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We develop an analytical approach for the delayed feedback control algorithm applied to a dynamical system close to a

subcritical Hopf bifurcation. A simple nonlinear electronic circuit is considered as a prototypical model of the subcritical Hopf

bifurcation. The periodic orbit arising at this bifurcation is torsion free and cannot be controlled by the conventional delayed

feedback algorithm. We show the necessity of employing an unstable degree of freedom in a feedback loop as well as a

nonlinear coupling between the controlled system and controller. Close to the bifurcation point the system is weakly nonlinear

and the problem is treated analytically using the method of averaging.
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1. Introduction

Delayed feedback control (DFC) method [1] is used

to stabilize unstable periodic orbits (UPOs) embedded

in strange attractors of chaotic systems. The method

uses a control signal composed as the difference be-

tween the current state of the controlled system and the

state of the same system delayed by one period of the

unstable periodic orbit. The method enables to treat the

controlled system as a black box with an accessible sig-

nal in its output. We need to know a priori neither the

location of the periodic orbit in the phase space nor the

equations describing the controlled system. By guess-

ing only the period of the unstable orbit the system un-

der control automatically settles on the desired periodic

motion, and stability of this motion is maintained with

only tiny perturbations. Successful implementation of

this algorithm has been attained in quite diverse ex-

perimental systems including electronic chaotic oscil-

lators [2–5], mechanical pendulums [6, 7], lasers [8–

10], gas discharge systems [11–13], a current-driven

ion acoustic instability [14], a chaotic Taylor–Couette

flow [15], chemical systems [16, 17], high-power ferro-

magnetic resonance [18], helicopter rotor blades [19],

and a cardiac system [20].

A topological limitation of the delayed feedback

control method has recently attracted much attention. It

has been proven [21, 22] that the method fails for unsta-

ble periodic orbits with an odd number of real positive

Floquet exponents (FEs). A similar limitation emerges

in the simpler problem of adaptive stabilization of un-

known steady states of dynamical systems [23]. To

overcome this limitation an unstable delayed feedback

control method was proposed [24].

The simplest situation giving rise to the topological

limitation of the usual delayed feedback algorithm is

the problem of stabilizing an UPO appearing in a dy-

namical system close to a subcritical Hopf bifurcation.

We will consider this problem in the present paper.

An unstable periodic orbit appearing at this bifurcation

is torsion-free, hence we need an unstable controller.

However, close to the bifurcation point the periodic or-

bit is only weakly unstable, and its stabilization is a

relatively simple problem. Moreover, the problem can

be treated analytically by means of standard asymptotic

methods developed in the theory of weakly nonlinear

oscillators.

2. Nonlinear circuit as a model of a subcritical
Hopf bifurcation

The problem of controlling an unstable periodic or-

bit at a subcritical Hopf bifurcation can be consid-

ered in a general way, however, for the clarity of

presentation we restrict ourselves to a specific example

of dynamical system shown in Fig. 1.

c© Lithuanian Physical Society, 2005

c© Lithuanian Academy of Sciences, 2005 ISSN 1648-8504



458 Vikt. Pyragas and K. Pyragas / Lithuanian J. Phys. 45, 457–461 (2005)

Fig. 1. (a) Circuit modelling a subcritical Hopf bifurcation. (b) Cur-

rent versus voltage characteristic of the nonlinear element. (c) Am-

plitude |A|, period τ , and Floquet exponent λs of the unstable limit

cycle as functions of the bifurcation parameter ε. Lines represent

analytical results obtained from the averaged Eq. (5). Dots are the

numerical results obtained from the exact Eqs. (2). The amplitude

is defined as the maximum of the x variable on the limit cycle.

The system represents a nonlinear circuit described

by

Lİ = −IR − V − f(I) , CV̇ = I . (1)

Here I is the current and V is the voltage on the ca-

pacitor C . The function f(I) describes the voltage

versus current characteristic VN = f(I) of a nonlin-

ear element N placed in a series with the LC circuit.

