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The delayed feedback control method is applied to control a quasi-periodic motion. We consider a weakly nonlinear van der
Pol oscillator subjected to a periodic force. Making use of the fact that the system is close to a supercritical Hopf bifurcation
we are able to treat it analytically. Our analysis shows that the domain of synchronization of a forced self-sustained oscillator
can be essentially extended by delayed feedback. The main results and the approach are of general importance since they are
relevant to any forced self-sustained oscillator close to the supercritical Hopf bifurcation.
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1. Introduction

The delayed feedback control (DFC) method [1] is
superior for controlling the oscillations in applied non-
linear science [2]. The method allows a noninvasive
stabilization of unstable periodic orbits (UPOs) of dy-
namical systems. The DFC makes use of a control sig-
nal obtained from the difference between the current
state of the system and the state of the system delayed
by one period of the unstable orbit.

Most investigations in the theory of delayed feed-
back control are devoted to the stabilization of un-
stable periodic orbits embedded in chaotic attractors
of low-dimensional (usually three-dimensional) sys-
tems [4]. The leading Floquet multipliers of such or-
bits are real-valued and lay outside the unit circle in
the complex plane (Fig. 1(a, b)). However, there ex-
ists a large class of unstable periodic orbits with the
complex conjugate pair of leading Floquet multipliers
(Fig. 1(c)). Such orbits arise from a Neimark–Sacker
(discrete Hopf) bifurcation and cannot appear in low-
dimensional chaotic attractors. Presumably for this rea-
son they have not been considered in delayed feedback
control theory so far. However, such orbits may appear
in low-dimensional non-chaotic systems. In this paper
we consider the control of such orbits.
∗ The report presented at the 36th Lithuanian National Physics Con-
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Fig. 1. Leading Floquet multipliers of unstable periodic orbits aris-
ing from different bifurcations: (a) period doubling, (b) tangent,
and (c) Neimark–Sacker (discrete Hopf) bifurcations. The unit cir-

cle defines the region of stability.

We investigate the problem of controlling synchro-
nization in a forced self-sustained oscillator. Very of-
ten in practical application the need arises to control
the properties of oscillations. Usually control assumes
an enhancement in regularity of motion. Due to drift
of parameters the desired synchronization may be lost
and a kind of beat phenomenon may occur. We imag-
ine that the external force driving the oscillator is inac-
cessible in experiment, but we can measure an output
of the oscillator and can control its state through some
accessible input. Then applying the delayed feedback
control we can return the system to the synchronized
state. In this paper, we demonstrate these ideas for the
van der Pol oscillator.

The rest of the paper is organized as follows. In Sec-
tion 2 we derive averaged equations for the controlled
van der Pol oscillator. In Section 3 we analyse peri-
odic orbits of the uncontrolled system. In Section 4,
we investigate a linear stability of the unstable periodic
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orbits controlled by delayed feedback. In Section 5,
we demonstrate the results of numerical simulations of
the original delay-differential equations. The paper is
finished with conclusions presented in Section 6.

2. Model and averaged equation

Consider a weakly nonlinear van der Pol oscillator
under the action of an external periodic force and a de-
layed feedback perturbation:

ẍ + ω2
0x + ε(x2 − 1)ẋ = a sin(ωt) + k(x− xT ) . (1)

The left-hand side represents the standard van der Pol
equation. The parameter ω0 is the characteristic fre-
quency of self-sustained oscillations, and ε is respon-
sible for the strength of nonlinearity of the oscillator.
The first term in the right-hand side is an external peri-
odic force (a is the amplitude and ω is the frequency),
and the second term describes the delayed coupling
due to control. The parameter k is the feedback gain,
xT ≡ x(t − T ), and T = 2π/ω is the period of the ex-
ternal force. In the following we consider Eq. (1) as a
weakly nonlinear system. Specifically, we suppose that
ε is a small parameter, ε ¿ ω0. Moreover, we assume
that the amplitude a, the frequency detuning ω−ω0, as
well as the control perturbation k(x − xT ) are propor-
tional to the small parameter ε.

