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The nonparaxial and bidirectional beam propagation method suitable for modelling near-field and high numerical aperture

(NA) optical storage systems is suggested for 2D geometry and TE polarization of incident light beam. The complex Padé

approximants are introduced for correct approximation of evanescent field in the near-field optics. Pole–zero shifting and

branch-cut rotation methods of building complex Padé approximants are studied and compared.
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1. Introduction

High density optical data storage systems with the

capacity of more than a few tens of gigabytes have

been attractive for high density TV or digital movies.

However, in all optical recording systems a laser beam

spot size is limited by diffraction limit depending on

the wavelength (λ) and numerical aperture (NA) of

lens. In order to increase the storage density up to

hundreds of gigabytes, optical near-field recording us-

ing probes of the scanning near-field microscope has

been proposed by Betzing at al. [1]. The develop-

ment of near-field techniques in optical storage sys-

tems promises significant increase in the storage den-

sity by using evanescent waves to reduce the size of

the optical spot interacting with recordable medium.

Several approaches based on either near-field aperture

(scanned probe [2], very small aperture laser [3, 4]) or

solid immersion lens (SIL) [5, 6] schemes have been

introduced. These methods, however, face challenges

of extremely low throughput or need for maintaining

small (∼100 nm) and stable recording head–media sep-

aration. Super-resolution near-field structures (super-

RENS) using Sb [7] or AgOx [8, 9] thin film nonlinear

mask layers and integrated near-field optical (INFO)

media [10], with nano-optics embedded in the optical

medium, were proposed. Such super-RENS and INFO

media approaches do not require to maintain small

head–media separation. These structures are suitable

ways for development of the high density removable

optical discs and compatible with future use of blue and

UV laser sources for optical recording.

INFO media employ embedded nano-cylinder optics

directly in the optical disc [10]. These nano-cylinders

have high refraction index (in the case of using TiO2

n = 2.4) and work like micro-SILs with high NA. A

large amount of incident light beam undergoes the total

internal reflection in the nano-cylinder SILs, and super-

resolution is achieved by presence of evanescent waves

in the formation of beam spot overcoming the diffrac-

tion limit under nano-SIL surface. This INFO media

approach is also very promising for use together with

near-field microholographic recording to increase stor-

age density of the holographic optical disc. To investi-

gate this type of near-field optical storage systems the

numerical methods should support wide-angle (tightly

focused), nonparaxial beam propagation taking into ac-

count evanescent waves. Furthermore, the bidirectional

propagation is very important because usually an opti-

cal disc produces strong back-reflected beam.

Today, the most popular method for modelling non-

paraxial and bidirectional beam propagation, which

is proper for simulation of near-field optical storage

system, is the finite-difference time-domain (FDTD)

method [11] based on direct solution of Maxwell’s

equations using cells method by Yee [12] together with

an explicit finite-difference numerical scheme. Wide-

angle and bidirectional beam propagation in the FDTD
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method is correctly modelled due to time-dependent

simulations. In fact, it is a very numerically expen-

sive method, because for the 3D geometry we need

to solve 4D problem and this requires long computa-

tion times and large memory for storage. To speed

up the simulation it is important to remove the time

variable from the problem. This fast time-dependent

behaviour can be omitted for the optical data storage

systems, and is enough to solve the electromagnetic

problem in quasistationary limit. The most popular

method without time variable is so-called Beam Prop-

agation Method (BPM) [13–15] widely used in inte-

grated optics. The BPM uses solution of Helmholtz

wave equation in the paraxial limit of slowly vary-

ing envelope and implicit Crank–Nicholson numerical

scheme. A lot of BPM realizations were suggested.

One of the first realizations was suggested by Feit and

Fleck based on the fast Fourier transform (FFT-BPM)

[16]. Then Dagli suggested a more efficient method

based on finite-difference schemes (FD-BPM) [17].

There are various modifications of BPM for 2D and 3D

geometries, TE and TM polarization of incident light,

scalar, semi-vectorial, or fully-vectorial BPM for 3D

structures [15, 18–20].

Indeed, the main problem of these above-mentioned

BPMs is the paraxiality and unidirectionality of consid-

ered wave propagation. Paraxiality can be removed by

using Padé approximants or by employing the Method

of Lines (MoL) [14]. Unidirectionality can be removed

by using bidirectional formulation of BPM (BiBPM)

[14]. It is very important to consider correctly the influ-

ence of evanescent waves for application of BiBPM in

modelling the near-field optical storage system. Next,

we will show the way to develop a BPM satisfying

these requirements.