We assume that this element has a negative differen-

tial resistivity and for small I can be approximated by

the function f(I) = −aI − bI3 + O(I5) with posi-

tive parameters a and b. Using the dimensionless vari-

ables x = I/I0 and y = V/V0, where I0 =
√

ρ/3b,

V0 = I0ρ, ρ =
√

L/C , and normalizing the time to

the characteristic period T =
√

LC of the LC circuit,

Eqs. (1) are simplified to

ẋ = −y + εx +
x3

3
, ẏ = x . (2)

The only dimensionless parameter ε = (a − R)/ρ can

be easily controlled by varying the resistor R. The sys-

tem (2) can be presented in the form ẍ+x−(ε+x2)ẋ =
0 similar to the well known van der Pol equation, with

the only difference that the term x2ẋ comes here with a

negative sign. For small ε, we apply the method of av-

eraging to obtain an approximate solution of this equa-

tion.

Defining the complex amplitude A(t) by putting

y =
Aeit + A∗e−it

2
, x =

iAeit − iA∗e−it

2
(3)

and inserting these into Eqs. (2) we get

Ȧ =
A

8
(4ε + |A|2) − A∗

8
(4ε + |A|2)e−i2t

− A

24
ei2t +

A∗

24
e−i4t . (4)

Close to the bifurcation point ε = 0, slow variations

of the amplitude A(t) can be determined by averaging

Eq. (4) over the period of the fast oscillations τ = 2π.

This averaging is equivalent to neglecting the terms

containing fast oscillations (e±it, e±i2t, etc.). Thus the

averaged equation for the amplitude reads:

Ȧ =
A

8
(4ε + |A|2) . (5)

For ε < 0, this equation has two steady state solutions

A = 0 and |A| = 2
√−ε. The first represents a stable

fixed point of the system at the origin (x, y) = (0, 0),
and the second corresponds to an unstable limit cycle

with the period τ = 2π, amplitude 2
√
−ε, and a real

positive Floquet exponent λs = −ε. For ε > 0, the

limit cycle disappears, and the fixed point at the origin

becomes unstable. Thus at ε = 0 we have a subcritical

Hopf bifurcation. As is seen from Fig. 1 (c), the ana-

lytical results obtained from averaged Eq. (5) are in a

good quantitative agreement with numerical results de-

termined from the exact Eqs. (2) when the system is in

the vicinity of the bifurcation point.

3. Nonlinear delayed feedback controller

Now we assume that the current x is an observable

accessible in experiment. To stabilize the unstable limit

cycle appearing for ε < 0 we consider the following

delayed feedback control algorithm:

ẋ =−y + εx +
x3

3
+ wx , (6a)

ẏ = x , (6b)

ẇ = λcw − k(x − xτ )x . (6c)

The term wx in Eq. (6a) is the control perturbation in-

troduced in the circuit as an additional voltage source.

Equation (6c) describes an unstable delayed feedback

controller with λc > 0. Here w is a dynamical variable

of the controller and k defines the feedback strength.

We use the notation xτ ≡ x(t−τ). Note that the pertur-

bation does not change the solution of the free system

corresponding to the UPO of period τ , since for x = xτ
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Eq. (6c) is satisfied by w = 0 and the perturbation wx
in Eq. (6a) vanishes.

Unlike the control algorithm considered in Ref. [24]

here we introduce nonlinear coupling terms, namely,

the products wx and (x − xτ )x in Eqs. (6a) and (6c),

respectively. The nonlinearity is a necessary ingredi-

ent of the DFC algorithm when considering the stabi-

lization of UPOs close to the bifurcation point. It is

easy to verify that any linear coupling terms (e. g., w in

Eq. (6a) and x− xτ in Eq. (6c)) vanish due to the aver-

aging procedure and thus result in uncoupled averaged

equations for the slow dynamics of the controller and

the controlled system. To provide an interrelation be-

tween these two subsystems in the averaged equations

we need a nonlinear coupling in the original equations.