For weakly nonlinear systems, there are many math-
ematically rigorous ways (e. g., method of averaging,
multiscale expansion, and other asymptotic methods)
to obtain approximate solutions. We will apply the
method of averaging. First we rewrite Eq. (1) as a sys-
tem

ẋ = y , (2a)

ẏ = − ω2
0x − ε(x2 − 1)y + a sin(ωt)

+ k(x − xT ) . (2b)

As Eq. (1) or system (2) is close to that of linear os-
cillator, we may expect that the solution has a nearly
harmonic form. Since there is a forced system, we look
for a solution with the characteristic frequency ω,

x =
A(t)eiωt + A∗(t)e−iωt

2
. (3)

Here A(t) is a new variable, a slowly varying complex
amplitude. Since it is complex, we need two relations
to have one-to-one correspondence between (x, y) and

A. It is convenient to introduce the following relation
between y and A:

y = iω
A(t)eiωt − A∗(t)e−iωt

2
. (4)

Substituting Eqs. (3) and (4) in system (2) we obtain
the equation for the complex amplitude, which after av-
eraging over the period T of fast oscillations takes the
form

Ȧ =
ω2 − ω2

0

2iω
A − ε

2
A

(

|A|2
4

− 1

)

− a

2ω

+
k

2iω
(A − AT ) . (5)

By choosing an appropriate scale for the amplitude

A = 2z (6)

and introducing new parameters

α =
a

2εω
, ν =

ω2 − ω2
0

εω
≈ 2

ω − ω0

ε
, κ =

k

εω
, (7)

equation (5) can be simplified to

2

ε
ż = − iνz − z(|z|2 − 1) − α − iκ(z − zT ) . (8)

The parameters α, ν, and κ are proportional to the am-
plitude of external force, the frequency detuning, and
the delayed feedback gain respectively. The dynamical
equation for the complex amplitude (8) is the main in-
strument in our analysis of the stationary solutions of
the system (2).

3. Periodic orbits of the system

We now determine the steady state solutions of the
uncontrolled system (κ = 0) and analyse their stability.
We focus on unstable periodic orbits. In the following
sections they will be the subject of the delayed feed-
back control.

We start the analysis with finding the stationary so-
lutions. Setting ż = 0 and z = z0, we obtain

−iνz0 − z0(|z0|2 − 1) − α = 0 . (9)

We introduce the notations

s = |z0|2 , fν(s) = s[(s − 1)2 + ν2] . (10)

Then the values of s can be found by solving the cubic
equation

fν(s) = α2 (11)



T. Pyragienė and K. Pyragas / Lithuanian J. Phys. 46, 19–26 (2006) 21

Fig. 2. The bifurcation diagram for the uncontrolled van der Pol os-
cillator. The broken lines are defined by Eq. (14b). The region be-
tween these lines correspond to three periodic orbits. Outside this
region there is only one periodic orbit. The thick solid line is the hy-
perbola (17) defining the Hopf bifurcation. The vertical lines divide
the diagram into three regions: (a) ν2 < 1/4, (b) 1/4 < ν2 < 1/3,
and (c) 1/3 < ν2. By the horizontal lines, the diagram is divided
into regions (d) α2 < 4/27, (e) 4/27 < α2 < 8/27, and (f)
8/27 < α2. The vertical (horizontal) arrows show the fixed val-
ues of the parameter ν (α) taken from regions (a), (b), and (c) ((d),
(e), and (f)) for which the |A0| versus α [|A0( versus ν) charac-
teristics are presented in Figs. 3(a), (b), and (c) ((d), (e), and (f)),
respectively. The solid dot (ν, α) = (0.9, 0.6) shows the sets of
parameters which will be used in the following analysis to demon-

strate the delayed feedback control performance.

with respect to s. Knowing s, from Eq. (9) one can
determine the steady state value of z,

z0 =
−α

s − 1 + iν
. (12)

Solutions of the cubic equation (11) define stationary
periodic orbits of the forced system. The period of
these orbits coincide with the period T of the external
force, and the amplitude (the radius in the (x, y) plane)
is

|A0| = 2|z0| = 2
√

s . (13)

Equation (11) has three real roots provided

α2
1(ν) < α2 < α2

2(ν) , (14a)

