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1. Introduction

The cutoff frequency fT and maximal gain gm of a

field-effect transistor (FET) are determined by the elec-

tron drift velocity vdr in the device active region ldr:

fT =
vdr

2πldr

and gm ≈ Cvdr ,

where C is the gate specific capacitance. Modern FETs

with micron gates ldr have fT ≈ (2 − 3) · 1010 Hz

and gm ≈ 103 mS/mm. The drift velocity at satura-

tion limits these parameters. In main semiconductors,

vsat = 2 · 107 cm/s. Because of the drift velocity sat-

uration, an increase of the transistor operational speed

is achieved by decreasing the gate length ldr down to

submicron and lower dimensions.

In this paper, we consider an alternative way to en-

hance the transistor speed and gain by means of a

drift velocity increase over the saturated value. It has

been shown in [1–3] that electron and polar optical

phonon confinement in the GaAs quantum well (QW)

decreases the inelastic electron–phonon scattering rate

and enhances the low-field electron mobility. It has

been observed experimentally that the insertion of thin

InAs barriers into GaAs QW allows one to increase

the electron maximal drift velocity by several times in

InAs / GaAs / InAs QW in a high electric field [4]. In

this paper, we explain the effect of the great increase

of the drift velocity in a narrow QW by quantization

of the confined polar optical (PO) phonon momentum

component perpendicular to the QW plane.

2. Drift velocity saturation

Inelastic electron–PO phonon scattering is the dom-

inant scattering mechanism limiting the increase of the

electron drift velocity in a high electric field.

In a stationary case, the balance between the energy

acquired from the field and the energy transferred to the

emitted phonon allows one to estimate the value of the

electron saturated drift velocity as

vopt
sat =

√

Eopt

m
, (1)

where m is the electron effective mass, and Eopt is the

optical phonon energy.

The value of vopt
sat is determined by the material pa-

rameters Eopt and effective mass m, and does not de-

pend on the electric field. Most of the common semi-

conductors (Ge, Si, GaAs, InP, GaN, etc.) have the op-

tical phonon energy of about ~ω0 ≈ 40 meV and the

effective mass m ≈ 0.1m0. Substitution of these val-

ues into Eq. (1) gives the value of the saturated velocity

vopt
sat ≈ 2 · 107 cm/s (see, for example, Refs. [5, 6]).

Assuming that the electron drift velocity is inversely

proportional to the electron–PO phonon scattering rate,

we suppose that the saturated drift velocity

vsat ∼W−1
~ω0

, (2)

where W~ω0
is the scattering rate of an electron with

the kinetic energy Ec ≥ ~ω0 by a PO phonon. In

common semiconductors, W~ω0
is so large that when
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an electron just achieves the optical phonon energy, it

emits a PO phonon and loses its drift velocity obtained

in an electric field. In that case, Eq. (1) takes place: i. e.

vsat = vopt
sat . At lower W~ω0

, the electron can be accel-

erated in the electric field up to the velocity higher than

vopt
sat , before it emits the PO phonon. We identified the

PO phonon emission with the saturation of the electron

drift velocity. In Eq. (2) we propose that the increase

of the saturated drift velocity is proportional to the de-

crease of W~ω0
.

The increase of the drift velocity over vopt
sat due to the

decrease of W~ω0
is observed in some specific cases in-

volving electron–phonon interaction in short space and

time intervals (the overshoot effect) [7–9].

We will consider possibilities to decrease W~ω0
by

the PO phonon confinement in a QW.

3. Electron–phonon scattering rate and maximal

drift velocity in a QW

Let us compare the scattering rate of electrons con-

fined in a QW by confined PO phonons with that for

bulk PO phonons.

The scattering rate of an electron from an initial state

with the wave vector ki and energy Ei to a final state

with the wave vector kf and energy Ef by emission

(absorption) of a PO phonon with the energy ~ω0 and

wave vector q is described by

Wkikf
=

2π

~
|Mif |2

(

Nq +
1

2
± 1

2

)

δ(Ef ±Ei +~ω0) ,

(3)

where

Nq =

[

exp

(

~ω0

kBT

)

− 1

]−1

,

kB is the Boltzmann constant, and T is the temperature.

