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In the first Born approximation, the general expression for ionization cross-section of polarized atoms by fast non-polarized

electrons is derived by using the methods of the theory of an atom adapted for polarization and the similarity between the Born

and photoionization operators. Special cases of the general expression for description of the angular distribution of the slower

emitted electron and for the alignment of ionized atoms are obtained in the case of polarized and non-polarized atoms, as well

as the magnetic dichroism of the total ionization cross-section of polarized atoms.
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1. Introduction

The interaction of atoms with photons, electrons,

and other charged particles is very important process

in laboratory and astrophysical plasmas resulting in the

distortion of Maxwellian distribution of electron veloc-

ities [1]. The non-equilibrium population of magnetic

sublevels or the ordering of angular momenta of atomic

particles that is called a self-alignment arises in these

processes. The polarization of the emitted electromag-

netic radiation could be considered as an indication of

the presence of ordered beams of electrons in plasma.

Recently, the methods of the theory of an atom were

applied for the derivation of the expressions describ-

ing the interaction of polarized photons and electrons

with polarized atoms and ions [2–6]. The probabil-

ity or cross-section of the interaction was expressed as

the multiple expansion over the multipoles (irreducible

tensors) of the state of all particles taking part in the

process both in initial and final states. The applied ap-

proach was an alternative to the density matrix method

[7] where the density matrix was expressed via multi-

poles or statistical tensors.

The ionization of polarized atoms by polarized elec-

trons was investigated by Kupliauskienė and Glemža

∗ The report presented at the 36th Lithuanian National Physics Con-

ference, 16–18 June 2005, Vilnius, Lithuania.

[5] with the help of the method of the theory of an

atom [2] in distorted wave approximation. In the case

of ionization of atoms by fast non-polarized electrons

a simpler approach like plane wave Born approxima-

tion (PWBA) can be applied [8–10]. This approxima-

tion allows us to describe the angular distribution and

spin polarization of the slower electron emitted from

a polarized or non-polarized atom [9], as well as the

alignment of the ionized atoms [8, 9]. The description

of orientational dichroism in the electron-impact ion-

ization of laser-oriented atoms [10] is also possible.

The main task of the present work is the derivation

of a general expression for the non-polarized electron-

impact ionization of polarized atoms in non-relativistic

approximation, the special cases of which were suit-

able for the interpretation of the experimental results

[10]. The next section of the present work is devoted to

obtaining the general expression. Its special cases are

presented in Section 3. The inequality

fine structure splitting

≫ line width

≫ hyperfine structure splitting

is also assumed. The modifications enabling one to take

into account the hyperfine structure splitting can be eas-

ily made [2, 4].
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2. General expression

The process of ionization of an atom A in the state

α1J1M1 by an electron e− moving with the momentum

p1 can be written as follows:

A(α1J1M1) + e−(p1m1)

→ A+(α2J2M2) + e−(pm) + e−(p2m2) , (1)

where A+ denotes the ion in the state α2J2M2. In (1),

α1 (α2) indicates the configuration and other quantum

numbers, J1 (J2) and M1 (M2) are total angular mo-

mentum and its projection of an atom (ion), respec-

tively, p2 and p stand for the momenta of the scattered

and emitted electrons, respectively, and m1, m2, and m
indicate the projections of spins of the projectile, scat-

tered, and emitted electrons, respectively. In general,

the projections of angular momenta of all the particles

taking part in the process (1) can be defined onto differ-

ent directions. The fine structure splitting is assumed to

be much larger than the hyperfine one. Then the states

of atom and ion can be specified by the total angular

momentum of all electronic shells.

In the first order of perturbation theory, the proba-

bility of ionization of an atom (1) can be written as fol-

lows:

dW (α1J1M1p1m1 → α2J2M2pmp2m2)

dεdΩdΩ2

= C〈α2J2M2pmp2m2|H|α1J1M1p1m1〉

×〈α2J2M2pmp2m2|H|α1J1M1p1m1〉∗

×δ(E1 − E2) . (2)

Here and below the atomic system of units is used. In

(2), H is the operator of the electrostatic interaction

between the projectile and atomic electrons, E1 and E2

are the energies of the systems atom + electron in the

initial state and ion + two electrons in the final state,

respectively, C is the constant depending on the nor-

malization of the wave function of free electron.

