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1. Introduction

One of the reasons for the appearance of acoustic
wave dispersion in a medium is the relaxation pro-
cesses. In this case, the thermodynamic equilibrium in
a medium regarding compressions and rarefactions is
established with certain delay [1]. The equation of the
state of the medium, which relates the pressure p and
the density ρ, becomes dependent on density variations
in the previous moments and thus nonlocal in time, and
is described by the integral equation

p(x, t) = c2
∞

ρ(x, t) +

∫ +∞

0
R(t′)ρ(x, t − t′) dt′ . (1)

Here we deliberately extract the first term c2
∞

ρ to avoid
the δ-function in the expression for the relaxation func-
tion R(t) below.

The explicit form of the relaxation function R(t)
depends on the internal structure of the medium and
is studied by molecular acoustics and acoustic spec-
troscopy [2, 3]. However, a series of significant results
can be obtained without specifying the physical na-
ture of the interacting forces and solely on the grounds
of a phenomenological consideration of the relaxation
processes. For instance, the Debye–Mandelshtam–
Leontovich (DML) theory of relaxation is based on the
assumption that the contribution of the “previous” ef-
fects exponentially decreases with increasing the time
of their retardation [4, 5]. In the case of a single pro-

cess of relaxation, this results in the following equation
of state of the medium:

p(x, t) = c2
0ρ(x, t)+mc2

0

∫ t

−∞

e−(t−t′)/τ ∂

∂t′
ρ(x, t′) dt′ ,

(2)
which is equivalent to equation (1) with the relaxation
function

R(t) =
mc2

0

τ
e−t/τ , (3)

where m = (c2
∞

− c2
0)/c

2
0 is the parameter characteriz-

ing the relative value of the phase velocity changes of
the wave with an increase in its frequency; c0 and c

∞

are the velocities of the low-frequency (ωτ → 0) and
high-frequency (ωτ → ∞) sound (c

∞
> c0), and τ is

a characteristic time of relaxation.
Since the classical works by Debye, Mandelshtam,

and Leontovich on the theory of relaxation the exper-
imental data have been accumulating to prove devia-
tions from the classical exponential law of relaxation.
The first note on the possible non-exponential charac-
ter of relaxation by Kohlrausch dates as far back as
the mid-19th century, nevertheless, only in the recent
decades, due to the new technologies and much higher
accuracy of experimental studies, non-exponential re-
laxation has become an object of comprehensive inves-
tigations. This concerns the experiments with both di-
electrics [2, 3] and liquids, gases and polymers [6–8].
A number of empirical expressions have been proposed
to describe relaxation in these media.
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The present work shows that deviation from classical
exponential relaxation leads to frequency dependence
changes of the coefficients of absorption and dispersion
in such media. Dependences for the related phase and
group velocities have been obtained. The results are
compared among themselves and with classical expo-
nential dependence.

2. Waves in a medium with stretch exponential

relaxation

Experimental studies show [6–8] the presence of a
vast class of substances in which relaxation is described
by the relaxation function of a more complicated form:

R(t) = mc2
0

α

τ

(

t

τ

)α−1

e(−t/τ)α

, (4)

where the parameter 0 < α < 1. This results in the
equation of state

p(x, t) = (5)

c2
0ρ(x, t) + mc2

0

∫ t

−∞

e−[(t−t′)/τ ]α ∂

∂t′
ρ(x, t′) dt′ ,

which describes the stretch exponential or Kohlrausch–
Williams–Watts (KWW) relaxation processes [6, 7].

One-dimensional sound waves of small amplitude
in immovable gas are described by a system of linear
equations

ρ0

∂V

∂t
+

∂∆p

∂x
= 0 ,

∂∆ρ

∂t
+ ρ0

∂V

∂x
= 0 , (6)

where ∆ρ,∆p, and V are, respectively, small pertur-
bations of the density, pressure, and velocity of gas
or liquid particles regarding their equilibrium values
ρ = ρ0, p = p0, V0 = 0 [9].

This system of equations is not closed. It should be
supplemented by equations of state to interrelate the
pressure, density, and other thermodynamic character-
istics of the medium. For adiabatic processes in gases,
the Poisson adiabate serves as the equation of state:

p = p0

(

ρ

ρ0

)γ

, (7)

where γ is the index of the adiabate (1 < γ < 2) [1].
For liquids, as the state equation we can use the Tate
equation

p(ρ) = A0

(

ρ

ρ0

)γ̄

− A1 , (8)

where γ̄, A0,1 are empiric constants [9]. The value
p0 = A0 − A1

∼= ρ0c
2 is of the order of the “internal”

pressure in the liquid, which is related to the forces of
intermolecular interaction.