α2
1,2(ν) =

2

27
[9ν2 + 1 ∓ (1 − 3ν2)3/2] , (14b)

or one real root otherwise. Thus, the forced van der
Pol oscillator has either three or one periodic orbit(s).
The bifurcation diagram of Eq. (8) for κ = 0 is shown
in Fig. 2. Since it is symmetrical with respect to the ν

Fig. 3. The amplitude |A0| of the periodic orbit as function of the
amplitude α of the external force for the fixed value of the detun-
ing (a) ν = 0.25, (b) ν = 0.53, (c) ν = 0.9, and as function of
the detuning ν for the fixed value of the amplitude of the external
force (d) α = 0.3, (e) α = 0.46, (f) α = 0.6. Solid lines de-
note the stable orbits, open circles represent the saddle orbits, and
dashed lines show unstable periodic orbits with a pair of complex
conjugate Floquet exponents. Solid dots mark the same set of the

parameters (ν, α) as in Fig. 2.

and α axes, only the part ν ≥ 0, α ≥ 0 is presented.
The region with three orbits is between broken lines.
Outside this region there is only one periodic orbit.

From a physical point of view it is interesting to
investigate the bifurcations for two different cases,
namely (i) for a fixed detuning ν and variable amplitude
of external force α, or (ii) for a fixed α and variable ν.
For the first case, the thin vertical lines divide the bifur-
cation diagram into three regions ((a), (b), and (c)) with
different behaviour. The |A0| versus α characteristics
in these three regions are shown in Figs. 3(a), (b), and
(c) respectively. Similarly, for the second case the bi-
furcation diagram is divided into three regions ((d), (e),
and (f)) by horizontal lines for which the |A0| versus
ν characteristics are presented in Figs. 3(d), (e) and (f)
respectively. Typical evolution of the periodic orbits in
the (x, y) plane is shown in Fig. 4.
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Fig. 4. Typical evolution of periodic orbits in the (x, y) plane. Sim-
ilarly as in Fig. 3 the solid lines, open circles, and dashed lines
show the stable, saddle-type, and unstable (with a pair of complex
conjugate FE’s) orbits respectively. The scenario (a) → (b) → (c) is
typical when passing the region with three solutions (see Figs. 3(a)
and (e)). After two saddle-node bifurcations the stable orbit is re-
placed by an unstable one. The scenario (d) → (e) represents the

Hopf bifurcation (see Figs. 3(c) and (f)).

To determine the stability of periodic orbits, we have
to linearize Eq. (8), which leads to the characteristic
equation

(

2λ

ε

)2

− 2(1 − 2s)
2λ

ε
+ f ′

ν(s) = 0 . (15)

Here λ is the Floquet exponent (FE) of the periodic or-
bit, s is the solution of the cubic equation (11), and

f ′

ν(s) = (3s − 1)(s − 1) + ν2 (16)

is the derivative of the function fν(s) defined in
Eq. (10). The stability of a periodic orbit depends on
the value of s or, due to the relation (13) |A0| = 2

√
s,

on the amplitude of the orbit.
Two different types of bifurcations may occur in the

system. For f ′

ν(s) = 0 we have a tangent (saddle-
node) bifurcation, and for s = 1/2 a Hopf bifurcation
arises. The condition f ′

ν(s) = 0 defines the boundaries
α2 = α2

1,2(ν) of the region with three periodic orbits in
the (ν, α) plane (broken lines in Fig. 2). When crossing
into this region two additional orbits of saddle and node
types occur. The saddle orbit has two real FE’s of dif-
ferent signs. The positive exponent λ > 0 corresponds
to the real positive Floquet multiplier µ = eλT > 1 and
thus this orbit satisfies the odd number property. Such
an orbit cannot be stabilized by the usual delayed feed-
back method and we do not consider its control in this
paper. The saddle orbits are marked by open circles in
Figs. 3 and 4.

