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FREE ELECTRON SPIN IN CUBIC SEMICONDUCTORS
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The spin surface describes all possible spin states, including superposition states, of a free charge carrier in a particular
energy band. Due to a finite spin–orbit interaction in semiconductors, the spin surface normally has a form of the spheroid,
the orientation of which depends on the carrier wave vector direction. The paper shows that in cubic semiconductors the spin
surface of the conduction band electron has spherical shape, despite the nonsphericity of the constant energy surface induced
by a finite spin–orbit interaction. Also, it is shown that this property is universal, i. e., it is independent of the electron wave
vector direction and energy band parameters.
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1. Introduction

Calculations of the spin-related properties in semi-
conductor heterostructures usually proceeds in two
stages. In the first, bulk (3D) spinors are constructed in
the respective homogeneous regions of the heterostruc-
ture and then, in the second stage, the corresponding
boundary conditions are imposed on the bulk spinors
at interfaces between constituent materials of the het-
erostructure, what allows one to find the resulting
spinor in the 2D heterostructure. In 3D semiconduc-
tors, the conduction band spin is taken into account by
Dresselhaus and Rashba Hamiltonians that include a
finite spin–orbit interaction in the semiconductor lat-
tice. Because the Hamiltonians are relativistic by their
origin, the total Hamiltonian normally does not com-
mute with the spin operator and the spin surface that de-
scribes all possible eigenspin superpositions in the spin
space does not possess spherical symmetry. Normally
it has the form of the spheroid (ellipsoid of rotation).
The orientation of the spheroid is determined by charge
carrier wave vector k. Since the spin–orbit interac-
tion is a relativistic effect, the spin formally should be
characterized by the helicity quantum number. In this
note we shall show that despite relativistic ingredients
in the origin of the conduction band Hamiltonian the
electron spin surfaces in A3B5 and A2B6 compounds
remain spherical for both the Dresselhaus and Rashba
Hamiltonians, as well as for the combined Hamilto-
nian, independent of the direction of k and the con-

duction band parameters. From this it follows that the
spin quantization axis can be chosen to point to an arbi-
trary, not necessarily related with the crystallographic
axes direction in solving the problems related with the
conduction band spin in cubic semiconductors and het-
erostructures, where the spatial quantization is impor-
tant.

2. Hamiltonians

Conduction band minimum in cubic A3B5 and A2B6

semiconductors is located at the centre of the Brillouin
zone. At not too large energies, the dispersion in the
vicinity of the minimum is proportional to the square
of the electron wave vector k and coincides with that
of a nonrelativistic free electron,

H0 =
k

2

2m∗
I . (1)

However, instead of the free electronic mass m0, the
effective mass m∗ appears in the dispersion (1). Usu-
ally, one has that m∗ < m0. Atomic units are used in
this paper: m0 = e = ~ = 1. Thus, m∗ is dimension-
less. The 2 × 2 unit matrix I in (1) indicates that the
electron may be in two, up and down spin eigenstates
with respect to some arbitrarily chosen spin quantiza-
tion axis. The Hamiltonian (1), in fact, does not rep-
resent true spin properties of a free electron in a semi-
conductor and merely states that the conduction band
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electron possesses only two spin eigenstates. If statis-
tical properties of the electrons are important only, the
matrix I doubles the density of states. Two types of
spin-related Hamiltonians that, due to spin–orbit inter-
action, take into account the splitting of the conduc-
tion band Hamiltonian (1) are known at present. The
first, Dresselhaus Hamiltonian [1], is related with the
inversion asymmetry of the microscopic crystal poten-
tial of the otherwise homogeneous semiconductor, and
the second, Rashba Hamiltonian [2], is related with the
structural inversion asymmetry, or asymmetry of the
confining potential in 2D heterostructures, for example
due to the presence of the interface.

The Dresselhaus Hamiltonian can be constructed
from crystal lattice symmetry considerations with the
spin–orbit interaction included in the lattice periodic
Hamiltonian [1]. In the Dresselhaus Hamiltonian, the
spin-splitting of the conduction band is described by
terms that are cubic in the wave vector. In a short form
the Hamiltonian is

HD = γ σ · χ, (2)

where the proportionality constant γ, or Dresselhaus
constant, determines the strength of the spin splitting
of the doubly degenerate energy band. The vector
χ = (χx, χy, χz) is proportional to cube of the wave
vector components, k = (kx, ky, kz), for example,
χx = kx(k2

y − k2
z). The other components of χ can

be found by cyclic permutation of the respective Carte-
sian wave vector components. In (2), σ is the vector
consisting of the Pauli matrices σ = (σx, σy, σz). It
should be stressed that ki’s are referenced with respect
to crystallographic axes of the material and the Hamil-
tonian (2) is written in the σz representation, where the
electron spin quantization axis is parallel to [001] crys-
tallographic axis.

