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A theory of the Dember effect in bipolar semiconductors accounting for the boundary conditions in a metal–semiconductor

contact and distortion of energy bands near semiconductor surface is presented. It is shown that the Dember electromotive

force (emf) depends on the surface potential and the Dember emf is negative for flat energy bands.
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1. Introduction

The Dember effect is the emf arising in a semi-

conductor sample steadily absorbing light at one sur-

face. The quasi-neutrality approximation was assumed

in most of previous theories of the Dember effect [1, 2].

To our knowledge, only paper [3] is aimed at the calcu-

lation of the Dember emf taking into account the bulk

charge. It was assumed in [3] that illuminated sample

surface is in contact with a dielectric (gas or vacuum).

However, usually emf is measured across the metal-

lic contacts placed on illuminated and dark surfaces

of semiconductor sample. A metallic contact changes

boundary conditions (BCs) on the illuminated surface:

photoinduced electrons can move from semiconductor

into metal. Therefore the charge density should in-

crease near illuminated surface and the Dember emf

should decrease. The distortion of energy bands [4]

creates the equilibrium built-in electric field. This field

affects the photoinduced charge density and so changes

the Dember emf value.

This article is aimed at the development of the theory

of the Dember effect in bipolar semiconductors.

2. Theory

Let us consider a bipolar semiconductor plate 0 ≤
x ≤ L with the surface at x = 0 illuminated by

∗ The report presented at the 36th Lithuanian National Physics Con-
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strongly absorbed light. The thickness of the sample

L essentially exceeds the diffusion length (see below).

Semiconductor contains a shallow donor level, which is

completely depleted. A semi-transparent metallic con-

tact is placed on the surface x = 0 of the sample and

the grounded metallic contact is placed on the surface

x = L. We suppose that light wavelength corresponds

to the region of fundamental absorption and that pho-

toexcitation is weak.

The densities of electrons n and holes p, as well as

the electric potential ϕ, are obtained from solution of

the continuity equations [3, 5] and the Poisson equation
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are the electron and hole current densities [4], τn (p) is

the time characterising the electron (hole) bulk recom-

bination rate [5], δn (δp) is the non-equilibrium density
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of electrons (holes), n0 (p0) is the equilibrium density

of electrons (holes) in the bulk of the sample, ε is the

semiconductor electrical permittivity, ε0 is the vacuum

permittivity, µn (p) is the electron (hole) mobility, k is

the Boltzmann constant, and T is the temperature of the

semiconductor.

The densities of carriers and electric potential can be

expressed as

n(x) = neq(x) + δn(x) ,

p(x) = peq(x) + δp(x) , (5)

ϕ(x) = ϕeq(x) + δϕ(x) ,

where neq(x) and peq(x) are the equilibrium densities

of electrons and holes, ϕeq(x) is the equilibrium elec-

tric potential, and δϕ(x) is the non-equilibrium electric

potential.

The equilibrium densities and potential for special

cases are obtained in [6].

The Poisson Eq. (3) for non-equilibrium values δn,

δp, and δϕ takes the form

d2ϕ

dx2
=

e

εε0
(δn − δp) . (6)

Since photoexcitation is weak, we can expand the ex-

pressions of partial currents in series by small param-

eters δn/n0 ≪ 1, δp/p0 ≪ 1, and δϕ ≪ kT/e. In

linear approximation we derive from Eqs. (4)
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The BCs can be obtained on the basis of results of [7]:
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where v is the illuminated surface recombination rate

(SRR), G is the electron–hole pairs generation rate per

unit illuminated surface area, and δϕM is the variation

of electric potential of metallic contact.

Taking into consideration that the diffusion length

significantly exceeds the Debye length we obtain the

solution of Eqs. (1), (2), and (6) as a sum of two modes

[3]: diffusion-recombination (DR) mode and screening

(S) mode. These modes are denoted by subscripts R

and S accordingly:

δn = δnR + δnS ,

δp = δpR + δpS , (11)

δϕ = δϕR + δϕS .

DR mode is obtained from the solution of Eqs. (1),

(2), (6), and (7) with BC (8) and condition of quasi-

neutrality |δnR − δpR| ≪ δnR. Moreover, the equi-

librium densities neq, peq and potential ϕeq depend on

coordinate x only in a thin layer of a thickness approx-

imately equal to the Debye length. That is why for DR

mode we can suppose that neq = n0, peq = p0, and

ϕeq = 0.

The continuity equations for S mode take the form

djnS

dx
= 0 ,

djnS

dx
= 0 . (12)

Substituting the solution of Eq. (12) into Eq. (6) one

gets for S mode

d2δϕS

dx2
=

e2

εε0kT
(neq + peq) δϕS . (13)

With the use of relations [4]
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and Eqs. (1), (2), (7 – 9), and (12) we derive
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is the factor determined by the SRR value, ϕS is the

surface potential (SP), and

D =
kT

e

(n0 + p0)µnµp

n0µn + p0µp

is the bipolar diffusion coefficient.