The condition of the Hopf bifurcation s = 1/2 de-
fines the minimal amplitude of the stable orbit Amin =√

2. The orbits with amplitude |A0| < Amin are un-

stable. In the (ν, α) plane, this condition defines the
hyperbola

α2 = fν

(

1

2

)

=
ν2

2
+

1

8
, (17)

which is shown by a solid line in Fig. 2. Above this line
the oscillator is synchronized with the external force;
the phase of the oscillator is locked by the phase of
the external force and its amplitude is independent of
time. Below this line, in the region of a single solution,
the stability of the periodic orbit with the frequency ω
is lost and we usually have a quasi-periodic behaviour.
The orbits losing their stability through the Hopf bifur-
cation (scenario (d) → (e) in Fig. 4) have a pair of com-
plex conjugate exponents with the positive real part.
Similar properties has one of the orbits arising from the
saddle-node bifurcation (scenario (a) → (b) → (c) in
Fig. 4). Unstable orbits having a pair of complex con-
jugate exponents with the positive real part are marked
by dashed lines in Figs. 3 and 4. In the next section
we analyse their stability under action of the delayed
feedback control.

4. Linear stability of the system controlled by
delayed feedback

We now analyse Eq. 8 for κ 6= 0. The term κ(z−zT )
does not change the steady state solutions of this equa-
tion, but can change their stability. Thus the delayed
feedback can non-invasively influence the frequency
entrainment condition. The characteristic equation now
reads:

(

2λ

ε

)2

− 2(1 − 2s)
2λ

ε
+ (3s − 1)(s − 1)

+ [ν + κ(1 − e−λT )]2 = 0 . (18)

In a general case, this is a rather complex transcenden-
tal equation that has an infinite number of solutions.
However, we can expect that close to the Hopf bifur-
cation the leading Floquet exponents will be propor-
tional to the small parameter ε. This assumption allows
the approximation e−λT ≈ 1 − λT , which simplifies
Eq. 18:

(1 + K2)

(

2λ

ε

)2

− 2(1 − 2s − νK)
2λ

ε
+ f ′

ν(s) = 0 .

(19)
Here we use the notation

K = κT
ε

2
= k

π

ω2
. (20)
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Fig. 5. The bifurcation diagram for van der Pol oscillator controlled
by delayed feedback. The solid line defines the Hopf bifurcation
for the uncontrolled system (the same as in Fig. 2), and broken
lines are defined by Eq. (22). Above these lines the oscillator is

synchronized with the external force.

This approximation is equivalent to that of replacing
the delay term in Eq. (8) by the first derivative, zT =
z(t − T ) ≈ z(t) − T ż. Such an approximation trans-
forms the delay-differential equation (8) into the ordi-
nary one

(

2

ε
+ iκT

)

ż = −iνz − z(|z|2 − 1) − α . (21)

After linearization it yields Eq. (19).
From Eq. (19) we see that the delayed feedback

changes the condition of the Hopf bifurcation, 1−2s−
νK = 0, which now depends on the delayed feed-
back strength K. At the bifurcation point we have
s = (1−νK)/2. Substituting this in Eq. (11) and using
Eq. (10) we obtain the relation between K, ν, and α:

α2 =
1

8
(1 − νK)[(1 + νK)2 + 4ν2] . (22)

In Fig. 5, these relations are presented by curves in
the (ν, α) plane for different fixed values of K. These
curves define the boundaries of synchronization for the
controlled oscillator. Above these curves the oscillator
is synchronized with the periodic force. We see that
the delayed feedback perturbation extends the phase
locked domain in the Arnold tongue.

For a fixed value of the parameters (ν, α), the thresh-
old of the feedback strength at which the Hopf bifurca-
tion occurs is K0 = (1 − 2s)/ν, where s satisfies the

cubic equation (11). Employing Eq. (20) and relation
s = |A0|2/4 the threshold can be presented in the form

k0 =
ω2

π
K0 =

ω2

πν

(

1 − |A0|2
2

)

. (23)

To demonstrate how the Floquet exponents depend
on the control gain k we specify the parameters (ν, α)
to be (0.9, 0.6). This set of parameters is marked by
solid dots in Figs. 2, 3, and 5. We have calculated
the leading Floquet exponents of the initially unstable
orbit using three different methods, namely, (i) solv-
ing transcendental equation (18), (ii) using quadratic
equation (19), and (iii) solving exact (nonaveraged) lin-
earized system (2). Equation (18) have been solved by
the Newton–Raphson algorithm. The third method is
based on the numerical analysis of the variational equa-
tions

δẋ = δy , (24a)

δẏ = − (ω2
0 − 2εx0y0)δx − ε(x2

0 − 1)δy

+ k(δx − δxT ) (24b)

derived from the system (2). Here δx = x − x0(t),
δy = y − y0(t) are small deviations from the unstable
periodic orbit [x0(t), y0(t)] = [x0(t + T ), y0(t + T )]
that satisfies the uncontrolled system (2). The leading
Lyapunov exponents of this system have been calcu-
lated according to the algorithm described in Ref. [5].
Note that the Lyapunov exponent of a periodic orbit co-
incides with the real part of the Floquet exponent.