For small values of the parameters ε and λc, the aver-

aged equations for the closed loop system are obtained

by inserting Eqs. (3) into system (6) and neglecting the

fast oscillating terms:

Ȧ =
A

8
(4ε + |A|2) +

A

2
w , (7a)

ẇ = λcw − k

4
(2|A|2 − AA∗

τ − AτA∗) . (7b)

Using the ansatz A(t) = r(t)eiϕ(t), from the imaginary

part of Eq. (7a) it is easy to derive an equation for the

phase, rϕ̇ = 0. It follows that the phase is independent

of time, ϕ = constant. For the slowly varying real

amplitude r(t) and controller variable w(t) we obtain:

ṙ =
r

8
(4ε + r2) +

r

2
w , (8a)

ẇ = λcw − k

2
r(r − rτ ) . (8b)

This system can be even more simplified. Taking into

account that r(t) is a slow variable the delay term

rτ can be approximated by the first derivative, rτ =
r(t − τ) ≈ r(t) − τ ṙ. This approximation is valid for

τ |ṙ|/r ≪ 1. Then the time-delay system (8) transforms

to a system of ordinary differential equations:

ṙ =
r

8
(4ε + r2) +

r

2
w , (9a)

ẇ = λcw − k

2
τrṙ . (9b)

The eigenvalues λ of the fixed point (r0, w0) =
(2
√
−ε, 0) of this system satisfy the characteristic

equation

λ2 − (λc − ε + εkτ)λ − ελc = 0 . (10)

They correspond to two leading nonzero FEs of the

controlled UPO (The zero FE is defined by the equa-

tion for the phase ϕ̇ = 0 derived above). Note that the

UPO satisfying the time-delay system (6) has an infi-

nite number of FEs, and most of them are lost in this

approximation. A more precise characteristic equation

for the FEs can be derived from the averaged Eqs. (8)

without using the approximation for the time-delay

term rτ . Linearization of Eqs. (8) around the fixed

point (r0, w0) = (2
√−ε, 0) leads to the transcendental

equation

λ2 − (λc − ε)λ − ελc − εk(1 − e−λτ ) = 0 . (11)

For |λ|τ ≪ 1, it coincides with Eq. (10) due to the

approximation e−λτ ≈ 1 − λτ . In Figs. 2 (a) and (c)

we compare the FEs defined by Eqs. (10) and (11) with

the ‘exact’ values of the FEs obtained numerically from

the non-averaged variational equations

δẋ =−δy +
[

ε + x2
0(t)

]

δx + x0(t)δw , (12a)

δẏ = δx , (12b)

δẇ = λcδw − kx0(t)(δx − δxτ ) (12c)

derived from the original system (6). Here δx = x −
x0(t), δy = y − y0(t) are small deviations from the

periodic orbit [x0(t), y0(t)] = [x0(t + τ), y0(t + τ)]
that satisfies the free system (2), and δw = w.

For |ε|τ ≪ 1, all three above results are in good

quantitative agreement (Fig. 2(a)). Thus the leading

FEs of the controlled UPO can be reliably obtained

from the simple quadratic Eq. (10). The stability con-

ditions of this equation for ε < 0 are

λc > 0 , k > k0 =
λc − ε

−ετ
. (13)

The first condition confirms the general statement that

the torsion-free UPOs can be stabilized only with

an unstable controller. The second condition can be

rewritten in the form kτ > 1 + λc/λs, where λc is the

eigenvalue of the free controller and λs = −ε is the

FE of the unstable limit cycle of the free system. The

mechanism of stabilization is evident from Fig. 2 (b).

For k = 0, two real positive solutions of Eq. (10) λ =
λs and λ = λc describe unstable eigenvalues of the free

system and the free controller, respectively. With in-

creasing k, the eigenvalues approach each other on the

real axis, then collide and pass to the complex plane.

For k = k0, they cross the imaginary axis and move

symmetrically into the left half-plane, i. e. both the sys-

tem and the controller become stable. An optimal value
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Fig. 2. (a) Real parts of leading Floquet exponents of the controlled

UPO as functions of the control gain for ε = −0.01, λc = 0.005.