When the projectile and scattered electrons are de-

scribed by plane waves normalized to unity, the matrix

element in (2) can be written in the form

〈(α2J2M2pm)p2|H|α1J1M1p1〉

= 〈(α2J2M2pm)e−ik2re |

×
∑

j

1

|rj − re|
|α1J1M1e

ik1re〉

= 〈α2J2M2pm|
∑

j

eiqre
1

|rj − re|
|α1J1M1〉

=
4π

q2
〈α2J2M2pm|

∑

j

eiqrj |α1J1M1〉 . (3)

Here k=p/~, the transferred momentum is equal to

q=k1−k2, and the summation over the projections of

the spins of free electrons is carried out. For the expo-

nent in (3), the expansion

eiqr = 4π
∞
∑

t=0

itjt(qr)
t

∑

p=−t

Y ∗

tp(q̂)Ytp(r̂)

=
∞
∑

t=0

√

4π(2t + 1)itjt(qr)

×
t

∑

p=−t

Y ∗

tp(q̂)C
(t)
p (r̂) (4)

is applied. The partial wave expansion can be used for

the emitted electron:

|pm〉= 4π
∑

λµ

Rλ(r)Yλµ(r̂)Y ∗

λµ(p̂)ξm(σ) (5)

=
∑

λµ

√

4π(2λ + 1)Rλ(r)C(λ)
µ (r̂)Y ∗

λµ(p̂)ξm(σ) .

Here ξm(σ) is a spin function of an electron, and

Rλ(r) = iλ exp[i(σλ(p) + δλ)]r−1P (ελ|r) , (6)

where P (ελ|r) is a Hartree radial orbital of the electron

in the continuum. The substitution of (4) and (5) into

(3) leads to the following expression:

〈α2J2M2pmq|H|α1J1M1〉

=
(4π)2

q2

∞
∑

t=0

∞
∑

λ=0

[(2λ + 1)(2t + 1)]1/2 〈α2J2M2ελ|

×
∑

j′

itjt(qr)C
(t)
0 (r̂j′)|α1J1M1〉Yt0(q̂)Y

∗

λ0(p̂). (7)

The second subscripts in Yt0(q̂) and Y ∗

λ0(p̂) are equal to

zero because they are defined with respect to the quan-

tization axes z coinciding with the directions of trans-

ferred momentum and movement of emitted electron,

respectively. The projections of the angular momenta

J1 and J2 are also chosen arbitrarily. The calculation

of the matrix element should be performed by using the
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projections defined with respect to the same quantiza-

tion axis z by rotation procedure. Mathematically it can

be accomplished with the help of relation

|jm̃〉 =
∑

m

Dj
mm̃(α, β, γ)|jm〉 , (8)

where Dj
mm̃(α, β, γ) is the Wigner rotation matrix.

Then the matrix element (7) acquires the following ex-

pression:

〈(α2J2M2pm)q|H|α1J1M1〉

=
(4π)2

q2

∞
∑

t=0

∑

λ

[(2λ + 1)(2t + 1)]1/2

×
∑

M̃1,M̃2,mt,µ,m̃

〈α2J2M̃2ελµ|

×itjt(qr)C
(t)
mt

(r̂)|α1J1M̃1〉DJ1

M̃1M1

(Ĵ1)

×D∗J2

M̃2M2

(Ĵ2)Dt
mt0(q̂)D∗λ

µ0(p̂)D∗s
m̃m(ŝ) . (9)