The results of the above analysis for two different
values of the parameter ε equal to 0.01 and 0.1 are pre-
sented in Fig. 6. The exact values of the leading FE’s
determined from Eq. (24) are shown by dots. There are
two branches (the left-hand and the right-hand) defin-
ing the interval of stability k0 < k < k1 in which the
real part of the leading FE is negative. The parameters
k0 and k1 denote the lower and upper control thresh-
olds, respectively.

First we discuss the results for the left-hand branch.
For ε = 0.01, all the three above methods give quan-
titatively coinciding results (Fig. 6(a)). Thus for small
ε the leading FE of the left-hand branch can be reli-
ably obtained from the simple quadratic equation (19),
which yields

<λ =
ε

2

1 − |A0|2
2

− νk
π

ω2

1 +

(

k
π

ω2

)2
, (25)
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Fig. 6. Leading Floquet exponents as functions of the control gain
for (ν, α) = (0.9, 0.6). Here and in all numerical demonstrations
below we take ω0 = 1. By this it is meant that ω, ε, and λ are
measured in units of ω0, time t is measured in units of ω−1

0
, and k

is measured in units of ω2

0 . (a) <λ versus k for ε = 0.01. For the
given values of parameters ν, α, and ε, we have ω ≈ 1.00451 and
a ≈ 0.01205. The amplitude of the unstable orbit is |A0| ≈ 1.034
and its FE’s for k = 0 are λ0 ≈ (2.327 ± 4.297i) · 10−3. Solid
dots are the values of the Lyapunov exponents obtained from exact
variational equations (24). The dashed and dotted lines calculated
from Eq. (18) and Eq. (19) (or Eq. (25) respectively approximate
the left-hand branch. The solid line calculated from Eq. (28) ap-
proximates the right-hand branch. (b) Root loci of Eq. (18) (dotted
line) and Eq. (19) (dashed line) as k varies from 0 to ∞ for the
same parameter ε value as in (a). Crosses and black dot denote the

location of the roots for k = 0 and k = ∞, respectively.

and the threshold k0 of the Hopf bifurcation is well de-
scribed by Eq. (23). The transcendental equation (18)
gives good results even for ε = 0.1, while Eqs. (19) or
(25) are less appropriate (Fig. 6(b)).

The right-hand branch of the FE defining the upper
threshold k1 cannot be quantitatively well described by
Eq. (18). This is because the term k(x − xT ) responsi-
ble for the control in the system (2) is not small in this
case, and the averaging procedure performed with this
system is not valid. Nevertheless, we can find an ap-
proximate analytical expression for the FE using exact
(nonaveraged) variational equations (24). For the right-
hand branch, the nonlinear terms in Eq. (18) are small
in comparison with the control term. Thus in the varia-
tional equations we can neglect the terms containing ε.
Setting ε = 0 in Eq. (24) we obtain the characteristic
equation

λ2 + ω2
0 − k(1 − e−λT ) = 0 . (26)

Root loci diagram of the relevant branch for this
equation when varying k is shown in Fig. 7. The pair of
complex conjugate roots intersects the imaginary axes
at the points λ = ±iπ/T = ±iω/2. This intersection
appears for k = k1, where

k1 =
1

2

(

ω2
0 − ω2

4

)

(27)

Fig. 7. Root loci of Eq. (26) for ω = 1.00451 (ω0 = 1).

defines the upper threshold of stability. For k = k1,
the orbit loses stability by a period doubling bifurcation
since the intersection of the imaginary axes appears at
a half frequency of the external force, λ = ±iω/2. Ex-
panding the solution of Eq. (26) in Taylor series close
to the threshold k = k1, we obtain an approximate an-
alytical expression

Reλ =
4π

k1

ω

ω2 +

(

2π
k1

ω

)2
(k − k1) (28)

that describes well the Reλ versus k dependence for
the right-hand branch (Fig. 6(a, b)).

