6c)

j = id0δλz , (6d)

where d0 is the optical deformation potential constant,
and i =

√
−1. In (6), δλ = (δλx, δλy, δλz) is the di-

rection of the displacement of atoms in an elementary
cell, and λ characterizes the phonon mode (LO, TO1,
TO2). In the tetrahedral semiconductors, in small wave
vector limit (q ≈ 0) the cubic axes were chosen as arbi-
trary polarization directions of three orthogonal optical
phonon modes: δTO1 = (1, 0, 0), δTO2 = (0, 1, 0),
δLO = (0, 0, 1).

The next point to consider is the selection of initial
and final spinors, the product of which with the defor-
mation potential matrix yields the transition probabil-
ity. Due to large SO contribution in the formation of
the valence band, the main difficulty here comes from
noncommutivity of the valence band Hamiltonian and
the spin operator. This means that the hole energy and
spin cannot be good quantum numbers simultaneously.
As shown earlier [11–13], the ballistic hole with a given
wave vector k and energy Ej(k), where j is the band
index, can be properly described if one, in addition, in-
troduces the spin surface that characterizes all possi-
ble hole spin polarizations. For example, the spin sur-
face of the conduction band electron is represented by
a sphere, or is very close to a sphere, since the SO in-
teraction has very weak influence on the electron wave
function. However, in case of holes as shown in [11–
13], the deviation from sphere may be very large. In
particular, in tetrahedral and III–V semiconductors the
heavy-hole spin surface is cigar-shaped (for parabolic
bands it shrinks to a line) with rotation axis parallel to
k. The light-hole spin surface appears to be deformed
in the opposite direction, i. e., it has a form of an oblate
spheroid. The shape of the spin surface can be deter-
mined by parametrizing the spinor that represents the
hole with a well-defined k and Ej(k). For example, in
the energy representation one of the possible schemes
of parametrization of the heavy-hole spinor may be the
following: |f〉H = (0, 0, cos ϑ, sinϑeiφ, 0, 0), where
the parameters ϑ and φ control the magnitude and
direction of the spin polarization vector. In writing
down the spinor in energy representation it has been
supposed that the energy band order in the spinor is
(L,L,H,H,S,S). The dispersion laws of spherical heavy-
mass hole (H), light-mass hole (L), and spin–orbit split-
off hole (S) have been described by the following dis-
persion laws:

EH = (γ1 − 2γ2)k
2/2, (7)
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EL = (γ1 + 2γ2)k
2/2 − 2∆λ2, (8)

ES = γ1k
2/2 + ∆ + 2∆λ2, (9)

where k is the modulus of the hole wave vector, γ1 and
γ2 are the valence band parameters, ∆ is the spin–orbit
splitting energy, and λ is the nonparabolicity parameter,
λ = k2γ2/∆. In the numerical calculations the param-
eters of GaAs have been used: γ1 = 6.85, γ2 = 2.1,
∆ = 0.341 eV.

If one wants to return back to the initial representa-
tion, |ψ〉H,L,S = T †|f〉H,L,S, one must know the unitary
transformation matrix T that connects the energy and
initial (Luttinger–Kohn) representations. The matrix T
can be represented analytically if constant energy sur-
faces are spherical [13, 19].

3. Spin scattering matrix

Collision of the hole with a phonon changes the hole
wave vector from k to k′. The scattering may occur
within the same (intravalence scattering) or between
different, i and i′, bands (intervalence scattering). The
strength of the scattering for a selected phonon type
α = LA, α = LO, TA1, TO1, or TA2, TO2 is de-
scribed by the scattering matrix

Mα
i
′
i
= (10)

=







|〈i′k′ ↑′ |Hα
DP|ik ↑〉|2 |〈i′k′ ↑′ |Hα

DP|ik ↓〉|2

|〈i′k′ ↓′ |Hα
DP|ik ↑〉|2 |〈i′k′ ↓′ |Hα

DP|ik ↓〉|2






.

The initial and final spin polarizations, (↑, ↓) and (↑′,
↓′), respectively, are measured with respect to some ar-
bitrarily selected quantization axes, where the up and
down arrows indicate hole spins aligned or opposed to
the axes. The directions of the initial and final quantiza-
tion axes, in general, may be different. In the following
it is assumed that the initial and final axis are parallel,
respectively, to k and k′. The scattering will be called
“spin conserving” and “spin flipping” if the final spin
is along or opposed to the final quantization axes. The
sum of all matrix elements in the scattering matrix (10)
gives the standard scattering probability from (i,k) to
(i′,k′) state, which is usually used in the hole transport
theory [15–18].

