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We briefly overview historical, fundamental, and practical aspects of light wave propagation, where strong multidimensional
localization and precise control of ultrashort signals is demanded. The main topic is focused on the state of art of recently
discovered nonlinear conical waves, or so-called X-shaped light bullets, which have been demonstrated to appear spontaneously
in many different, frequently encountered operating regimes in transparent gaseous, liquid, and solid media. Owing to unique
features of white-light frequency spectrum, strong localization, deep-field stationarity, and hot-spot regeneration property,
nonlinear conical waves have great potential in all applications requiring energy transfer to matter over very limited transverse
areas in thick media, which thus suffer the short focal depth of conventional laser beams. Practical applications that cover
many different areas ranging from nano-science to high-field physics are discussed.
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1. Introduction

Laser is one of the most important optical devices
invented during past 50 years. Because of unique prop-
erties of laser light, laser applications nowadays cover
almost entire scope of modern science – physics, chem-
istry, biology, medicine, technology, etc. One of the
challenging tasks in modern optics is to overcome the
natural spreading of ultrashort wave packets caused by
diffraction and dispersion [1]. Since ultrashort wave
packet is composed by a number of electromagnetic
waves of different spatial and temporal frequencies be-
ing phase-locked in time and in space, in the medium
these waves propagate with slightly different group ve-
locity because of chromatic dispersion and with some
angular divergence because of diffraction, see Fig. 1.
Propagation of ultrashort wave packet in transparent
dispersive media is described by the standard paraxial
propagation equation
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is the propagation constant, with λ being the wave-
length. Left-hand terms 2 and 3 stand for dispersion
and diffraction, respectively. Dispersion is normal if
k′′ > 0 and anomalous if k′′ < 0. For conventional,
bell-shaped Gaussian wave packet with temporal dura-
tion tp and beam width w0

A(r, t, 0) = A0 exp

(

− r2

w2
0

− t2

t2p

)

(2)

characteristic lengths for beam spatial spread (Ray-
leigh range, zR) and pulsewidth broadening (dispersive
length, Ld), representing a change of corresponding
values by

√
2 are expressed as
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πnw2

0

λ
, Ld =
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|k′′| . (3)

The smaller the dimension of the beam and the
shorter the pulse width, the more pronounced effects
of diffractive spread and dispersive broadening do oc-
cur. For instance, diffraction and dispersion lengths
for 10 fs, 10 µm Gaussian wave packet with wave-
length centred at 527 nm propagating in a bulk glass
sample are zR ' 1 mm and Ld ' 3 mm, respec-
tively. Therefore the quest for wave packets that are
localized in all dimensions and are propagation invari-
ants (defeating the natural spread) is of primary impor-
tance in the context involving wave propagation and

c© Lithuanian Physical Society, 2006
c© Lithuanian Academy of Sciences, 2006 ISSN 1648-8504



8 A. Dubietis et al. / Lithuanian J. Phys. 46, 7–18 (2006)

Fig. 1. Simplified representation of the localized wave packet. Top:
effect of diffraction and dispersion on spatiotemporal dimensions
of the wave packet in dispersive medium. Bottom: non-diffracting

and non-dispersing wave packet – light bullet.

light–matter interactions. Two standard approaches
have been previously considered for obtaining wave
packet stationarity and multidimensional (spatiotempo-
ral) localization: the linear approach, based on coni-
cal waves, and the nonlinear approach, based on soli-
tons. Unfortunately, both have serious drawbacks
from the viewpoint of practical applications; the lin-
ear scheme owing to weak localization and poor con-
trast, and the nonlinear scheme owing to dominant en-
ergy dissipation (nonlinear losses). Combining of the
two paradigms of linear conical and nonlinear solitary
waves has led to discovery of nonlinear conical waves,
with exceptional feature of coexistence of a localized
high-intensity core and extended, high energy, but low
intensity beam periphery, which travel locked in a sin-
gle (quasi)stationary profile.

In this paper we provide a brief review of localized
wave packets accessible by means of linear and non-
linear optics: optical solitons, nondiffracting (Bessel or
Durnin) beams, light filaments, and X waves, their fun-
damental background, practical realizations, and poten-
tial impact to ongoing fundamental research and ap-
plied science.