In bulk material, the matrix element for isotropic

scattering by longitudinal PO phonons [10]

|Mif |2bulk = δkf ,ki±q

1

L3

B0

q2
, (4)

B0 = 2πe2
(

1

ε∞
− 1

εS

)

~ω0 ,

where δkf ,ki±q is the Kronecker delta, q is the PO

phonon wave vector, and ε∞ and εS are the high-

frequency and static dielectric constants, respectively.

The total scattering rate of an electron in the initial

state (ki, Ei) is equal to

Wki
=

L3

(2π)3

∫

Wkikf
d3kf . (5)

For a bulk semiconductor case, integration of Eq. (5)

gives

Wki,bulk = W±
0

1

ki

ln
ki +

√

k2
f0

ki −
√

k2
f0

, (6)

where

−k2
f0 =±k2

opt − k2
i , (7)

k2
opt =

2m(~ω0)

~2
, (8)

and

W±
0 =

me2(~ω0)

2π~3

(

1

ε∞
− 1

εS

)(

Nq +
1

2
± 1

2

)

(9)

is the Fröhlich coupling coefficient of the interaction of

electrons with polar optical phonons. Sign “+” (“−”)

is for phonon emission (absorbtion) case. Note that ac-

cording to Eq. (7), interaction with phonon emission is

possible when the electron energy is greater than the

optical phonon energy.

Electron and phonon momenta quantization in a 2D

structure change radically the electron–phonon interac-

tion. For simplicity, we assume that electrons and PO

phonons are confined in a common QW of the width L.

The scattering rate of a confined electron by con-

fined phonon is equal to

Wkikf
(QW) =

2π

~
|Mif |2QW

(

Nq +
1

2
± 1

2

)

× δ(Ef ±Ei + ~ω∗
0) , (10)

|Mif |2QW = δk‖i,k‖f±q‖
|Gz |2F 2

q , (11)

~ω∗
0 = ~ω0

(√

q2‖ + q2z

)

+ Ezi − Ezf , (12)

where indexes “‖” and “z” are referred to values in

the QW plane and perpendicular to it, respectively, Ezi

and Ezf are the subband electron energies in the QW

due to quantization of electron momentum pz = ~kz .

In a case of the intrasubband electron–phonon scatter-

ing, Ezf = Ezi and ~ω∗
0 = ~ω0. The intersubband

electron–phonon interaction was considered in the pa-

pers [2, 3]. The oscillating dependence of the scattering

rate due to the change of the intersubband energy on the

QW width and the resonance of electron–phonon scat-

tering at ~ω0 = Ezf − Ezi was found [2].

The overlap integral is

|Gz|2 =

∣

∣

∣

∣

∫

ϕezfϕqzϕezi dz

∣

∣

∣

∣

2

. (13)
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Here ϕezi and ϕezf are the z components of the initial

and final normalized electron wave functions, respec-

tively. In a single QW of width L with completely re-

flecting walls (barriers), the z components of phonon

wave functions are the standing waves [6, 11–13]:

ϕqz =

√

2

L
sinn

π

L
z at 0 < z < L ,

n = 1, 2, 3, . . . , (14)

ϕqz = 0 at z > L, z < 0 .

The square of the normalization coefficient Fq of the

confined longitudinal PO phonon wave function

ϕq = Fqϕqz eiq‖r‖ , (15)

as derived from the detailed calculation of the macro-

scopic confined longitudinal PO phonon potential pro-

duced by microscopic PO atomic vibrations [11, 12] is

equal to

F 2
qn =

~ω0

A

(

1

ε∞
− 1

εS

)

(

q2‖ + q2zn

)−1
,

qzn = n
π

L
, n = 1, 2, 3, . . . , (16)

where A is the in-plane normalization area.

Further we will take into account only the minimal

mode of qz at n = 1.

The quantization of confined phonon momentum

perpendicular to the plane of the QW leads to a great

decrease of F 2
q and, consequently, to the decrease of

the electron–phonon scattering rate in the narrow QW.

At low QW width, the wave vector qz = π/L can

exceed the phonon wave vector q‖ that is obtained

from electrons during the electron–phonon interaction:

q2z > q2‖ = |k‖i − k‖f |2. The wave vector qz = π/L
arises due to confined phonon localization in the QW.

It is worth to note that, according to the Heisenberg un-

certainty relation,

∆pz∆z ≥
~

2
, (17)

the phonon momentum cannot be less than ∆pz min =
~/(2∆z). In the considered case, ϕqz ∼ sinnπ/Lz,

∆z = L, and qz min = π/L.