The inspection of (9) allows us to notice that the an-

gular part of this matrix element coincides with that

of photoionization [4]. For this reason the same angu-

lar momentum diagrams can be used for the integration

over orbital and spin angular momenta in (9). The final

expression for the triply differential cross-section is as

follows:

d3σ(α1J1M1q → α2J2M2pm)

dΩdΩqdε
=

Ck2k

q4k1

×
∑

K1,K2,Kq,
Kλ,Ks,Kj ,K

BB.ion.(K1,K2,Kq,Kλ,Ks,Kj ,K)

×
∑

N1,N2,Nq,
Nλ,Ns,Nj ,N

[

K1 Kq K
N1 Nq N

] [

Kλ Ks Kj

Nλ Ns Nj

] [

K2 Kj K
N2 Nj N

]

×
√

4π YKλNλ
(p̂)

√
4π Y ∗

KqNq
(q̂)

×T ∗K1

N1
(Ĵ1) TK2

N2
(Ĵ2) TKs

Ns
(ŝ) , (10)

where

BB.ion.(K1,K2,Kq,Kλ,Ks,Kj ,K)

=
∑

λ,j,J,λ′,j′,J ′,t,t′

(2J + 1)(2J ′ + 1)(−1)λ
′+t′

×〈α2J2ελ(j)J ||Q(t)||α1J1〉[(2J1 + 1)(2J2 + 1)]1/2

×〈α2J2ελ
′(j′)J ′||Q(t′)||α1J1〉∗[(2s + 1)]1/2

×
[

t t′ Kq

0 0 0

] [

λ λ′ Kλ

0 0 0

]

[(2λ + 1)(2λ′ + 1)]1/2

×[(2Kj + 1)(2t′ + 1)(2t + 1)(2j + 1)(2j′ + 1)]1/2

×







J1 K1 J1

t′ Kq t
J ′ K J













J2 K2 J2

j′ Kj j
J ′ K J













λ′ Kλ λ
s Ks s
j′ Kj j







. (11)

In (11), the operator is defined as

Q(t)
mt

= itjt(qr)C
(t)
mt

(r̂) , (12)

where C
(t)
mt(r̂) is the operator of spherical function [11],

and the constant is C = 1/π. Here the 1/2 coming

from averaging over the spin projections of projectile

electron is also taken into account.

When the fast scattered electron is not detected, the

integration of (10) over the angles of this electron can

be performed. It can be changed by the integration over

the momentum transferred to an atom. Then

d2σ(α1J1M1q → α2J2M2pm)

dΩdε

=

∫

dΩq
d3σ(α1J1M1q → α2J2M2pm))

dΩdΩqdε
=

2πkC

k2
1

×
∑

K1,K2,Kq,
Kλ,Ks,Kj ,K

BB.ion.(K1,K2,Kq,Kλ,Ks,Kj ,K)

×
∑

N1,N2,Nq,
Nλ,Ns,Nj ,N

4π YKλNλ
(p̂)Y ∗

KqNq
(q̂)

×
[

K1 Kq K
N1 Nq N

] [

Kλ Ks Kj

Nλ Ns Nj

] [

K2 Kj K
N2 Nj N

]

×T ∗K1

N1
(Ĵ1) TK2

N2
(Ĵ2) TKs

Ns
(ŝ) , (13)

where

BB.ion.(K1,K2,Kq,Kλ,Ks,Kj ,K) (14)

=

qmax
∫

qmin

dq

q3
BB.ion.(K1,K2,Kq,Kλ,Ks,Kj ,K) ,

qmax = (2ε1)
1/2 + [2(ε1 − Ip − ε)]1/2 , (15)
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qmin = (2ε1)
1/2 − [2(ε1 − Ip − ε)]1/2 . (16)

The total ionization cross-section can be obtained by

integration of (13) over the angles of the emitted elec-

tron and its energies from 0 up to ε1 − Ip, where Ip is

the ionization potential of an atom.

The expression (14) represents the general case of

the cross-section describing the ionization of polarized

atoms by non-polarized electrons and enabling one to

obtain information on the angular distributions, angular

correlations, and spin polarization of the emitted elec-

tron in plane wave Born approximation. It can be used

for the derivation of some special expressions applica-

ble for the specific experimental conditions.