Having analytical expressions for the left-hand
(Eq. (25)) and right-hand (Eq. (28)) branches one can
easily evaluate an optimal value kop of the control gain
that provides the minimal <λ and thus the fastest con-
vergence to the desired orbit. This value is defined by
a simple intersection of these two branches and can be
found from a cubic equation with respect to k, which
results from equating Eq. (25) and Eq. (28).

5. Numerical demonstrations

To verify the validity of the linear theory we have
numerically investigated the original nonlinear differ-
ential equations (2). For the set of parameters (ν, α) =
(0.6, 0.9), ε = 0.1 the results are presented in Fig. 8.
Without control (t < 80 T ) the van der Pol oscillator
is not synchronized with the external force and a beat
phenomenon is observed (Fig. 8(a)). The DFC pertur-
bation is switched on at the moment tc = 80T ; it stabi-
lizes an unstable UPO and we have a periodic motion
synchronized with an external force (Fig. 8(b)). When-
ever the synchronization is established the feedback
perturbation vanishes (Fig. 8(c)). The envelopes of the
transient are well described by the averaged amplitude
equation (8). This confirms the validity of the averag-
ing procedure applied to the time-delay system (2).
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Fig. 8. Results of numerical integration of delay-differential equa-
tions (2) for (ν, α) = (0.9, 0.6), ε = 0.1. (a) Dynamics of the
x variable without control. (b, c) Dynamics of the x variable and
perturbation k[x(t) − x(t − T )] when the control is switched on.
The broken line (an envelope) in (b) is the dynamics of the complex
amplitude |A(t)| = 2|z(t)| obtained from averaged equation (8).
The strength of the feedback gain is k = 0.34, other parameters are

the same as in Fig. 6(c).

6. Conclusions

We have developed an analytical approach for the
delayed feedback control of a forced self-sustained os-
cillator close to a supercritical Hopf bifurcation. The
analytical approach is based on an averaging method,
a classical asymptotic method of nonlinear dynamics
developed for weakly nonlinear oscillators. We have
shown that this method works well even in the presence
of the delayed feedback.

Our analysis shows that the domain of synchroniza-
tion of a forced self-sustained oscillator can be essen-
tially extended by delayed feedback. This extension is
based on the stabilization of the existing unstable pe-
riodic orbit and is attained with tiny control perturba-
tions.

In this paper, the delayed feedback control method
is applied for the first time to control a quasi-periodic
motion, i. e. the motion on a torus in the phase space.
The unstable periodic orbits in this case have a pair of
complex conjugate Floquet multipliers outside the unit
circle in the complex plane.

The analytical approach is demonstrated for the
paradigmatic system of the forced van der Pol oscil-

lator. We have obtained simple analytical expressions
for the dependence of leading Floquet exponents on
the control gain and determined the lower and upper
threshold of stability as well as an optimal value of the
control gain. The main results and the approach are of
general importance since they are relevant to any forced
self-sustained oscillator close to the supercritical Hopf
bifurcation. We believe that the developed analytical
approach is an important contribution to the theory of
the delayed feedback control.
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PRIVERSTINIŲ SAVAIMINIŲ VIRPESIŲ SINCHRONIZACIJOS VALDYMAS

T. Pyragienė, K. Pyragas

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Vėluojantis grįžtamasis ryšys taikomas kvaziperiodiniam judėji-

mui valdyti. Nagrinėjame silpnai netiesinį van der Polio osciliato-
rių, žadinamą išorine periodine jėga. Sistema, esanti arti super-
kritinės Hopfo bifurkacijos, ištirta analiziškai, pasitelkus vidurki-

nimo metodą. Parodyta, kad vėluojantis grįžtamasis ryšys žymiai
praplečia osciliatoriaus sinchronizacijos ribas. Nors metodas pade-
monstruotas pasirinktai fizikinei sistemai – van der Polio osciliato-
riui, jis tinka bet kuriai savaiminių virpesių sistemai, kai ji yra arti
superkritinės Hopfo bifurkacijos.