Dotted and solid lines show the solutions of the characteristic equa-

tions (10) and (11), respectively. Dots correspond to the values

of Floquet exponents obtained from the exact variational equa-

tions (12). (b) Root loci of Eq. (11) as k varies from 0 to ∞ for

the same parameter value as in (a). Crosses and black dots denote

the location of the roots for k = 0 and k = ∞, respectively. (c)

and (d) are the same diagrams as in (a) and (b) but for ε = −0.1
and λc = 0.05.

of the control gain is kop = k0 + 2
√

λc/λs/τ since it

provides the fastest convergence to the stabilized UPO

with the characteristic rate λmin = −
√

λsλc.

For large values of |ε|, the root loci diagram is more

complicated, see Fig. 2 (d). For |ε|τ ∼ 1 the ap-

proximation of the delay term rτ by the derivative is

not valid, however for |ε| ≪ 1 we can use the aver-

aged Eq. (8) as well as the transcendental characteristic

Eq. (11). Figure 2 (c) shows that Eq. (11) indeed yields

good quantitative results, while Eq. (10) is no longer

valid. Now the eigenvalues due to the delay term come

into play. As a result, there appears a second stability

threshold k1 such that the stabilization of the UPO be-

comes possible only in a finite interval of the control

gain, k0 < k < k1.

Direct integration of the nonlinear Eqs. (6) confirms

the results of linear analysis. Figure 3 shows the suc-

cessful stabilization of the UPO close to the bifurcation

point. After a transient process the controlled system

approaches the previously unstable orbit, and the feed-

back perturbation vanishes. The envelopes of the tran-

sient are well described by averaged Eqs. (8). This con-

firms the validity of the averaging procedure applied to

the time-delay system (6).

Fig. 3. Dynamics of (a) current x, (b) controller variable w, and

(c) delayed feedback perturbation k(x − xτ ). Solid lines are the

solutions of the nonlinear system (6) with initial conditions x(t) =
0 for −τ ≤ t < 0, x(0) = 0.5, y(0) = 0, w(0) = 0. Dashed lines

represent the solution of averaged Eqs. (8) with initial conditions

r(t) = 0 for −τ ≤ t < 0, r(0) = 0.5, w(0) = 0. The values

of parameters are ε = −0.1, λc = 0.05, τ = 6.2871, k = 0 for

t < τ , and k = 0.35 for t > τ .

4. Conclusions

We have developed an analytical approach for the

delayed feedback control of an unstable periodic orbit

without torsion which could not be stabilized by con-

ventional delay technique. The approach is demon-

strated for the specific problem of a nonlinear elec-

tronic circuit as a prototypical model of a subcritical

Hopf bifurcation. The analytical results are of general

importance since they are applicable to any dynamical

system close to the bifurcation point.
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ANALIZINIS VALDYMO ALGORITMO VĖLUOJANČIU GRĮŽTAMUOJU RYŠIU TYRIMAS ARTI
SUBKRITINĖS HOPFO BIFURKACIJOS

Vikt. Pyragas, K. Pyragas

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Nagrinėjame vėluojančio grįžtamojo ryšio metodo taikymą ne-

stabiliai periodinei orbitai, atsirandančiai dinaminėje sistemoje arti

subkritinės Hopfo bifurkacijos. Bifurkacijos taško aplinkoje sis-

tema yra silpnai netiesinė ir uždavinys sprendžiamas analiziškai,

naudojant suvidurkinimo metodą. Aptariame būtinybę įjungti pa-

pildomąjį nestabilųjį laisvės laipsnį į grįžtamojo ryšio grandinę bei

panaudoti netiesinį ryšį tarp valdomos sistemos ir valdiklio. Anali-

ziniam tyrimo būdui pademonstruoti buvo išnagrinėta paprasta ne-

tiesinė elektroninė grandinė, kuri modeliuoja subkritinę Hopfo bi-

furkaciją. Išplėtota analizinė teorija tinka bet kuriai dinaminei sis-

temai, kai ji yra arti subkritinės Hopfo bifurkacijos.