Integration of Eq. (10) over k‖f gives

W±
k‖i

(QW) =
W±

0

2π

2π
∫

0

dθ|Gz|2 (18)

×
(

k2
f0 + k2

‖i − 2kf0k‖i cos θ + q2z
)−1

,

where θ is the angle between k‖i and kf0 (kf0 is de-

fined by Eq. (7)). After integration over θ, we obtain

the intrasubband scattering rate of a confined electron

with the initial momentum ~k‖f by the ground mode

(n = 1) of confined phonon in the QW of width L:

W±
k‖i

(QW) =
W±

0 |Gz|2
√

4k2
‖iq

2
i +

(

± k2
opt − q2z

)2
. (19)

Here qz = π/L, signs “+” and “-” are for the phonon

emission and absorption, respectively.

The scattering rate of confined electrons by bulk

phonons (qz = 0) is

W±
k‖i

(QW,bulk) =
W±

0 |Gz(qz = 0)|2
k2
opt

. (20)

We suppose that the saturated electron drift velocity

is determined by the scattering rate of electrons with

the kinetic energy equal to the phonon energy larger

than the PO phonon energy, Ec > ~ω0 (see Eq. (2)).

At Ec ≥ ~ω0, the scattering rate with phonon emis-

sion exceeds the scattering rate with phonon absorp-

tion, and the total scattering rates, according to Eqs.

(19) and (20), are

W+
~ω0

(QW)≈ W+
0 |Gz |2

k2
opt + q2z

,

W+
~ω0

(QW,bulk)≈ W+
0 |Gz(qz = 0)|2

k2
opt

. (21)

Due to a weak dependence of W+
k on the electron

energy, we supposeW+
k (E > ~ω0) ≈W+

k (E ≈ ~ω0).
Consequently, the ratio of the velocity of electrons

(with the energy Ee = ~ω0) confined in the QW and

scattered by confined phonons, to that scattered by bulk

phonons can be estimated as

vsat(QW)

vsat(QW,bulk)
≈ W~ω0

(QW,bulk)

W~ω0
(QW)

(22)

=
|Gz(qz = 0)|2

|Gz |2
(

1 +
q2z
k2
opt

)

.

At qz = π/Lq, where Lq is the phonon QW width,

and kopt = π/Lopt,

|qz|2
k2
opt

=

(

Lopt

Lq

)2

.

For Γ valley electrons in GaAs, Lopt = π/kopt =
12.6 nm. A tenfold increase of the maximal drift ve-

locity in the QW can be obtained at Lq = 4 nm.
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One can see that even with the contribution of the

overlap integral ignored the phonon quantization gives

a great increase of the maximal drift velocity.

The overlap integrals |Gz |2 and |Gz(qz = 0)|2 in-

crease with decreasing the QW width [11]. This in-

crease has to be taken into account in Eq. (22). How-

ever, at L < Lopt this increase of |Gz |2 is negligible in

comparison with the decrease of Wk(QW) due to the

increase of z component of the phonon momentum.

4. Phonon confinement and the Heisenberg

uncertainty

Above, we have considered the case when the z
component of the phonon wave function is a standing

wave (Eq. (14)). In this case, the localization area of the

phonon wave function is defined as ∆z = L, and the

minimal value of the phonon momentum is determined

according to Heisenberg uncertainty ∆pz∆z ≥ h/2 as

qz ≥ π/L.

For the evaluation of ∆pz in a general case, let us

employ the more precise Heisenberg uncertainty equa-

tions with the inaccuracies as mean square deviations

from the average values of momentum p and coordi-

nate z [15]:

(∆pz)2 =

∫

(pz − pz)
2|ψ(pz)|2 dpz , (23)

(∆z)2 =

∫

(z − z)2|ϕ(z)|2 dz , (24)

where

pz =

∫

pz|ψ(pz)|2 dpz , z =

∫

z|ϕ(z)|2 dz , (25)

and the wave functions in the space of momentum

ψ(pz) and coordinate ϕ(z) are constrained by the

Fourier transforms:

ψ(pz) =
1√
2π~

∫

ϕ(z) exp

(−ipzz

~

)

dz , (26)

ϕ(z) =
1√
2π~

∫

ψ(pz) exp

(

ipzz

~

)

dpz . (27)

From Eqs. (23)–(27) the Heisenberg uncertainty can be

defined as

(∆pz)2 · (∆z)2 ≥ ~
2

4
or ∆p∗z · ∆z∗ ≥

~

2
. (28)

Here ∆z∗ =
√

(∆z)2 and ∆p∗z =
√

(∆pz)2.