When both SP and SRR are small (|ϕS | ≪ kT/e
and v ≪ λ/τ ) the Dember emf is equal to
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e
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The expressions of DR mode and S mode at small

SP take the form
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where
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In conclusion, for convenient comparison we present

the results of [3]:
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3. Discussion of results

It can be seen that presented expression for DR mode

(see Eq. (17)) coincides with that obtained in [3] in

the case of negligible SRR. The S mode expressions

(Eqs. (18) and (19)) differ from those obtained in [3]

by amplitude and analytical dependence on coordinate

x. There are two sources of these differences: (i) un-

like [3], in our case the electrons can cross the metal–

semiconductor contact and (ii) the distortion of energy

bands influences the non-equilibrium carriers move-

ment near illuminated surface.

As follows from Eq. (15) the Dember emf is nega-

tive when the SP is equal to zero (ϕS = 0). In this case

a part of photoinduced electrons moves from semicon-

ductor into metallic contact (see Eqs. (16) and (18)).

This leads to the growth of S mode charge density (as

compared with [3]) and results in the decrease of elec-

tric potential of illuminated surface (the Dember emf).

When the SP is positive (ϕS > 0) the built-in elec-

tric field Eeq = −dϕeq/dx arises in semiconductor

sample. The Eeq is directed from the illuminated sur-

face into the bulk of semiconductor (Eeq > 0). It

causes the S mode hole density reduction and the S

mode electron density increase (see Eq. (18)) as com-

pared with the case of ϕS = 0. The S mode charge

density grows and therefore the Dember emf decreases.

Note that the S mode electron density on the surface

x = 0 depends only on the DR mode electron density,

i. e. δnS(0) = −δnR(0). The S mode electron den-

sity is negative independently of the SP value (the non-

equilibrium electron density δn is positive). At large

SP values (ϕS ≫ kT/e) we obtain δpS → δnS, i. e.

the S mode charge density tends to zero. In this case

the Dember emf is determined by the DR mode and is

equal to its classical value.

When the SP is negative (ϕS < 0 and Eeq < 0) the

S mode electron density decreases and the S mode hole

density grows as compared with the case of ϕS = 0.

The S mode charge density growth reduces the Dember

emf (see Eq. (18)). For ϕS < 0 (unlike the case of

ϕS > 0 considered above) the S mode hole density is
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Fig. 1. Photoinduced electric potential distribution in Ge for some

SP values: 1 for ϕS
= 5.4 mV, 2 for ϕS

= −5.4 mV. Line 3 gives

the δϕ distribution from [3].

Fig. 2. Dember emf dependence on SP for some SRR values: 1 for

v =10 cm/s, 2 for v = 20 cm/s, 3 for v = 40 cm/s (ϕD0 = 0.44 mV).

limited only by the SRR value and the condition δpS ≪
p0 assumed in theory. Therefore (see Eq. (14)) the |ϕD|
exceeds its classical value when (−ϕS) ≫ kT/e and

v ≪ λ/τ .

The distribution of photoinduced electric potential in

pure Ge (T = 312 K, λ = 0.1 cm, µn = 3800 cm2/(V·s),

µp = 1800 cm2/(V·s), rD = 3.5·10−5 cm, G =

1.3·1016 cm−2·s−1) for SRR v = 20 cm/s is shown

in Fig. 1. It is seen that electric potential distribution

in the region x = (0–1) µm is determined mainly by S

mode. The Dember emf is negative and its modulus de-

crease when the SP increases. Curve 3 represents the

photoinduced electric potential from [3], which in our

case coincides with the classical potential distribution

δϕR(x).
The Dember emf dependence on the SP in pure Ge

(G = 3·1015 cm−2·s−1 and the other parameters are the

same as in Fig. 1) for some SRR values is shown in

Fig. 2. As it is seen from Fig. 2, the Dember emf has a

minimum ϕD min at ϕS = [kT/(2e)] log[vτp0/(λn0)].
The ϕD min strongly depends on SRR value v.

4. Conclusions

The theory of the Dember effect accounting for the

boundary conditions in a metal–semiconductor contact

as well as the distortion of energy bands near semicon-

ductor surface has been developed. It is shown that the

Dember emf essentially depends on the surface poten-

tial. The Dember emf is negative in the case of flat

energy bands.
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[3] M. Krčmar and W.M. Saslow, Phys. Rev. B 65, 233313

(1–4) (2002).

[4] V.L. Bonch-Bruevich and S.G. Kalashnikov, Fizika

Poluprovodnikov (Nauka, Moscow, 1977) [Physics of

Semiconductors, in Russian].

[5] I.N. Volovichev and Yu.G. Gurevich, Semiconductors

35, 306–314 (2001).

[6] P.S. Kireev, Fizika Poluprovodnikov (Vysshaya Shkola,

Moscow, 1975) [Semiconductor Physics, in Russian].

[7] O.Yu. Titov, J. Giraldo, and Yu.G. Gurevich, Appl.

Phys. Lett. 80, 3108–3110 (2002).

METALINIŲ KONTAKTŲ ĮTAKA DEMBERIO ELEKTROVARAI

BIPOLINIUOSE PUSLAIDININKIUOSE

A. Konin

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Darbe pateikiama Demberio elektrovaros (EV) teorija, kurioje

atsižvelgta į kraštines sąlygas metalo–puslaidininkio sandūroje ir

energijos zonų iškrypimą puslaidininkio paviršiuje. Parodyta, kad

Demberio EV iš esmės priklauso nuo paviršiaus elektrinio poten-

cialo, kuris nulemia energijos zonų iškrypimą. Plokščių energijos

zonų atveju Demberio EV yra neigiama.


