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It is shown that Bessel beam pump in optical parametric generator supports an existence of two different X wave modes at

different propagation velocities. The phase matching possibility of Bessel beam pump with a X wave propagating in opposite

direction is revealed.
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Spatial and temporal localization of light energy

is of great importance for various applications. The

diffraction-free and dispersion-free propagation of

pulsed beams (usually called as X waves) can be

achieved both in linear [1–3] and nonlinear media. In a

quadratic medium X waves are formed spontaneously

through a trigger mechanism of conical emission via

mismatched second harmonic generation [4–9]. An

appearance of conical emission is a result of non-

collinear interactions which are strictly controlled by

phase matching conditions of different components of

spatial-temporal spectrum of the waves. It was demon-

strated that angular dispersion of the waves excited in

optical parametric generator (OPG) by quasimonochro-

matic plane pump wave corresponds to angular disper-

sion of X waves [10, 11]. In this paper we reveal an

existence of different X wave modes in OPG pumped

by quasimonochromatic Bessel beam.

An X wave can be represented as a superposition of

Bessel beams, the frequencies ω, wave vectors k, and

half-cone angles ψ of which are related in dispersive

medium by an equation

k (ω) cosψ (ω) =
ω

V
+ γ , (1)

where V is the velocity of X wave and γ is an arbi-

trary constant [1]. The phase matching conditions of

X waves interacting with a quasimonochromatic Bessel

beam pump in the nonlinear crystal can be obtained
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Fig. 1. Schematic depiction of noncollinear phase matching of

three plane monochromatic waves in nonlinear crystal.

from the conditions of noncollinear phase matching

of plane monochromatic waves, if the requirements of

proper angular dispersion of X waves are taken into ac-

count. We assume that Bessel pump beam (frequency

ω3, half-cone angle φ) is propagating along axis z that

is perpendicular to an optical axis (x) of the uniaxial

negative crystal, Fig. 1. As a result, in the paraxial

approximation within accuracy ∼ φ3 the interacting

waves for type I phase matching can be considered as

axially symmetric. Then, the phase matching condi-

tions can be written as

ω1 + ω2 = ω3 , (2)

k1 sin (φ+ θ1) + k2 sin (φ+ θ2) = k3 sinφ , (3)
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Fig. 2. Dependence of the direction of collinear degenerate para-

metric interaction (angle φ) on crystal temperature for LiNbO3 (1,

λ3 = 0.532 µm) and KDP (2, λ3 = 0.266 µm) crystals.

k1 cos (φ+ θ1) + k2 cos (φ+ θ2)

= k3 cosφ+ ∆k , (4)

where the subscripts number the waves, and ∆k is

the phase-mismatch for arbitrary chosen frequencies

ω1, ω2.

Further we suppose that angle φ corresponds to the

direction of collinear degenerate parametric interac-

tion. In this case ω1 = ω2 = ω0 = ω3/2 and

k3 = 2k0, where k0 = k (ω0). The dependences of

the angle φ on temperature in LiNbO3 and KDP crys-

tals are shown in Fig. 2 at pump wavelengths 0.532

and 0.266 µm, respectively. The results were obtained

by use of refractive-index data presented in [12]. We

note, that angle φ = 0 corresponds to noncritical phase

matching of interacting waves, and in this case the

pump beam is a plane wave.

We suppose that frequencies ω1 and ω2 can be writ-

ten as ω1 = ω0+∆ω and ω2 = ω0−∆ω, where ∆ω is a

frequency shift with respect to ω0. Then, the dispersive

relations of two X waves take a form (see Eq. (1))

k1 cos (φ+ θ1) =
∆ω

V (1)
+ k0 cosφ , (5)

k2 cos (φ+ θ2) = −
∆ω

V (2)
+ k0 cosφ . (6)

As a result, for phase mismatch ∆k of X waves we find

∆k = ∆ω
(

1/V (1) − 1/V (2)
)