2. Historical overview

Localized waves in physics are known for more than
one and a half century. In 1834 Scottish engineer Scott
Russell in narrow barge channel near Edinburgh dis-
covered water surface waves that propagate for miles
without apparent change in amplitude and speed [2].
Originally called “translation waves”, later these waves
were named solitons. In modern understanding, soli-
tons are strongly localized waves preserving or period-
ically rebuilding their shape during propagation. Soli-
tons in the realm of optics were made possible with

the advent of ultrashort pulse lasers and optical fibres,
seeking to use them as an information bits for mod-
ern optical communication and information processing
[3]. Solitary waves are entirely nonlinear entities; their
stationarity derives from self-interaction of the wave,
which requires specific nonlinearities, intensity levels,
beam sizes, or pulse widths. In 1990 Silberberg has
foreseen that nonlinear effects in bulk media combined
with anomalous dispersion might readily compensate
for dispersive and diffractive spread, resulting in full
dimensional localization of the wave packet, and in-
troduced the term of “optical bullets” – spatiotemporal
solitons [4]. To date, spatial and temporal solitons were
experimentally demonstrated under variety of operat-
ing conditions, see review article [5]. However, soli-
tons carry a limited, well-defined energy content, what
makes them not robust against nonlinear losses (energy
dissipation) that inevitably occur from extremely high
intensities and destroy the precise nonlinear balance of
the self-acting wave. Therefore no stable multidimen-
sional soliton in any real physical system has been ex-
perimentally demonstrated up to now [6].

An alternative approach in attempting the genera-
tion of localized and stationary wave packets is based
on conical waves. Original ideas of propagation-
invariant electromagnetic fields in linear systems date
back to the beginning of the 20th century, when Bate-
man [7] and later Stratton [8] have foreseen the exis-
tence of a propagation-invariant solutions to Maxwell
equations. Unfortunately, their ideas were forgotten
for a long time, and only in 1987 Durnin and co-
workers rediscovered [9] and for the first time exper-
imentally demonstrated the non-diffracting light beams
[10], which had specific radial intensity distribution de-
scribed by Bessel function:

A(r, z) = A0 exp(ikzz)J0(krr), (4)

where J0 is the lowest order Bessel function, kz and
kr are longitudinal and radial wave vectors, with k =
√

k2
z + k2

r = 2π/λ, and r, z are radial and longitudi-
nal components, respectively. The intensity profile of a
Bessel beam is shown in Fig. 2(b).

Experimental realization of non-diffracting beams
relies upon using optical elements, such as annular
slits, holographic elements, or most efficiently, conical
lenses – axicons. These methods are discussed in great
detail in Ref. [11]. Peculiar feature of non-diffracting,
so-called Bessel or Durnin beams is that the energy
flow is not directed along the propagation axis, as in
conventional Gaussian-like beams, see Fig. 2(a). Here
energy arrives laterally, from the cone-shaped surface,
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Fig. 2. (a) Wave vectors of the Bessel beam lie along cone-shaped
surface, (b) intensity profile of the Bessel beam, (c) production of a
Bessel beam by an axicon. Shaded area highlights the Bessel zone

of length zmax, see text for details.

leading to appearance of a very intense and localized
interference peak down to few wavelengths in dimen-
sion as shown in Fig. 2(b), which propagates free of
diffraction spreading. Such a peak is supported by the
presence of slowly decaying tails in the form of con-
centric rings that contain a major part of energy (each
ring carries an equal amount of energy). Due to fi-
nite energy extent and particular geometry of practical
realization, the non-diffracting propagation is limited
to finite distances, though orders of magnitude larger
than those achievable by conventional beams. For in-
stance, axicon-generated Bessel beam has the depth of
a Bessel zone zmax ≈ w0/θ, which far exceeds the
Rayleigh range of a Gaussian beam of the same width,
see Fig. 2(c). Here w0 denotes input beam diameter
and θ is the cone angle related to an opening angle γ of
the axicon by θ = (n − 1)γ.