Both for gases and liquids, small pressure and den-
sity perturbations, as follows from the respective equa-
tions of state (7) and (8), are related by a simple corre-
lation

∆p = c2
s∆ρ , (9)

where cs =
√

γp/ρ for the gas and cs =
√

γ̄p/ρ for
the liquid are the adiabatic velocities of sound.

As follows from the general nonlocal state equation
of the medium (1), independently of the form of the re-
laxation function R(t) the perturbations of density ∆ρ
and pressure ∆p, due to the linear character of equa-
tion (1), obey the same equation of state. Substituting
the expression for the pressure perturbation ∆p, which
follows from expression (5), into the system of equa-
tions (6) and excluding the variables V and p, we obtain
the integro-differential equation for the perturbation of
density:

1

c2
0

∂2∆ρ

∂t2
−

∂2∆ρ

∂x2
= (10)

m
∂2

∂x2

[
∫ t

−∞

e−[(t−t′)/τ ]α ∂

∂t′
∆ρ(x, t′) dt′

]

.

3. Dispersion and absorption in medium with

stretch exponential relaxation

As follows from equation (10), the dispersion equa-
tion interrelating the frequency ω and the wave number
k in a medium with KWW relaxation is

k2 [1 + mIα(ωτ)] =
ω2

c2
0

, (11)

where the complex value Iα(ωτ) is determined by the
integral

Iα(x) = i

∫ +∞

0
e−(ξ/x)α

−iξ dξ . (12)

Usually the parameter m = (c2
∞
−c2

0)/c
2
0 ≃ 2(c

∞
−

c0)/c0 characterizing the relative value of the change of
phase velocity with an increase of its density is small
[9]. Expanding the expression (11) for k(ω) = k′+ik′′

into a series by the small parameter m we obtain

k ≃ ±
ω

c0

[

1 −
m

2
Iα(ωτ)

]

= (13)

±
ω

c0

{

1 −
m

2
Fα[sin (ωτ)] + i

m

2
Fα[cos (ωτ)]

}

,
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Fig. 1. The dispersion dependence ω = ω(k): c0τk′ =
(ωτ )

{

1 − (m/2)
∫

∞

0
exp [− (ξ/ωτ )α] sin ξ dξ

}

for a medium
with KWW relaxation in dimensionless variables c0τk′ and ωτ
for different values of the nonlocality parameter α = 0.1, . . . , 0.9.
The value of the relative magnitude of phase velocity m for the
sake of obviousness is inflated up to m/2 = 0.8. For α = 1.0 we

obtain dispersion caused by classical DML relaxation.

where

Fα[f(x)] =

∫

∞

0
e−(ξ/x)α

f(ξ) dξ . (14)

From the expression (13) it follows that the propaga-
tion of sound wave in a medium with KWW relaxation
is always accompanied by absorption and concomitant
dispersion:

k′′ =
mω

2c0

Fα[cos (ωτ)] ,

k′ =
ω

c0

{

1 −
m

2
Fα[sin (ωτ)]

}

. (15)

The dispersion curve ω = ω(k) is shown in Fig. 1.
From the dependence ω(k) one can see that the pres-
ence of exponential relaxation involves an increase of
the velocity of sound with an increase of frequency.
Thus, dispersion in a medium with KWW relaxation
is anomalous.

The asymptotic values of the dispersion curve are
straight lines with an angle of incidence to the x axis,
θ = arctan (1 − m/2Fα[sin x]) at x → +∞. Be-
cause of the properties of the function Fα[g(x)] the in-
cidence angle of the asymptote varies from θ0 = π/4
to θ1 = arctan (1 − m/2). For α → 1, the dispersion
curve for a medium with KWW relaxation turns into a
dispersion curve for a medium with DML relaxation:

k′ =
ω

c0

[

1 −
m

2

(ωτ)2

1 + (ωτ)2

]

. (16)

For α → 0 we get a linear interrelation ω = c0k for a
harmonic wave.

Fig. 2. Dependence of the coefficient of absorption k′′ =
(m/2c0τ )

∫

∞

0
exp [− (ξ/ωτ )α] cos ξ dξ in dimensionless vari-

ables 2c0τ/m and ωτ for a medium with KWW relaxation. The
value of the relative magnitude of phase velocity m for the sake of
obviousness is m/2 = 0.8, and different values of the nonlocality
parameter α = 0.1, . . . , 0.9. For α = 1.0 we obtain dispersion

caused by classical DML relaxation.