2. 2D nonparaxial BPM

For simplicity, 2D geometry and propagation of TE

polarized beam are considered. The beam propagates

along z axis, x axis is transverse coordinate, the wave

electric vector has only Ey component oriented along y
axis of the coordinate system. The propagation of this

light beam is described by the Helmholtz wave equa-

tion

∂2Ey

∂z2
+

∂2Ey

∂x2
+ k2

0n
2
efEy = 0 , (1)

where n2
ef(x, z) = n2(x, z) + G(x, z)/Ey is the ef-

fective refraction index, n(x, z) is the linear index

distribution, G(x, z) = χ(3)E3
y is Kerr nonlinearity,

k0 = 2π/λ is a wavenumber, λ is a wavelength. Next,

we will extract the reference index n0, i. e. we intro-

duce envelope E(z, x) of propagating wave amplitude

Ey = E exp(−ik0n0z), where i =
√
−1, and Eq. (1)

can be rewritten as follows for wave envelopes:
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is the nonlinear wave propagation operator.

If we assume that
∣∣∣∣
∂2E

∂z2

∣∣∣∣ ≪
∣∣∣∣2ik0n0

∂E

∂z

∣∣∣∣ ,

then the second z derivative in Eq. (2) can be omitted

and the paraxial wave propagation equation is obtained.

Nonparaxial approach takes into account this z deriva-

tive describing longitudinal diffraction. One of the

best and stable methods to evaluate this second deriva-

tive is Padé approximants for the propagation opera-

tor [14, 15]. The second z derivative in the Helmholtz

equation (2) means not only nonparaxial propagation

but also two-way wave propagation in the forward and

backward directions. Therefore, we can split Eq. (2)

into two one-way equations for waves propagating for-

ward (E+) and backwards (E−),

∂E±

∂z
= −ik0n0

[
− 1µ

√
1 + P

]
E± . (4)

Now, the nonparaxiality of wave propagation is de-

scribed by the square root operator. To take into ac-

count exactly this square root operator, for each prop-

agation step we would need to solve the eigenvalue

problem [21]. Of course, this is a very computation-

ally expensive and slow approach, realized in the MoL

method [22]. It is possible to expand the square root in

Eq. (4) by Taylor series. But this way is also not effi-

cient because it leads to complicated multi-point finite-

difference schemes. Today, the approach based on us-

ing Padé approximants [23] to evaluate the square root

operator in Eq. (4) is recognized as the most efficient

way to solve the nonparaxiality problem. The usage

of Padé approximants deals with replacing square root

in Eq. (4) by a ratio of two polynomials N and D in

propagation operator P :

∂E+

∂z
= −ik0n0

N

D
E+ . (5)
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Table 1. Supported beam spreading angle θ by different

orders of Padé approximants.

Padé order (1, 0) (1, 1) (2, 2) (3, 3) (4, 4)

θ 15◦ 30◦ 48◦ 60◦ 67◦

There are a few of ways to build these polynomials.

One way is to derive from Eq. (2) this iterative formula

∂E+

∂z|M
= −ik0n0

P

2
E+

1 +
i

2k0n0

∂

∂z|M−1

, (6)

where M is iteration order, and get expressions for var-

ious orders n of Padé (n, n) polynomials in the ratios

of numerators N and denominators D. For paraxial ap-

proach we have Padé (1, 0) approximant

N

D
=

P

2
,

then the first nonparaxial approach with Padé (1, 1) ap-

proximant

N

D
=

P

2

1 +
P

4

,

then the next Padé (2, 2) approximant

N

D
=

P

2
+

P
2

4

1 +
3P

4
+

P
2

16

,

etc.

Table 1 summarizes validity ranges of different or-

der Padé approximants for propagation of beams with

a spreading angle θ [24, 25]. The results of nonparax-

ial beam propagation are presented in the limit of 1%

errors.