Ten years later, Saari and Reivelt generalized the
idea of monochromatic non-diffracting beams for poly-
chromatic beams that carry ultrashort light pulses [12].
They have demonstrated that colored cones, corre-
sponding to each frequency, if properly composed, pro-
duce so-called linear X wave, which shares both non-
diffracting and non-dispersing properties as it propa-
gates in dispersive medium. More detailed analysis re-
vealed that diffraction of pulsed beams can be formu-
lated as an anomalously dispersive phenomenon, which
causes the diffraction effects and dispersion spreading
to cancel each other to a great extent, if transverse beam

profile is suitably chosen [13]. To this regard, real-
ization of localized broadband optical fields carrying
even subcycle optical pulses was shown to be possible
[14], and recently non-diffracting and non-dispersing
sub-10 fs X-pulses with dimensions down to few wave-
lengths were experimentally demonstrated [15]. How-
ever, because of poor intensity contrast the discovery
of linear X waves until now has not made a real break-
through in practical applications.

3. Self-focusing of optical wave packets

In nonlinear optics, physical mechanisms leading to
localization of light are much more complex and pos-
sess rich phenomenology. Discovery of self-focusing
and collapse of high-power laser pulses in transparent
media marks the birth of nonlinear optics shortly af-
ter the invention of the laser [16]. Since the dawn of
laser era the phenomenon of wave collapse because of
its universality continuously attracts significant atten-
tion from the scientific community [17]. Self-focusing
of the light wave is governed by the optical Kerr ef-
fect, which temporarily modifies refractive index of the
material:

∆n(r, t) = n2I(r, t) , (5)

here n2 is the nonlinear refractive index linked to third-
order susceptibility and I(r, t) is the intensity. The ef-
fect of self-focusing becomes detrimental upon reach-
ing so-called critical power of the beam

Pcr =
3.77 λ2

8πnn2
, (6)

which is governed by the compensation of natural beam
divergence by self-focusing effect.

In the pioneering experiments, self-focusing of high
power optical beams, operated in long-pulse or con-
tinuous wave mode, has been tightly linked to uncon-
trolled optical breakdown phenomena. Only with the
advent of ultrashort lasers, self-focusing of femtosec-
ond light pulses in transparent media has been shown to
give rise to a variety of physical effects: beam filamen-
tation, conical emission, white-light continuum genera-
tion, nonlinear absorption, ionization, space-time trans-
formations, without apparent onset of material break-
down, and still remains a hot topic of theoretical and
experimental research [18]. With femtosecond pulses,
collapse arresting mechanisms such as pulse lengthen-
ing due to normal group velocity dispersion or plasma
defocusing come into play, thus preventing catastrophic
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contraction of the beam. In the last decade, consider-
able knowledge on self-focusing phenomena has been
accumulated, thanks to a revived interest on the topic
inspired by the observation of long-range propagation
of femtosecond light filaments in air [19].

Fig. 3. Two screen shots illustrating the far field of light filament in
water – white-light axial radiation surrounded by color rings. Input
power: (a) 4 Pcr, (b) 10 Pcr. Very similar structure is observed

with light filaments in air and fused silica.

To this regard, many interesting and even unex-
pected findings were disclosed, which have a potential
impact on complete understanding of the underlying
physics and promote a series of potential applications
as well. Observations of light filaments in air [20–22],
solids [23, 24], and liquids [25–27] had been reported
to date, all revealing the universality of the physical
processes involved despite very distinct operating con-
ditions. In Fig. 3 typical far-field images of the beam,
which has undergone self-focusing are shown. The
widely accepted filamentation scenario is based upon
self-channelled propagation governing from the dy-
namic balance between self-focusing, diffraction, and
defocusing effect of free electron plasma, created via
multiphoton ionization.

Propagation of an ultrashort wave packet in nonlin-
ear media is governed by the nonlinear Schrödinger
equation
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where ω0 is the carrier frequency, β(K) is the multi-
photon absorption coefficient, with K being the order
of the process. Terms 2 and 3 represent diffraction
and dispersion as in Eq. (1), while nonlinear terms 4
and 5 stand for self-focusing and multiphoton absorp-
tion, respectively. With account for plasma defocusing,
equation takes more complex form, including evolution
equation for the free electron density, which accounts

also for multiphoton and avalanche ionization, plasma
absorption, optical shock terms, etc., see the full model
described in [28]. However, some basic properties can
be evaluated with the help of the propagation equation
in the simplified form as given by Eq. (7). A numeri-
cal simulation in the frame of a continuous wave model
that accounted only for diffraction, Kerr focusing, and
nonlinear losses (Eq. (7) without temporal terms) sug-
gested a possible scenario where all temporal effects
as well as those related to plasma induced defocusing
or saturation of the nonlinearity could be not essen-
tial to the occurrence of the apparent guiding effect.
Indeed, the spontaneous transformation of a Gaussian
beam into a conical wave is driven by the interplay
of self-focusing, nonlinear losses (multiphoton absorp-
tion), and diffraction [29]. The self-built conical wave
consists of localized intense hot part (central spike,
usually called filament) and extended low intensity pe-
riphery (which, however, carries a major part of the en-
ergy) that travels continuously refilling the hot portion
of the wave.