For a minimal ∆p∗z value we obtain

∆p∗z =
~

2
√

(∆z)2
, (29)

where (∆z)2 is defined by Eq. (24).

Namely, this value of ∆p∗z = ~qz determines the de-

crease of the factor Fq (Eq. (16)) and consequently, the

great increase of the maximal drift velocity (Eq. (22))

in a narrow phonon QW.

For a phonon standing wave ϕq(z), Eq. (24) gives

(∆z)2 = L2 or qz = π/L. Note that in spite of pz = 0,

fluctuation of the phonon momentum ∆pz is an addi-

tional source of drift velocity fluctuations.

5. Electron–interface PO phonon scattering

Heterointerfaces of double heterostructures give rise

to the confinement of optical phonons located in the

middle of a QW as well as interface (IF) modes, which

are located in the vicinity of the interfaces [11, 13]. The

total electron–phonon scattering rate in the QW is a

sum of the scattering rates by confined and IF phonons:

Wtotal = Wk(QW) +Wk(IF) .

In double heterostructures, the sum rule for the scat-

tering rate form factors holds [11]:

|Gz(qz = 0)|2 = |Gz(QW)|2 + |Gz(IF)|2 . (30)

The sum rule means that if we neglect the difference

in eiqenfrequencies of phonon modes, due to the exis-

tence of the interface, namely, if we neglect the differ-

ence in coupling constants of phonon modes, the total

confined electron scattering rate by confined and inter-

face phonons is the same as that for scattering rate by

bulk phonons,

Wk(QW,bulk) ≈Wk(QW) +Wk(IF) ≡Wtotal .
(31)

Consequently, a great decrease of confined electron–

confined phonon scattering rate with decreasing QW

width L is exactly compensated by the increase of

confined electron–IF phonon scattering rate. It takes

place, for example, in AlAs / GaAs / AlAs heterostruc-

ture due to a small difference in the coupling constants

of phonon modes of AlAs and GaAs [11].

As a result, the increase of the maximal drift veloc-

ity due to the decrease of Wk(QW) in a narrow QW

disappears due to the increase of scattering rate by IF

phonons.

The compensation effect can be decreased by choos-

ing a semiconductor material of the heterostructure
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Fig. 1. Sequence of layers for AlGaAs / GaAs heterostructures with

incorporated InAs layers having QDs. The dotted line shows a Si

δ-doped layer (2·1012 cm−2).

with a larger difference in electron–phonon coupling

constants, as it is, for example, in a case of

InAs / GaAs / InAs and AlSb / InAs / AlSb. If the two-

dimensional electron gas is formed in a homopolar–

polar–homopolar heterostructure, Ge / InAs / Ge, the

total electron–phonon scattering rate is approximately

equal to the scattering rate by confined phonons

Wk(QW), and the influence of IF scattering is negligi-

ble [11].

With the aim to increase the saturated electron veloc-

ity we propose to develop an InAs / GaAs / InAs struc-

ture with thin (two monolayers) InAs barrier layers

with a high density of quantum dots (QDs) inserted

in the GaAs QW. Moreover, we assume that chaotic

destruction of the GaAs / InAs interface by QDs elimi-

nates inelastic electron scattering by IF PO phonons.

6. The giant increase of electron drift velocity

(experiment)

Figure 1 demonstrates schematically the modulation

doped AlGaAs / GaAs / InAs / GaAs / InAs / GaAs het-

erostructures grown by molecular beam epitaxy on a

GaAs semi-insulating substrate. In a thin InAs pseudo-

morphic layer, the self-assembled InAs quantum dots

were formed. The QD size is around 5×40 nm2 [16].

The width of the InAs / GaAs / InAs PO phonon QW of

3–5 nm corresponds, according to Eq. (22), to the ten-

fold increase of the saturated drift velocity. Two types

of the structures were grown: S1 with high concentra-

tion of QDs of 3·1010 cm−2 and S2 with low concen-

tration of QDs of 1010 cm−2 [4].