3. Special cases

3.1. Total cross-section for the ionization of

non-polarized atoms

To obtain the total cross-section for the ionization

of non-polarized atoms by fast non-polarized electrons,

one needs to do the integration over the angles of the

slow emitted electron and the summation over the mag-

netic components of all angular momenta. The fol-

lowing summation and integration formulas [4] make

it easy:
∑

M

TK
N (J, J,M |Ĵ) = δ(K, 0)δ(N, 0) , (17)

π
∫

0

2π
∫

0

sin θ dθ dφYKN(θ, φ) =
√

4π δ(K, 0) δ(N, 0) .

(18)

Then the expression for the total cross-section is as

follows:

dσ(α1J1 → α2J2ε)

dε
=

1

2J1 + 1

×
∫

dΩ
∑

M1,M2,m

d2σ(α1J1M1 → α2J2M2pm)

dΩdε

=
4π2kC

ε1(2J1 + 1)
BB.ion.(0, 0, 0, 0, 0, 0, 0), (19)

where C = 1/π and

BB.ion.(0, 0, 0, 0, 0, 0, 0) =

qmax
∫

qmin

dq

q3

∑

λ,j,J,t

(2J + 1)

×|〈α2J2ελ(j)J ||Q(t)||α1J1〉|2 . (20)

Often the total cross-section integrated over all the

energies of emitted electron is used. Its expression ob-

tained from (13) is

σ(α1J1 → α2J2) =

∫ ε1−Ip

0
dε

dσ(α1J1 → α2J2ε)

dε

=
4π

ε1(2J1 + 1)

∫ ε1−Ip

0
dεBB.ion.(0, 0, 0, 0, 0, 0, 0)

=
4π

ε1(2J1 + 1)

ε1−Ip
∫

0

dε

qmax
∫

qmin

dq

q3

∑

λ,j,J,t

(2J + 1)

×|〈α2J2ελ(j)J ||Q(t)||α1J1〉|2 . (21)

Here Ip is the ionization energy, and the integration

over k present in (19) is performed after replacement

dε = k dk.

3.2. Angular distribution of the emitted electrons from

non-polarized atoms

The expression for the differential cross-section de-

scribing the angular distribution of emitted electron

from non-polarized atoms, when the polarization of

electron and ion is not registered, can be obtained by

performing the summation of Eq. (13) over the mag-

netic components M2 and m and averaging over the

states of an atom. It acquires the form

d2σ(α1J1q → α2J2p)

dεdΩ
=

1

2J1 + 1

×
∑

M1,M2,m

d2σ(α1J1M1q → α2J2M2pm)

dΩdε

=
πkC

ε1(2J1 + 1)

∑

Kλ

BB.ion.(0, 0,Kλ,Kλ, 0,Kλ,Kλ)

×
∑

Nλ

4π YKλNλ
(p̂)Y ∗

KλNλ
(q̂) . (22)

Taking into account the axial symmetry of the ion-

ization process and by choosing the laboratory z axis

along the direction of transferred momentum q, the ex-

pression (22) becomes simpler:

d2σ(α1J1 → α2J2p)

dεdΩ
=

1

4π

dσ(α1J1 → α2J2ε)

dε

×
[

1 +
∑

Kλ>0

βKλ
PKλ

(cos θ)

]

, (23)
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where

βKλ
=

(2Kλ + 1)BB.ion.(0, 0,Kλ,Kλ, 0,Kλ,Kλ)

BB.ion.(0, 0, 0, 0, 0, 0, 0)
(24)

is the asymmetry parameter of the angular distribution

of emitted electron. The angle θ is measured from the

direction of the transferred momentum q. For a given

initial energy ε1 and an energy loss ∆E of the initial

electron, its scattering angle θ is related to the momen-

tum transfer q by the relation

cos θ =
2ε1 − ∆E − q2

2[ε1(ε1 − ∆E)]1/2
. (25)