In support of the conical wave model, an experi-
ment by clipping or stopping a light filament while it
propagates in water (Fig. 4) has proven that it does not
behave as a self-channelled wave packet, being struc-
turally sustained by a strong energy flux from the sur-
rounding beam. In the case of clipped beam periphery
(just the central spike transmitted through the pinhole),
the filament rapidly diffracts and does not survive any-
more. By contrast, blocked central spike (with beam
stopper inside water cell) is quickly rebuilt by the en-
ergy flux from the beam periphery. Reconstruction ef-
fect was also observed in the linear propagation regime,
i. e. outside the water cell, justifying the conical nature
of spontaneously built wave [30]. Recent research in
connection with air filaments has arrived to similar re-
sults, demonstrating self-reconstruction property of air
filaments when colliding with water droplets [31], and
immediate termination of filamentation process if the
beam periphery is removed [32].

In presence of nonlinear losses, the time-integrated
spatial profile evolves towards unbalanced Bessel
beam, being composed of inward and outward Hankel
beams with unequal weights [33]:

A ' A0
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0 (

√
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0 (

√
2kδr)]e−ikδ ,

(8)
where H

(1,2)
0 are Hankel functions of the first and sec-

ond kind, δ is the wave vector shift related to cone
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Fig. 4. Basic features of femtosecond light filaments in water: free propagation (top), self-reconstruction of the central spike (centre), and
decay of the central spike with blocked periphery (bottom). Note also different scales for propagation length z. See Ref. [30] for details.

angle θ =
√

2δ/k, and αout and αin represent different
weights related by

A0(|αin|2 − |αout|2)/k = N∞ , (9)

where N∞ denotes the total nonlinear losses. Note that
the balanced superposition of Hankel beams (αout =

αin = 1) yields just original Bessel beam as described
by Eq. (4). The striking feature of the unbalanced
Bessel beam is that unbalancing creates a net inward ra-
dial energy flux that compensates for nonlinear losses.
Therefore, the latter finding points out that conical
waves in continuous wave limit are stationary and lo-
calized solutions of Eq. (7) being robust in presence
of nonlinear losses. As will be shown in the follow-
ing section, spatiotemporal structure of light filaments
in media with cubic nonlinearity closely resembles that
of the nonlinear X waves.

4. Nonlinear X-waves – conical light bullets

As outlined in previous section, spatiotemporal
solitons (or bell-shaped light bullets) require strictly
anomalous group velocity dispersion, which if com-
bined with self-action, suitably balances diffraction and
dispersion effects. Normal group velocity dispersion,
featured to be characteristic for most transparent me-
dia in the ultraviolet, visible, and near infrared spec-
tral range, rules out the possibility of achieving soliton-
type localized wave packets. Nevertheless, recently it
has been predicted and demonstrated that space-time
localization becomes accessible in the normal group
velocity dispersion in the nonlinear regime consider-
ing a novel, non-standard approach of conical wave
packets – X waves [34]. As follows from the linear X
wave analysis, propagation-invariant wave packet can
be achieved whenever its spatiotemporal spectrum in
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(k⊥, Ω) domain asymptotically fits the dispersion rela-
tionship

β = k′′Ω2/2 − k2
⊥/(2k0) = const , (10)

which in the case of normal group velocity dispersion
represents a family of hyperbolas following from the
propagation equation (Eq. (1)). Here k⊥ is the trans-
verse wave vector, related to cone angle θ ' k⊥/k0,
and Ω = ω − ω0 is the frequency detuning from the
carrier frequency. Angularly resolved spectral shape
resembles X profile associated with the lines β = 0,

k⊥ = ±
√

2k0k′′Ω . (11)