The selection of the initial and final spin polariza-
tion vector 〈S〉 was done in the following way. At
first, the spin surfaces were precalculated for some as-
sumed initial/final k’s and bands i = H, L, or S, and
then in the parametrized spinors the parameters ϑ and

φ were selected so that the vector 〈S〉, the end of which
lies on the spin surface, was pointing along or against
the assumed quantization axis. For example, it was
found that for spherical heavy-mass band the quanti-
zation axis and k were aligned in the same direction
when ϑ = π/2−θ/2, φ = π/2+ϕ and in the opposite
directions when ϑ = θ/2, φ = −π/2 + ϕ, with θ and
φ being the polar angles of the wave vector. In a more
general case, when k and the quantization axis were
not colinear, ϑ and φ were precalculated numerically.
Since the optical phonon limited deformation potential
matrix is simpler, the optical scattering will be consid-
ered first.

4. Optical phonon limited spin relaxation

Calculations have shown that the probabilities of
spin flipping and conserving transitions in all cases,
i. e., for all possible phonon modes α, bands (i, i′), ini-
tial (↑, ↓) and final (↑′, ↓′) spin directions, are equal
when the quantization axis is parallel to the wave vec-
tor. For example, for heavy-mass-band intravalence
scattering the equation (10) gives
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2
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where superscript TO indicates the sum over two trans-
verse optical phonon modes (TO = TO1 + TO2), and
θ is the angle between the initial and final wave vec-
tors. Matrices (11) and (12) are independent of the
small parameter λ up to the second order. The sum
over all initial and final spins gives the well-known
intraband scattering dependence on the scattering an-
gle which is proportional to sin2 θ. Similar matrix has
been obtained for intravalence light-mass band scatter-
ing, however, the scattering strength now depends on
band nonparabolicity: MLO

LL = (1 + 2λ)2MLO
HH and

MTO
LL = (1 − 2λ+ 4λ2)MTO

LL .
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The scattering within the split-off band has been
found to be proportional to λ2. For example, for LO
phonons it is

MLO
SS = 3λ2d2

0 sin2 θ
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
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2
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2
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2
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



. (13)

At λ = 0 (parabolic bands) the absence of optical
deformation-potential scattering in the split-off band
follows from the symmetry considerations, too.

In case of the intervalence scatterings, the most im-
portant are transitions between heavy- and light-hole
bands. The respective matrix elements are

MLO
HL = (1 + 4λ+ 6λ2)d2
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,

where F1 = (1 − 2λ + 6λ2)(3 + cos 2θ) and F2 =
(4 − 8λ− 48λ2) cos θ.

To compare the strengths of the various mechanisms,
the matrix elements averaged over scattering angle θ
and summed over LO, TO1, TO2 phonons have been
calculated. For example, equations (11) and (12) give
the following averaged matrix:

〈MHH〉 =
3

4
d2
0

[

1 1

1 1

]

. (16)

In all cases, when the quantization axis is parallel to
k′, it has been found that scattering matrices averaged
over θ and summed over phonon modes reduce to a
matrix similar to (16) that consists of the product of 1’s
and the scalar that is proportional to the matrix element
for hole momentum scattering. Such structure shows
that the conserving and flipping scattering probabilities
are equal. From comparison of various averages it has
been found that the ratio of the squares of the matrix
elements for various elementary processes, when λ ≈
0, is (SH, SL):(HH, LL, LH):(SS)=1 : 1

2 : 0.

5. Acoustical phonon limited spin relaxation

For acoustical phonon scattering the deformation
potential matrix is more involved and, as a result, the
matrix elements have been found to be rather compli-
cated. Here numerical results for some typical situa-
tions will be presented mainly in a form of graphs.

In Fig. 1 the dependence of the square of matrix ele-
ment is calculated at various directions of the final wave
vector given by spherical angles θ and φ. The initial
wave vector was k = (0, 0, kz). The collisions were
assumed to be elastic and the relation q = 2k sin(θ/2)
between the phonon q and final hole wave vector k was
used to eliminate q. In the isotropic scattering case
(b = d = 0) the matrix elements for LA phonon-
limited scattering reduces to

MLA
HH =

1

2
a2q2





f (+) f (−)

f (−) f (+)



 , (17)

where f (±) = (4 − 3 sin2 θ ± sin3 θ). The respective
matrix for TA phonons is zero in this approximation:
MTA

HH = 0. The sum of all matrix elements in (17)
gives the well-known [18] momentum scattering ma-
trix element proportional to 2a2q2(1 + 3 cos2 θ). Fig-
ure 1 shows that the spin “flipping” and “conserving”
transitions have a different character. Also, the figure
shows that the spin “flipping” scattering is by an order
of magnitude larger then the spin “conserving” transi-
tion. From Fig. 1(b) it follows that in case of the spin
flipping the scattered hole spin tends to be antiparallel
to the final wave vector k′ direction. Thus, the acous-
tic phonon scattering is strongly anisotropic, and the
isotropic approximation used in the literature does not
reflect a real situation. Since the band dispersion is as-
sumed spherical, it is clear that the anisotropy comes
from the deformation potential matrix, where the fol-
lowing deformation potential constants — a = 3.1 eV,
b = −1.7 eV, d = −4.55 eV — have been used for
GaAs. These constants take into account the cubic
symmetry of the crystal.