Further, for development of BiBPM, it is convenient

to transform Eqs. (4) for wave envelopes to a more

symmetric form for fast wave amplitudes without ex-

traction of reference index:

∂Ey+

∂z
= −ik0n0

√
1 + P Ey+ , (7)

∂Ey−

∂z
= −ik0n0

√
1 + P Ey− , (8)

and Padé (n, n) polynomials are transformed into the

form useful for developing multistep algorithms:

√
1 + P =

Ñ

D̃
= Cn

n∏

i=1

P − ci

P − di

. (9)

In Eq. (9), the Padé (n, n) polynomial is presented as a

product of n Padé (1, 1) approximants. This allows us

to use split-step algorithm for Padé (n, n) polynomials

and to reduce the whole problem to a multiple appli-

cation of Padé (1, 1) approximants [26] preserving the

tridiagonal structure of numerical schemes. It is a great

benefit in comparison with the method of using expan-

sions of the square root operator by Taylor series or

MoL approach.

3. Evanescent wave description by complex Padé
approximants

In order to study near-field optical recording it is im-

portant to properly describe the evanescent field that

dominates in the near-field optics. The main problem is

that the usual BPM does not support evanescent waves

at all. In the FFT-BPM, evanescent spectrum of field is

filtered out due to stability problems [16]. In the FD-

BPM, evanescent waves are considered as ones prop-

agating without any damping [27] in the wave propa-

gation (z axis) direction. Introduction of Padé approx-

imants in the FD-BPM for wide-angle wave propaga-

tion also does not resolve this problem. Padé approxi-

mants in Eq. (9) have real roots, i. e. real poles in the

evanescent wave region. Therefore these expressions

are singular and invoke numerical instabilities for situ-

ations with large contribution of evanescent field to the

total wave field, which happens for near-field optics.

This problem of stability can be fixed by introducing

the complex Padé approximants using some algorithm

to convert real roots of Padé polynomials to complex

ones.

One way to introduce complex Padé approximants

was suggested by Vassalo [28] for the fourth root oper-

ator 4
√

1 + P , which we will apply for the square root

operator in Eq. (9). The idea is to use the transforma-

tion of the propagation operator, P = is + (1 + is)σ,

that performs shifting of zeros and poles on the com-

plex plane. Using this substitution, we can derive new

expression of Eq. (9)

√
1 + P = Cn

√
1 + is

n∏

i=1

P − c̃i

P − d̃i

, (10)
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(a) (b)

(c) (d)

Fig. 1. Approximation of Ewald sphere by complex Padé approximants created by the pole–zero shifting method versus shifting parameter

s, (a) s = 0, (b) s = 0.5, (c) s = 2.0, (d) s = 10, where trace 1 is exact Ewald sphere, trace 2 is complex Padé (1, 1), trace 3 is complex

Padé (2, 2), trace 4 is complex Padé (3, 3) approximant.

where s is the shifting parameter and the new roots of

complex Padé polynomials are

c̃i = is + ci(1 + is) , d̃i = is + di(1 + is) . (11)

In Fig. 1 we show approximation of modulus of the

square root operator (10) for the case of plane wave

propagation in the free space. In this case, the square

root operator represents Ewald sphere [29], which dis-

plays behaviour of wavenumber in longitudinal propa-

gation direction versus wavenumber in transverse di-

rection in normalized units. Trace 1 in Fig. 1(a–d)

shows exact solution for Ewald sphere. Propagat-

ing waves described by a semicircle in the K-space

for isotropic medium appear in the region [−1, 1].
The regions [−∞,−1] and [1,+∞] contain evanescent

waves. For the case of real Padé roots (s = 0, Fig. 1(a))

we can see the poles in the evanescent regions and

the Padé approximants do not describe these waves.

By increasing the shifting parameter s (Figs. 1(b, c))

the smoothing of poles occurs and sufficiently exact

“global” approximation of the total Ewald sphere by

Padé (3, 3) approximant (Fig. 1(c)) is built. A further

increase of the shifting parameter (s = 10, Fig. 1(d))

leads to greater errors for approximation of propagating

waves.

Another way to introduce complex Padé approxi-

mants was suggested by Brooke [30]. It is the method

of rotation of square root branch-cut in the complex

Riemann plane, which is carried out by using the

transformation of the square root operator
√

1 + P =
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exp(iα/2)
√

1 + σ1, σ1 = exp(−iα)(1 + P ) − 1, and

leads to the following new expression for Eq. (9):

√
1 + P = exp(iα/2)Cn

n∏

i=1

P − ĉi

P − d̂i

, (12)

where α is angle of branch-cut rotation and the new

complex Padé roots are

ĉi = exp(iα)(1+ci)−1 , d̂i = exp(iα)(1+di)−1 .
(13)

For the case of α = 0◦, we again have real Padé

roots and the same result as shown in the Fig. 1(a).