If spectral components are in phase, the spatiotempo-
ral electric field distribution also retains an X-shaped
profile (as shown in Fig. 5):

E(r, t) = Re
1

√

(∆ − it)2 + k0k′′r2
, (12)

where ∆ represents time duration of the central peak.
The first experimental evidence of the X wave forma-
tion during nonlinear optical process has been reported
by Valiulis and co-authors [34]. In contrast to linear
X waves, which require complex beam shaping, non-
linear X waves spontaneously reshape from the initial
Gaussian wave packet. In the second-harmonic gen-
eration experiment (in birefringent crystals possessing
quadratic nonlinearity), the spontaneous reshaping was
shown to be driven by mutual balance between self-
focusing nonlinearity arising from phase-mismatched
interaction and dispersive contribution, which resem-
bles an effective anomalous group velocity dispersion
through the angular dispersion [35, 36].

Although the initial experiment on strong space-time
localization has indicated an apparent axial compres-
sion of the wave packet in both (spatial and tempo-
ral) dimensions [37], intrinsic spatiotemporal structure
of the X wave suggests that considerable amount of
energy should be stored out of axis, in slowly decay-
ing tails. Indeed, high resolution, high dynamic range
three-dimensional mapping revealed spatiotemporal in-
tensity profile, which resembled closely essential fea-
tures of an X wave – strongly localized central peak and
slowly decaying conical tails, see Fig. 6 [38]. The pro-
posed measurement technique involved temporal slic-
ing of the conical (in general case, arbitrarily shaped)
wave packet by an extremely short (∼10 fs) Gaus-
sian pulse, having almost constant radial intensity dis-
tribution, by means of conventional cross-correlation
method based on sum-frequency mixing. However, a
major improvement to standard correlation technique

Fig. 5. Three dimensional representation of the X wave: (a) spa-
tiotemporal intensity (x, t, I) profile and (b) iso-intensity surface

(x, y, t, I = const) at the intensity level 0.1 Imax.

is that ultimate resolution not only in time, but more
importantly, also in space, is achieved [39].

Recently, femtosecond filamentation in media with
cubic nonlinearity, namely water has been interpreted
in terms of dynamic nonlinear X waves, whose prop-
agation follows from the interplay of nonlinearity and
chromatic dispersion [40, 41]. Authors have explicitly
demonstrated that spatiotemporal spectra acquire the
form of the X, being mediated by wave mixing and dis-
persion imposed phase matching. Moreover, authors
predicted axial pulse splitting and subsequent replen-
ishment of the pulse centre, which was at the same time
independently observed experimentally by means of
aforementioned three dimensional mapping technique,
as shown in Fig. 7 [42].

Spectral–angular measurements by imaging spec-
trometer have shown that indeed angles of conical
emission from light filaments obey the asymptotics of
the dispersion relation given by Eq. (10), with increas-
ing cone angles for both negative and positive detun-
ings from the carrier frequency [43]. An example
of angularly resolved frequency spectrum is shown in
Fig. 8. The full map of spatiotemporal transforma-
tions outlines complex dynamics, initially dominated
by nonlinear losses, then by self-focusing and pulse
splitting, eventually leading to the formation of an
X-shaped object surrounded by a complicated back-
ground [44]. Numerical simulations using a model de-
veloped for femtosecond filamentation in liquids solids
and gasses confirms the experimental observations, and
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Fig. 6. Spatiotemporal intensity profiles of the nonlinear X
wave excited by phase-mismatched second harmonic generation
in lithium triborate (LBO) crystal: the results make evident non-
linear beam compression, accompanied by a non-Gaussian redis-
tribution of the wave packet fluence. (a) Transverse profiles of
sum-frequency fluence for different delays, (b) experimental (left)
and simulated (right) intensity map of the X wave as captured af-
ter 5 mm of free-space propagation, and (c) experimental (left)
and simulated (right) iso-intensity surface at the intensity level
0.07 Imax. The details of experiment are described elsewhere [38].

Fig. 7. Spatiotemporal transformation of 150 fs wave packets in
water at 5 Pcr. Here z denotes the propagation length.

most importantly, nonlinear X wave generation is fore-
seen for a wide parameter range, whatever is the phys-
ical mechanism arresting the collapse [28].