. Obviously, the most

effective excitation of X waves from quantum noise

level in OPG should occur at ∆k = 0 (V (1) = V (2) =
V ). At ∆k = 0 the angle φ in Eqs. (3) and (4) can be

excluded, and the phase matching conditions of non-

collinear interaction can be rewritten as

k1 sin θ1 + k2 sin θ2 = 0 , (7)

k1 cos θ1 + k2 cos θ2 = k3 . (8)

Then, in the paraxial approximation (small angles

θ1, θ2) the angular dispersion of excited waves is given

by

θ2
1 ≈ 2

k2 (k1 + k2 − k3)

k1 (k1 + k2)
, θ2 ≈ −

k1

k2
θ1 . (9)

Further, an expansion of the wave vectors k1 and k2

into a Taylor series k (ω0 ± ∆ω) ≈ k0 ± ∆ω/u0 +
g0/2 (∆ω)2 gives

θ1 ≈ ±
√

g0
k0

∆ω , θ2 ≈ −θ1 , (10)

where u0 and g0 are group velocity and group velocity

dispersion coefficient, respectively. So, in the case of

degenerate collinear interaction of central frequencies

of the waves, the type I phase matching causes a linear

angular dispersion of excited pulsed beams. The ob-

tained angular dispersion, Eq. (10), should comply with

an angular dispersion of X waves. In paraxial approx-

imation, after expansion of the wave vectors k1 and k2

into Taylor series, Eqs. (5) and (6) can be written as

g0 (∆ω)2 + 2∆ω

(

cosφ

u0
−

1

V

)

− 2
∆ω

u0
θ1 sinφ

− k0θ
2
1 cosφ− 2k0θ1 sinφ = 0 , (11)

g0 (∆ω)2 − 2∆ω

(

cosφ

u0
−

1

V

)

+ 2
∆ω

u0
θ2 sinφ

− k0θ
2
2 cosφ− 2k0θ2 sinφ = 0 . (12)

An analysis of Eqs. (11) and (12) shows that linear an-

gular dispersion of noncollinear interaction, Eq. (10),

is obtained at V = u0
(

cosφ∓
√
k0g0u0 sinφ

)

−1
.

Thus, two different modes of X waves can be excited

in OPG pumped by Bessel beam. The frequency ω0 +
∆ω of the first X wave mode increases with an angle θ
(θ =

√

g0/k0∆ω, positive angular dispersion), and the

velocity of this mode is

V1 = u0

(

cosφ−
√

k0g0u0 sinφ
)

−1
. (13)

The frequency of the second mode decreases with an

angle θ (negative angular dispersion), and the velocity

V2 is

V2 = u0

(

cosφ+
√

k0g0u0 sinφ
)

−1
. (14)
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Fig. 3. Dependences of the velocities of two X wave modes on

temperature in LiNbO3 crystal. λ3 = 0.532 µm.

Fig. 4. Dependences of the velocities of two X wave modes on

temperature in KDP crystal. λ3 = 0.266 µm.

The temperature dependences of the velocities V1 and

V2 for LiNb03 and KDP crystals are presented in

Figs. 3 and 4, respectively. The first mode with ve-

locity V1 is superluminal (V1 > u0), while the other

one with velocity V2 (V2 < u0) is subluminal. We note

that in KDP crystal at T < 240 K Bessel beam pump

supports an existence of X wave propagating in oppo-

site direction.

In conclusion, it has been shown that in OPG

pumped by Bessel beam there can exist two different

X wave modes. The mode with positive linear an-

gular dispersion is superluminal, and the direction of

its velocity can be opposite to the velocity of Bessel

beam. Another X wave mode with negative linear an-

gular dispersion is subluminal. We note that velocities

of X wave modes can be varied by temperature of non-

linear crystal in conjunction with a variation of pump

beam cone angle 2φ.
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Santrauka

Parodyta, kad, kaupinant parametrinį generatorių šviesos Bese-

lio pluoštu, jame gali būti sužadintos dvi skirtingos X bangų mo-

dos, kurioms būdingi skirtingi sklidimo greičiai. Tam tikrais atve-

jais yra įmanoma priešpriešinė vienos iš X modų ir Beselio pluošto

parametrinė sąveika.