3.3. Total cross-section for the polarized atoms

The expression for the total ionization cross-section

from polarized atoms is as follows:

dσ(α1J1M1 → α2J2ε)

dε

=

∫

dΩ
∑

M2,m

d2σ(α1J1M1 → α2J2M2pm)

dΩdε

=
4π2kC

ε1

∑

K,N

BB.ion.(K, 0,K, 0, 0, 0, 0)(−1)K−N

×
[

4π

2K + 1

]1/2

Y ∗

KN(θq, φq)T ∗K
N (Ĵ1) . (26)

By choosing the z axis along the direction of the trans-

ferred momentum q the expression (26) becomes sim-

pler:

dσ(α1J1M1 → α2J2ε)

dε

=
4π2kC

ε1

∑

K

BB.ion.(K, 0,K, 0, 0, 0, 0)(−1)J1−M1+K

×
[

4π

2J1 + 1

]1/2 [

J1 J1 K
M1 −M1 0

]

Y ∗

K0(θ, φ)

=
4π2kC

ε1

∑

K

BB.ion.(K, 0,K, 0, 0, 0, 0)(−1)J1−M1+K

×
[

2K + 1

2J1 + 1

]1/2 [

J1 J1 K
M1 −M1 0

]

PK(cos θ) . (27)

The magnetic dichroism is defined by the following

formula:

∆ =
σ(JM) − σ(J −M)

σ(JM) + σ(J −M)
, (28)

where σ(JM) = dσ(α1J1M1 → α2J2ε)/dε. The

magnetic dichroism in the ionization of polarized

atoms by non-polarized electrons acquires the follow-

ing expression:

∆ =

− ∑

Kodd

BB.ion.(Kodd, 0,Kodd, 0, 0, 0, 0)

∑

Keven

BB.ion.(Keven, 0,Keven, 0, 0, 0, 0)
(29)

×

√
2Kodd + 1

[

J1 J1 Kodd

M1 −M1 0

]

PKodd
(cos θ)

√
2Keven + 1

[

J1 J1 Keven

M1 −M1 0

]

PKeven
(cos θ)

.

It simplifies in the case of the atoms polarized along the

direction of transferred momentum q

∆ =

− ∑

Kodd

BB.ion.(Kodd, 0,Kodd, 0, 0, 0, 0)

∑

Keven

BB.ion.(Keven, 0,Keven, 0, 0, 0, 0)

×

√
2Kodd + 1

[

J1 J1 Kodd

J1 −J1 0

]

√
2Keven + 1

[

J1 J1 Keven

J1 −J1 0

] . (30)

The parameter (30) of the magnetic dichroism in the

case of J1 = 1/2 is

∆ =

−BB.ion.(1, 0, 1, 0, 0, 0, 0)
√

3

[

1/2 1/2 1
1/2−1/2 0

]

BB.ion.(0, 0, 0, 0, 0, 0, 0)2−1/2

=
−
√

3BB.ion.(1, 0, 1, 0, 0, 0, 0)

BB.ion.(0, 0, 0, 0, 0, 0, 0)
. (31)

For J1 = 1, it is

∆ =
−3BB.ion.(1, 0, 1, 0, 0, 0, 0)

[
√

2BB.ion.(0, 0, 0, 0, 0, 0, 0)

+
√

5BB.ion.(2, 0, 2, 0, 0, 0, 0)]

. (32)
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3.4. Angular distribution of the emitted electrons from

polarized atoms

In the case of the ionization of polarized atoms, the

differential cross-section depending on the angular dis-

tribution of emitted electrons can be written as follows:

d2σ(α1J1M1q → α2J2p)

dεdΩ

=
∑

M2,m

d2σ(α1J1M1 → α2J2M2pm)

dΩdε

=
πkC

ε1

∑

K1,Kq,Kλ

BB.ion.(K1, 0,Kq ,Kλ, 0,Kλ,Kλ)

×
∑

N1,Nλ,Nq

4π

[

K1 Kq Kλ

N1 Nq Nλ

]

YKλNλ
(p̂)YKqNq(q̂)

×T ∗K1

N1
(Ĵ1) . (33)