Figure 2 shows the squares of the matrix elements
for intervalence scattering between heavy- and light-
mass bands under similar conditions. Here the spin
“flipping” scattering is stronger, too.

As in the previous section, to compare between the
strengths of various transitions we have integrated the
matrix elements over θ and ϕ and summed over LA,
TA1, and TA2 phonons. The following ratios of “con-
serving” and “flipping” transitions (+k/− k)ii′ , where
±k indicates that the final hole spin is either aligned or
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Fig. 1. Dependence of the square of matrix element for intravalence transitions in the heavy-hole band of GaAs due to sum of LA and TA
acoustic phonons. The initial wave vector and spin polarization are parallel to kz . The final spin is either (a) aligned or (b) opposed to
final wave vector k

′. θ and ϕ are the spherical angles of the final wave vector. The square of the matrix elements is in (eV/nm)2 units.
|k| = |k′| = 0.595 nm−1.
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Fig. 2. The same as in Fig. 1 but for intervalence heavy–light transitions.

opposed to the final wave vector k′, for parameters of
GaAs and the initial hole wave vector |k| = 0.92 nm−1

have beeen found:
Intravalence scattering

• (+k/− k)HH = 0.24,

• (+k/− k)LL = 1.15,

• (+k/− k)SS = 0.275.

Intervalence scattering

• (+k/− k)LH = 0.988,

• (+k/− k)SH = 1.33,

• (+k/− k)SL = 0.498.

The calculations have been repeated for other direc-
tions of initial and final spin. Nearly in all cases it is
found that the “conserving” and “flipping” scattering
rates are of comparable magnitudes.

In conclusion, the method to calculate spin scatter-
ing matrix elements of holes due to deformation poten-
tial interaction for complex valence bands is presented.
The method is based on the spin surface concept and
is general enough to find matrix elements for various
initial and final polarizations of the hole spin. The
acoustical and optical deformation potential scattering
of the ballistic hole spin, when during collision the
hole spin is reversed but the direction of motion does
not change, has shown that such spin flipping intra-
band transitions are forbidden for parabolic as well as
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nonparabolic bands. However, in the case of interband
transitions they are allowed. The proposed method al-
lows to connect the spin scattering time with the mo-
mentum scattering time. The preliminary calculations
show that spin “conserving” and “flipping” transition
frequencies are of comparable magnitude and make up
half of the momentum scattering frequency at thermal
hole energies.
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DEFORMACINIO POTENCIALO SĄLYGOTA SUKINIO RELAKSACIJA

KUBINIUOSE PUSLAIDININKIUOSE

A. Dargys

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Trumpai apžvelgta laisvųjų krūvininkų sukinio relaksacija pus-
laidininkiuose. Aptartas naujas sukinio gyvavimo trukmės skaičia-
vimo būdas, grindžiamas sukinio paviršiaus koncepcija [11–13].
Sukinio paviršius apibūdina visas įmanomas sukinio poliarizaci-
jas, kai elektronas arba skylė balistiškai juda vienoje iš energinių
juostų. Žinant laisvojo krūvininko sukinio paviršių, lengva parinkti
spinoriaus parametrus prieš ir po sklaidos, kuriuos būtina žinoti,
skaičiuojant su sukiniu susietus matricinius sklaidos elementus.

Kiek smulkiau aptarta skylės sukinio relaksacija p tipo puslai-
dininkiuose, kai skylė sąveikauja su akustiniais ir optiniais fono-
nais per deformacinį potencialą. Parodyta, kad dėl stiprios sukinio
ir orbitos sąveikos, kuri būdinga elementariųjų puslaidininkių bei
III–V, II–VI junginių valentinėms juostoms, skylės sukinio apver-
timo tikimybė po susidūrimo su fononu yra didelė. Tai patvirtinta
ir eksperimentu. Pateikta sukinio sklaidos matricinių elementų pri-
klausomybė nuo skylės bangos skaičiaus GaAs atveju.