Figure 2 shows the dependence of the coefficient
of absorption k′′(ωτ) on the dimensionless variable
ωτ . When α → 0, the coefficient of absorption
k′′(ωτ) → 0 not only for ωτ → ∞, but also for the
maximum value of k′′

max determined from the condi-
tion F [〈ξα cos ξ〉] = 0. For α → 1 , the coefficient
of absorption k′′(ωτ) for a medium with KWW relax-
ation turns into the coefficient of absorption k′′(ωτ) for
a medium with DML relaxation:

k′′ =
m

2c0

ω2τ

1 + (ωτ)2
. (17)

For this relaxation, the maximum value of k′′ =
k′′

max = mω/(4c0) is obtained when ωτ = 1.
Figure 3 presents the phase V ph and group V gr ve-

locities in a medium with KWW relaxation in depen-
dence on the dimensionless parameter ωτ :

V ph =
ω

Re k
= c0

{

1 +
m

2
Fα[ sin (ωτ)]

}

, (18)

V gr =
dω

dk
=

c0

{

1 +
m

2
Fα[ sin (ωτ)] (19)

−
αm

2(ωτ)α
Fα[(ωτ)α sin (ωτ)]

}

.

The above dependence shows that the phase velocity

c0 < V ph < c0

(

1 +
m

2
Fα[ sin (ωτ)]

)

(20)
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Fig. 3. Dependence of (a) phase, V ph, and (b) group, V gr, veloc-
ities (18), (19) in a medium with KWW relaxation on the dimen-
sionless parameter ωτ . The solid line corresponds to the phase Vph

and group Vgr velocities in a medium with DML relaxation.

for ωτ → +∞, and the maximum value is reached
when α → 1, i. e. in the case of DML relaxation

V DML
ph = c0

[

1 +
m

2

(ωτ)2

1 + (ωτ)2

]

. (21)

The group velocity V gr in the region of high fre-
quencies ωτ ≫ 1 always exceeds c0. For α → 0,
V gr → c0 in all the frequency range, and when α → 1
it turns into a group velocity for a medium with DML
relaxation:

V DML
gr = c0

{

1 +
m

2

(ωτ)2[3 + (ωτ)2]

[1 + (ωτ)2]2

}

. (22)

Note here that there is a critical value of the quan-
tity αcr ∼ 0.56, which is obtained from the condition
Vgr max ≤ (1+m/2)c0. For α ≤ αcr we have no maxi-
mum for the group velocity Vgr, and the qualitative de-
pendences of the phase and group velocities coincide.

4. Conclusions and discussion

The relaxation function R(t) considered above cer-
tainly does not exhaust all the possible kinds of relax-
ation processes. For instance, in dielectric media three
types of relaxation functions are very popular: Cole–
Cole, Cole–Davidson, and Hawriliak–Negami [10].
Without any doubt such an approach could be applied
to other types of the relaxation function. The for-
mula for the state equation (1) may be presented as
p = c2

∞
[1+ R̂]ρ, where the expression in square brack-

ets may be interpreted as the operator relation. Such
approach allows to see analogies with solid body defor-
mation, in which for some simplest cases the tension–
deformation correlation σ = Eε is substituted by the
expression σ = Êε.

The relaxation damping of perturbation propagating
in a medium with DML relaxation is observed both in
gases and liquids, e. g., in sea water. Of importance
is the fact that the different content of ionic impurities
can result in a deviation of the KWW relaxation type,
in which the damping, as follows from (17), for α → 0
is more rapid.
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FAZINIS IR GRUPINIS GREIČIAI NE DEBAJAUS RELAKSACIJOS APLINKOJE

P. Miškinis

Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Santrauka

Pateikiamos fazinio ir grupinio greičių išraiškos ne Debajaus re-
laksacijos aplinkoje. Parodyta, kad Kohlrausch, Williams ir Watts
relaksacijos atveju dažninės fazinio ir grupinio greičių priklauso-

mybės kokybiškai skiriasi nuo analogiškų priklausomybių Deba-
jaus relaksacijos atveju. Įvertinti dispersijos ir sugerties koeficien-
tai. Šitokiu metodu gali būti nagrinėjami dispersiniai sąryšiai ir
kitose aplinkose su kitomis relaksacijos funkcijomis.