Fig. 8. Spectral–angular distribution of the light filament in water,
excited by 1 ps, 527 nm pulses and measured by imaging spectrom-

eter.

Another relevant and still poorly investigated case
refers to filamentation phenomena in the regime of
anomalous group velocity dispersion. Preliminary ex-
periments and numerical simulations suggest extended
filamentation lengths in fused silica at telecom (around
1.5 µm) wavelengths [45, 46]. Comprehensive nu-
merical analysis shows that in this case the resulting
wave packet should be described in terms of nonlinear
O-waves [47].

Increasing relevance of the X waves in optics be-
comes recognized also in the operating regimes differ-
ent from Kerr-effect mediated phenomena: it has been
predicted and demonstrated experimentally that nonlin-
ear X waves are intrinsic modes of the parametric fluo-
rescence excited in crystals with second-order nonlin-
earity [48]. More recently, spontaneous formation of X
waves in photonic crystals [49] and waveguide arrays
[50] has been foreseen.

5. Emerging applications

As described in previous sections, a broad class
of conical waves (Bessel beams, light filaments, lin-
ear and nonlinear X waves) share properties of non-
diffractive and nondispersive (for pulses) propagation
of highly localized central peak being surrounded by
low intensity energy reservoir. Due to conical nature,
self-reconstruction appears to be an intrinsic property
of conical waves, guaranteeing stationarity by the re-
filling effect. Owing to unique properties not present
in conventional bell-shaped (Gaussian) wave packets,
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conical waves in the nonlinear regime, where matter
only responds to the localized high intensity peak, be-
ing totally transparent to the weak tails, open a wide
range of applications, which are inefficient or even not
accessible by means of conventional laser beams.

Existing methods for light detection and ranging
(LIDAR) based on backscatter signal are shown to be
substantially improved by application of long-range
propagating white-light filaments in air [51]. The po-
tential applications include determining both the chem-
ical and dynamic processes that affect problems such
as global warming, ozone loss, tropospheric pollution,
and weather prediction. The use of white-light LIDAR
promises several advantages over conventional detec-
tion methods: light filaments transmit the energy onto
the target area without apparent diffraction losses, with
substantially improved signal-to-noise ratio. Most im-
portantly, broadband detection in a single shot becomes
available, and no tunable laser therefore is required.
Great penetration depth allows precise tracing of at-
mospheric gases, as well as aerosol abundance, parti-
cle size, etc. Using of pre-chirped light pulses allows
control over filament formation dynamics and filamen-
tation length; to the best of knowledge, kilometre-long
white-light filaments reaching 10 km height have been
demonstrated [52].

Long-range propagation is particularly useful for
efficient generation of the third harmonic in air and
for high-order harmonics generation in noble gasses
[53]. Besides frequency conversion, amplification of
backscattered fluorescence of nitrogen molecules by
the ultrashort light filament, i. e. laser action in air
has been observed [54]. The ionized trail induced by
femtosecond light filaments in air has been consid-
ered to be useful for triggering and guiding the elec-
trical discharges for lightning protection [55]. Indeed,
light filament by means of multiphoton ionization pro-
duces short-lived conducting narrow plasma channel
that might readily serve as a precursor for a discharge.
A number of laboratory experiments has proven the va-
lidity of proposed approach, and laser guided megavolt
discharges with spark lengths up to 3.8 m have been re-
ported to date [56]. More recently, artificial laboratory
lightning has been demonstrated by simulating real at-
mospheric conditions – fog and rain, thus bringing the
research close to real-scale lightning control applica-
tions [57].

In the condensed media, owing to their non-diffract-
ing properties Bessel beams are put to use in a num-
ber of specific applications. These cover atom optics,
particle physics, optical microprocessing, to mention a

few. The most exiting achievement is the demonstra-
tion of micromanipulation of small objects in multiple
planes – three dimensional optical tweezer [58] and re-
alization of optical levitation of particles [59]. Trap-
ping of cavitation bubbles in water with femtosecond
light filaments has been demonstrated as well [60]. In
material processing, Bessel beams were found to be
useful for microlitography [61] and optical microstruc-
turing of the materials [62] with ultimate precision. Be-
cause of very local ionization within transparent mate-
rials, light filaments readily produce single shot longi-
tudinal illumination and introduce permanent volumet-
ric refractive index change in transparent bulk media
for designing optical waveguides and photonic struc-
tures [63]. More recently, high resolution, high focal
depth, and high contrast fluorescence channels excited
by means of three-photon absorption of Coumarine 120
dye in methanol with Bessel beams has been demon-
strated offering new applications in multiphoton mi-
croscopy [64].