By increasing the rotation angle (Figs. 2(a, b)) up to

α = 90◦, we can see smoothing of poles in the evanes-

cent wave region and almost perfect approximation of

the “global” Ewald sphere by complex Padé (3, 3) ap-

proximant. Further increasing of the rotation angle in-

vokes the appearance of poles in the region of prop-

agating waves (Fig. 2(c)) and complete breakdown of

propagating wave description by complex Padé approx-

imants (Fig. 2(d)).

It is necessary to note that, as shown in [27], the use

of the branch-cut rotation method is equivalent to the

use of complex reference index. This guess of wave

with complex carrier frequency can be not applicable

to some problems of interest as it produces a strong

power loss. We can also see some differences in the

behaviour of the best approximation to Ewald sphere

(Figs. 1(c) and 2(b)) by using pole–zero shifting and

branch-cut rotation methods. For lower order Padé ap-

proximants, the shifting method shows larger errors in

the propagating wave region, which then disappear by

(a) (b)

(c) (d)

Fig. 2. Approximation of Ewald sphere by complex Padé approximants created by the branch-cut rotation method versus rotation angle α,

(a) α = 30
◦, (b) α = 90

◦, (c) α = 150
◦, (d) α = 180

◦ , where trace 1 is exact Ewald sphere, trace 2 is complex Padé (1, 1), trace 3 is

complex Padé (2, 2), trace 4 is complex Padé (3, 3) approximant.
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Fig. 3. Bidirectional propagation in multiple interface structure.

increasing the approximant order. For the case of the

rotation method at the lower order Padé approximants,

we encounter larger errors in off-axis region of propa-

gating waves, which again then disappear by increasing

the approximant order.

4. 2D bidirectional BPM

Next, we will show how it is possible in the BPM

algorithm to take into consideration the beam reflec-

tions. As an example, the TE polarized beam propa-

gation through the layered system shown in Fig. 3 is

considered. This reflective structure consists of layers

l with distinct refraction indices nl(x, z). The beam

Ein
+ (x, z) impinges on this structure and produces re-

flected Ein
− (x, z) and transmitted Eout

+ (x, z) beams.

For convenience, the following notation for the square

root operator in the layer l is introduced:

Ql = k0n0

√
1 + P

(l)
= k0n0

Ñ (l)

D̃(l)
, (14)

and we rewrite one-way symmetric Eqs. (7, 8) in the

form

∂E
(l)
y+

∂z
= −iQlE

(l)
y+ , (15)

∂E
(l)
y−

∂z
= −iQlE

(l)
y− . (16)

The formal solution of Eqs. (15, 16) in the operator

form in the layer l is

E(l)
y = E

(l)
y+ + E

(l)
y−

= exp(−iQ1z1)A1 + exp(iQ1z1)B1 . (17)

To describe the beam transmission from layer l to l + 1
we apply internal boundary conditions for full electric

and magnetic light wave fields

E(l)
y = E(l+1)

y , (18)

H(l)
x = H(l+1)

x . (19)

After substitution of (17) into Eqs. (18, 19) it is possible

to derive transmission operator Tl,l+1 from layer l to

layer l + 1

Tl,l+1 =
1

2

∣∣∣∣
1 + Ql/Ql+1 1 − Ql/Ql+1

1 − Ql/Ql+1 1 + Ql/Ql+1

∣∣∣∣ , (20)

and a new propagation operator

Pl =

∣∣∣∣
P+

l 0
0 P−

l

∣∣∣∣ =

∣∣∣∣
exp(−iQlzl) 0

0 exp(iQlzl)

∣∣∣∣ .