In the case of the z axis coinciding with the direction

of transferred momentum q, it reduces to

d2σ(α1J1M1 → α2J2p)

dεdΩ
=

4π2kC

ε1

×
∑

K1,Kq,Kλ,N

[

K1 Kq Kλ

N 0 N

]

YKλN (p̂)Y ∗

K1N (Ĵ1)

×
[

2Kq + 1

2J1 + 1

]1/2

(−1)J1−M1

[

J1 J1 K1

M1 −M1 0

]

×BB.ion.(K1, 0,Kq,Kλ, 0,Kλ,Kλ) (34)

=
4π2kC

ε1

∑

Kλ,N

βKλN (Ĵ1)

[

4π

2Kλ + 1

]1/2

YKλN (p̂) ,

where

βKλN (Ĵ1) =
∑

K1,Kq

BB.ion.(K1, 0,Kq ,Kλ, 0,Kλ,Kλ)

×
[

(2Kλ + 1)(2Kq + 1)

4π(2J1 + 1)

]1/2 [

K1 Kq Kλ

N 0 N

]

(35)

×(−1)J1−M1

[

J1 J1 K1

M1 −M1 0

]

Y ∗

K1N (Ĵ1)

are the parameters of the asymmetry of the angular dis-

tribution of emitted electrons containing the informa-

tion about the polarization state of atoms.

3.5. The alignment of ionized atoms

The alignment of ionized atoms describes their state

of polarization and can be measured in the second step

processes (those follow the first step of ionization). As

a rule, the alignment of the ionized atom strongly af-

fects the parameters of the angular distribution and po-

larization of Auger electrons and fluorescence radia-

tion. The expression (13) written in the form of the

multipole expansion of the final state of an ion is more

suitable for the investigation of alignment in the sec-

ond step processes. Applying the procedure described

in Ref. [2] it can be written in the following form:

d2σK2N2
(α1J1M1q → α2J2pm)

dΩdε
=

πkC

ε1

×
∑

K1,Kq,Kλ,
Ks,Kj ,K

BB.ion.(K1,K2,Kq,Kλ,Ks,Kj ,K)

×
√

2K2 + 1
∑

N1,Nq,Nλ,
Ns,Nj ,N

[

K1 Kq K
N1 Nq N

] [

Kλ Ks Kj

Nλ Ns Nj

]

×
[

K2 Kj K
N2 Nj N

]√
4π YKλNλ

(p̂)
√

4π Y ∗

KqNq
(q̂)

×T ∗K1

N1
(Ĵ1)TKs

Ns
(ŝ) . (36)

By using (36) the expression for the cross-section

describing the alignment of ionized atoms in the case of

the ionization of non-polarized atoms by non-polarized

fast electrons can be written as follows:

dσ(α1J1q → α1J2ε)

dε
=

∑

K2,N2

1

2J1 + 1

×
∫

dΩ
∑

M1,m

d2σK2N2
(α1J1M1q → α2J2pm)

dΩdε

=
4π2kC

ε1(2J1 + 1)

∑

K2,N2

√

2K2 + 1
√

4π Y ∗

K2N2
(q̂)

×BB.ion.(0,K2,K2, 0, 0, 0,K2) . (37)

In the case of z axis chosen along q, Eq. (36) becomes

very simple:

dσ(α1J1 → α1J2ε)

dε
=

4π2kC

ε1(2J1 + 1)
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×
∑

K2

(2K2 + 1)BB.ion.(0,K2,K2, 0, 0, 0,K2) . (38)

The inspection of the expression for BB.ion. (14) al-

lows us to conclude that K2 must be even. The align-

ment describes K2 = 2 and higher terms.Therefore, the

expression (38) can be rewritten in the form

dσ(α1J1 → α1J2ε)

dε
= σ0(α1J1 → α1J2ε)

×
[

1 +
∑

K2>0, even

AK2

]

, (39)

where

AK2
=

(2K2 + 1)BB.ion.(0,K2,K2, 0, 0, 0,K2)