In nonlinear optics, Bessel beams promise an inter-
esting physics [65] and practical benefits, in particular
for generation of diffraction-limited parametric super-
fluorescence and for production of coherent radiation
from incoherent light sources desirable for device ap-
plications [66].

And finally, fundamental knowledge on nonlin-
ear localization of light, accumulated during the last
decade greatly benefits the laser physics itself and
opens new prospects in advancing new generation, so-
called white-light laser [67]. To this regard, table-top,
millijoule-level, few optical cycle pulses become feasi-
ble through ultrashort pulse filamentation and chirped
mirror compression in noble gasses [68].

6. Concluding remarks

In conclusion, nonlinear X waves exhibit a very lo-
calized peak, in both transverse and longitudinal (tem-
poral) coordinates, which propagates free of diffrac-
tion and dispersion, even in dispersive materials, for
distances far exceeding those achievable with conven-
tional Gaussian-like beams. The discovery of sponta-
neous formation of nonlinear X waves in transparent
dispersive media has put forward a novel understanding
of light–matter interactions, widely opened new fun-
damental issues, and already suggested numerous ap-
plications requiring energy transfer to matter over very
limited transverse areas in thick media and which thus
suffer the short focal depth of conventional beams. It
has to be noted that linear and nonlinear conical waves
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are subject to many areas of physics. The generality
of wave localization phenomena allows one to make
use of these results in other physical systems, such as
matter waves in Bose–Einstein condensates, where ul-
tracold atoms behave like quantum mechanical wave
packets [69] and Langmuir waves in plasmas [70]. In
acoustics, localized sound waves are desirable for en-
hanced resolution in ultrasonic imaging, and interest-
ingly, linear X waves in acoustics were demonstrated 5
years earlier than in optics [71]. Propagation of local-
ized microwaves over distances of tens of wavelengths
[72], as well as preliminary experiments in localization
of terahertz radiation [73] and radio waves [74] had
been reported to date. Conical waves are well known in
astrophysics – a light from distant objects, distorted by
gravitational lenses is transformed into a conical wave,
which carries the information not accessible by other
means (because of limited angular resolution, for in-
stance) about the object as well as about the structure
of the Universe [75].
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NETIESINĖ ŠVIESOS LOKALIZACIJA

A. Dubietis, G. Valiulis, A. Varanavičius

Vilniaus universitetas, Vilnius, Lietuva

Santrauka
Vienas aktualiausių šiuolaikinės optikos uždavinių – rasti būdus

ir sąlygas, kaip išvengti itin trumpų bangų paketų (lazerio pluoštų
ir impulsų) plėtros, kurią lemia dispersija ir difrakcija. Toks užda-
vinys yra svarbus tiek fundamentiniu, tiek ir praktiniu požiūriu.
Neseniai atrastos netiesinės kūginės X bangos atveria galimybes
formuoti naujo tipo sutelktos energijos darinius (šviesos kulkas) ir
valdyti jų savybes, vykstant stipriai šviesos sąveikai su medžiaga.
Apžvelgti naujausi netiesinės optikos pasiekimai šviesos lokaliza-
cijos srityje, siūlantys naują požiūrį į šviesos saviveikos reiškinius

bei išryškinantys laiko ir erdvės reiškinių neatsiejamumą. Aptar-
tos kokybiškai naujų šviesos darinių – netiesinių X bangų (šviesos
kulkų) savaiminio radimosi skaidriose medžiagose prielaidos, dės-
ningumai ir eksperimentinio realizavimo būdai. Unikalios šviesos
kulkų savybės – platus dažnių spektras, didelė energijos sankaupa
mažame erdvės tūryje ir laiko intervale, sklidimo nuostovumas, taip
pat galimybė valdyti jų parametrus – atveria plačias taikymo gali-
mybes ten, kur įprastinių lazerio pluoštų taikymas yra neefektyvus,
o kartais net ir sunkiai įmanomas.