(21)

The total algorithm of beam bidirectional propagation

in the operator form can be written as follows:
∣∣∣∣
Eout

+

Eout
−

∣∣∣∣ = M

∣∣∣∣
Ein

+

Ein
−

∣∣∣∣ , (22)

where M is some product of propagation and transmis-

sion operators,

M =

∣∣∣∣
g11 g12

g21 g22

∣∣∣∣ = Tn,n+1Pn . . . P2T1,2P1 . (23)

For beam propagation in the linear layered struc-

ture, Eqs. (22) can be solved by direct and noniter-

ative way [31] or by applying some iterative algo-

rithm [32]. For example, using the direct solution

of Eqs. (22), after some manipulations with opera-

tors, we obtain Ein
− = −g−1

22 g21E
in
+ for the reflected

beam. We get the formal solution in the operator form

Eout
− = (g11−g12g

−1
22 g21)E

in
+ for the transmitted beam

as well. For the beam propagation through the nonlin-

ear layered structure only iterative methods are suitable

[33]. In the case of plane wave propagation in the struc-

ture with plane layers Eqs. (22, 23) turn into the well-

known transfer matrix method (TMM) [29], which is

widely used in simulation of optical coatings and in-

terference filters. In our case of BiBPM, the matrix

Eqs. (22, 23) include differential operators with par-

tial derivatives. Therefore, it is a quantitatively new

method. We again use complex Padé approximants

for evaluation of square root operators in the numeri-

cal schemes and this BiBPM algorithm has only formal

similarity to TMM. For long distance beam propaga-

tion in the layered structure of high contrast of refrac-

tion index the scattering matrix formulation of BiBPM

is more preferable [34, 35]. This formulation is more

complicated in numerical implementation but it is more

stable for the cases of structures of high index contrast.

As a numerical example of application of bidirec-

tional and nonparaxial BPM with complex Padé ap-

proximants, we consider modelling of reflection of nar-

row, nonparaxial Gaussian beam from a polymer slab

on a high index GaP substrate. The propagation of



R. Petruškevičius / Lithuanian J. Phys. 45, 225–233 (2005) 231

(a) (b)

Fig. 4. Modelling of nonparaxial Gaussian beam reflection from polymer slab on GaP substrate, (a) using Padé (1, 0) approximants (paraxial

approach) and (b) using Padé (3, 3) approximants for beam propagation and reflection operators.

Gaussian beam with 0.8 µm full width at the waist and

0.4 µm wavelength is studied. The polymer slab had

20 µm thickness and refraction index 1.6 . GaP sub-

strate had refraction index 3.2 . The results of mod-

elling of this wide-angle beam reflection are presented

in Fig. 4. The complex Padé approximants obtained by

pole–zero shifting method are used with shifting pa-

rameter s = 0.6 . Figure 4(a) presents results of parax-

ial modelling using Padé (1, 0) approximants for beam

propagation and reflection from interfaces. Figure 4(b)

shows results of the same beam nonparaxial modelling

using Padé (3, 3) approximants for evaluation of beam

propagation and reflection operators. We can clearly

see that paraxial approach does not simulate correctly

the narrow beam propagation and reflection, and the

improvement of beam propagation is achieved by in-

creasing the order of Padé approximants for evaluation

of propagation and reflection operators.

5. Conclusion

The algorithm of the nonparaxial and bidirectional

beam propagation method suitable for modelling near-

field optical data storage systems is suggested. The for-

mulation of BiBPM for 2D geometry and TE polariza-

tion of incident light beams is derived. Complex Padé

approximants are introduced for correct approximation

of evanescent field in the wave propagation direction.

Pole–zero shifting and branch-cut rotation methods of

building complex Padé approximants are studied and

compared. Bidirectional generalization of the BPM al-

gorithm is obtained. The suggested method turns into

a well-known transfer matrix method for the case of

study of plane wave propagation in a layered struc-

ture with plane layers. The BiBPM algorithm based on

nonparaxial solution of the Helmholtz wave equation

should be faster and request less computer resources

then the traditional FDTD method used for simulation

of near-field and high NA optical storage systems.
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KOMPLEKSINIAI PADÉ ARTINIAI DVIEJŲ KRYPČIŲ IR NEGRETAAŠIAME PLUOŠTO
SKLIDIMO METODE

R. Petruškevičius

Fizikos institutas, Vilnius, Lietuva

Santrauka

Negretaašis ir dviejų krypčių pluošto sklidimo metodas, tinkan-

tis modeliuoti artimo lauko ir didelės skaitmeninės apertūros opti-

nio duomenų užrašymo sistemas, pasiūlytas 2D geometrijai ir TE

krentančio pluošto poliarizacijai. Kompleksiniai Padé artiniai įvesti

korektiškam nespindulinio lauko aprašymui artimo lauko optikoje.

Nagrinėti ir palyginti polių–nulių postūmio ir šaknies pjūvio su-

kimo kompleksinių Padé artinių suformavimo metodai.