BB.ion.(0, 0, 0, 0, 0, 0, 0)
,

σ0(α1J1 → α1J2ε) =
4π2kC

ε1(2J1 + 1)

×BB.ion.(0, 0, 0, 0, 0, 0, 0) . (40)

Similar procedures are applied for the derivation of

the cross-section describing the alignment of ions cre-

ated in the ionization of polarized atoms:

dσ(α1J1M1q → α1J2ε)

dε

=
∑

K2,N2

∫

dΩ
∑

m

d2σK2N2
(α1J1M1q → α2J2pm)

dΩdε

=
4π2kC

ε1

∑

K2,N2,K1,
N1,Kq,Nq

√

2K2 + 1

[

K1 Kq K2

N1 Nq N2

]

×
√

4πBB.ion.(K1,K2,Kq, 0, 0, 0,K2)

×YKqNq(q̂)T ∗K1

N1
(Ĵ1) . (41)

It also simplifies for the case of the z axis chosen along

q and is equal to

dσ(α1J1M1 → α1J2ε)

dε

=
4π2kC

ε1

∑

K2,K1,Kq,N

BB.ion.(K1,K2,Kq, 0, 0, 0,K2)

×
√

2K2 + 1

[

K1 Kq K2

N 0 N

] [

(2Kq + 1)4π

2J1 + 1

]1/2

×(−1)J1−M1

[

J1 J1 K1

M1 −M1 0

]

Y ∗

K1N (Ĵ1)

=
4π2kC

ε1

∑

K2

AK2
(Ĵ1) , (42)

where

AK2
(Ĵ1) =

∑

K1,Kq,N

BB.ion.(K1,K2,Kq, 0, 0, 0,K2)

×(−1)J1−M1 Y ∗

K1N (Ĵ1)

[

J1 J1 K1

M1 −M1 0

]

×
[

K1 Kq K2

N 0 N

] [

(2K2 + 1)(2Kq + 1)4π

2J1 + 1

]1/2

(43)

is the parameter of the alignment depending on the po-

larization state of an atom.
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[4] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, Polar-

ization studies in the photoionization of atoms using a

graphical technique, J. Phys. B 34, 1783–1803 (2001).

[5] A. Kupliauskienė and K. Glemža, General expression

for ionization cross-section of polarized atoms by po-

larized electrons, Lithuanian J. Phys. 43, 89–97 (2003).
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POLIARIZUOTŲ ATOMŲ JONIZACIJOS GREITAISIAIS ELEKTRONAIS TEORINIS TYRIMAS

K. Glemža a and A. Kupliauskienė b
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Santrauka

Atomų ir jonų jonizacija – vienas svarbiausių procesų plazmoje.

Esant kryptingam krūvininkų judėjimui, pvz. tokamako plazmoje,

galima jonų būsenų savaiminė poliarizacija. Dažniausiai atsiranda

savaiminis rikiavimas, kai būsenos, aprašomos vienodo didumo bet

priešingų ženklų pilnutinio judėjimo kiekio momento J projekcijo-

mis M , užpildomos vienodai. Tokių jonų elektromagnetinė spin-

duliuotė būna poliarizuota. Iš spinduliuotės poliarizacijos galima

nustatyti elektronų pasiskirstymo pagal greičius funkcijos nukry-

pimo nuo Maksvelo funkcijos mastą.

Naudojant atomo teorijos metodus, pritaikytus poliarizacijos

reiškiniams tirti, ir Borno artinio operatoriaus panašumą į fotojoni-

zacijos operatorių, surasta bendroji poliarizuoto atomo jonizacijos

greitaisiais nepoliarizuotais elektronais diferencialinio skerspjūvio

išraiška. Ji panaudota lėtesniojo elektrono kampinio pasiskirstymo

ir jonizuoto atomo rikiavimo parametrams surasti, kai jonizuojami

poliarizuoti ir nepoliarizuoti atomai, bei poliarizuoto atomo joniza-

cijos pilnutinio skerspjūvio magnetiniam dichroizmui aprašyti.