Fig. 2. Current–voltage characteristics of AlGaAs / GaAs het-

erostructures with incorporated InAs layers with high (S1) and low

(S2) concentration of InAs QDs.

Figure 2 shows the measured I–V dependences of

two types of structures [14]. At low voltages, before

ionization of QDs, the current through structure S1 is

much less than that through structure S2 because of a

lower free electron concentration. At higher voltages,

the increase of the current, due to ionization of QDs at

high electric field, in structure S1 exceeds that increase

in structure S2. The current in structure S2 is saturated

at the level with the drift velocity of less than 107 cm/s.

The current in structure S1 is saturated at 13 A/cm or

at nSvsat = 0.8 · 1020 cm−1s−1.

Since the sheet electron concentration is not larger

than 1012 cm−2, we have to assume that the saturated

drift velocity is 0.8·108 cm/s. This is ten times larger

as the saturated velocity 0.8·107 cm/s in bulk GaAs at

an electric field higher than 60 kV/cm.

We assume that such a giant increase of the sat-

urated drift velocity is due to both the confinement

of PO phonons in AlGaAs / GaAs / InAs / GaAs / InAs

QWs and the suppression of the GaAs / InAs IF phonon

mode by forming a large number of InAs QDs.

7. Conclusions

1. The drift velocity increase in high electric fields in

common semiconductors is limited by inelastic opti-

cal phonon scattering: an electron loses the drift ve-

locity acquired in an electric field by optical phonon

emission. Therefore, the maximal possible drift ve-

locity in semiconductors can be evaluated as vsat ≈
√

~ω0/m.

2. Dimensional phonon and electron confinement in-

creases the electron saturated drift velocity in the

QW:
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vsat(QW) =
|Gz(qz = 0)|2

|Gz|2
(

1 +
(∆p∗z)

2

2m~ω0

)

× vsat(QW,bulk) ,

where ∆p∗z is the minimal quantized phonon mo-

mentum perpendicular to the QW plane, which is

determined by localization of the PO phonon in the

real space ∆z∗. According to the Heisenberg uncer-

tainty, ∆p∗z = ~/(2∆z∗), where ∆z∗ =
√

(∆z)2.

Namely, the great increase of ∆p∗z is responsible for

the great increase of the saturated drift velocity in a

narrow QW.

3. The experimental observation of a tenfold increase

of vsat in the AlGaAs / GaAs / InAs / GaAs / InAs

heterostructure is in agreement with the theoretical

prediction.
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ELEKTRONŲ SOTIES DREIFINIO GREIČIO PADIDĖJIMAS KVANTINĖJE DUOBĖJE

DĖL POLINIŲ OPTINIŲ FONONŲ SUSPRAUDIMO

J. Požela, K. Požela, V. Jucienė

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Parodyta, kad suspraustų polinių optinių fononų impulso kvan-

tavimas sąlygoja žymų elektronų soties dreifo greičio kvantinėje

duobėje padidėjimą, palyginus su tuo greičiu tūriniame puslaidi-

ninkyje.

Įprastuose puslaidininkiuose elektronų dreifo greičio didėjimą

stipriuose elektriniuose laukuose apriboja netampri elektronų sklai-

da optiniais fononais: įgytą elektriniame lauke dreifo greitį elekt-

ronas praranda emituodamas optinį fononą. Todėl maksimaliai ga-

limas dreifo greitis gali būti aprašytas taip: vsat ≈
√

~ω0/m.

Fononų suspraudimas kvantinėje duobėje padidina elektronų soties

dreifinį greitį kvantinėje duobėje:
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čia ∆p∗
z – minimalus kvantuotas fonono impulsas, statmenas kvan-

tinės duobės plokštumai, kuris yra sąlygotas PO fonono lokaliza-

cijos koordinačių erdvėje dydžio ∆z∗. Kaip seka iš Heizenbergo

nelygybės, ∆p∗
z = ~/(2∆z∗), kur ∆z∗ =

√

(∆z)2.

Būtent ∆p∗
z didėjimas siauroje kvantinėje duobėje yra atsakin-

gas už didelį elektrono soties dreifo greičio augimą.

Taigi, yra paaiškintas elektronų dreifo greičio soties reikš-

mės padidėjimas dešimteriopai, stebimas eksperimentiškai

AlGaAs / GaAs / InAs / GaAs / InAs įvairialyčiame darinyje.