As mentioned, the Rashba Hamiltonian is related
with the structural inversion asymmetry, which takes
into account the spin splitting due to, for example, pres-
ence of a heterojunction or a quantum well in the bulk
of the semiconductor. A critical review on the proper-
ties of this Hamiltonian was recently given in Ref. [3].
The Rashba Hamiltonian is proportional to the first
power of the wave vector,

HR = α (σ × k) · ν, (3)

where ν is the unit vector parallel to heterostructure
growth direction (usually it is normal to kx–ky plane)
and α is the coupling (Rashba) constant. When ν is
perpendicular to (001) plane, in the cylindrical coordi-

nate system where kx = k|| cosϕ, ky = k|| sinϕ, the
Rashba Hamiltonian assumes the following form:

HR = αk||

[

0 ie−iϕ

−ieiϕ 0

]

. (4)

The total conduction band Hamiltonian, the spin
properties of which interest us, consists of the sum of
all the three above discussed Hamiltonians:

H = H0 +HD +HR . (5)

In the expanded form, in the up | ↑ 〉 and down | ↓ 〉
spin basis with the quantization axis parallel to kz , the
Hamiltonian (5) is a 2 × 2 matrix:

H = (6)

[

E0 + γχz iαk||e
−iϕ + γ(χx − iχy)

−iαk||e
iϕ + γ(χx + iχy) E0 − γχz

]

,

where E0 = k
2/(2m∗). Since the Rashba Hamilto-

nian possesses the lowest symmetry, the total Hamilto-
nian derives its symmetry properties from the Rashba
Hamiltonian, namely, the D2d symmetry of the point
group.

The two eigenvalues E1 and E2 (dispersion laws) of
the total Hamiltonian (6) describe the energies of the
conduction band as a function of electron wave vector.
Simple calculations using (6) give

E1,2 = E0 ± ξ = (7)

E0 ±
√

α2k2

||+γ
2χ2+2αγk||(χx sinϕ−χy cosϕ) .

The largest contribution in the dispersion (7) comes
from the first (spherical) term. The second term
describes the spin splitting in the conduction band,
∆E = E2 − E1 = 2ξ. The last term under the
square root shows that the mixing of Dresselhaus and
Rashba mechanisms takes place, and the splitting can-
not be represented as separate contributions of indi-
vidual Dresselhaus and Rashba mechanisms. Figure 1
shows the character of constant energy surfaces calcu-
lated with (7), where band parameters of GaAs were
used, but with α and γ values increased to emphasize
the differences between the two surfaces. In real semi-
conductors the splitting is small (about 1 meV) and,
therefore, in standard analysis of optical or transport
properties it is often neglected. However, in the anal-
ysis of electron spin properties the inclusion of both
energy bands is of principal importance.
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(a) (b)
Fig. 1. Constant energy surfaces of the spin-split conduction bands calculated at energy E = 0.5 eV. The (a) left and (b) right surfaces
correspond to minus and plus signs in Eq. (7). In real semiconductors the energy band warping is smaller and, therefore, the shape of the

surfaces is much closer to spherical.

3. Spin surface

The quantum mechanics teaches that two physi-
cal quantities can be measured simultaneously (in the
sense of eigenvalues) if their respective operators com-
mute. In our case the commutator of the spin operator
S = σ/2 with the total Hamiltonian (5) does not re-
duce to zero matrix. For example, the commutator with
the Sz component gives

[H,Sz] = (8)

[

0 −iαk||e
−iϕ−γ(χx−iχy)

−iαk||e
iϕ+γ(χx+iχy) 0

]

.

The other commutators, [H,Sx] and [H,Sy], are not
equal zero as well, except the trivial case when k = 0.
From this follows that the energy and spin projec-
tions cannot be good quantum numbers simultaneously.
Thus, one expects that, due to noncommutivity, the
spin surface is not of spherical shape, or deviates from
the sphericity insignificantly if the spin splitting energy
∆E is small. In case of the valence band holes the de-
viation is very large, as shown in Refs. [4–7].

In the analysis and interpretation of physical proper-
ties in semiconductors it is a common practice to use
the energy band representation, where the electron is
described by a well-defined energy and wave vector.
Thus, in the following instead of the eigenvalues of the
spin operator S = σ/2 we shall be concerned with the
quantum mechanical average spin 〈S〉. In Refs. [4–7] it
has been shown that in such case in the analysis of spin

properties of a free, ballistic hole it is better to think in
terms of a spin surface in the spin space. The latter de-
termines all possible spin directions and magnitudes of
a free charge carrier that propagates with a given wave
vector k in one of the allowed energy bands. Mathe-
matically the spin surface represents all possible real-
izations of the average spin,

〈S〉 = (〈σx〉, 〈σy〉, 〈σz〉)/2, (9)

where 〈σi〉 = 〈ψ|σi|ψ〉. The spinor |ψ〉 repre-
sents all possible superpositions of up and down spin
eigenstates. The simplest way to construct |ψ〉 is to
switch over to the energy band representation and then
parametrize the spinor, for example, in the following
form:

|ϑ, φ〉 =

[

sinϑ
cosϑeiφ

]

. (10)

To connect the spinor (10) with its counterpart |ψ〉 in
the σz representation one must know the unitary trans-
formation matrix U that connects both representations.
Then the both spinors can be linked by

|ϑ, φ〉 = U |ψ〉 . (11)

The simplest way to find U is to calculate the eigenvec-
tors of the Hamiltonian (5) and using the eigenvectors
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Fig. 2. Spin surface of the free electron in A3B5 and A2B6 semi-
conductors. In this case the poles on the sphere lie on the spin
quantization axis. The thick line shows the direction of the wave
vector k = (k||, ϕ, kz). k|| = 0.1 a.u., kz = 0.05 a.u., ϕ = π/4.

to construct an appropriate 2× 2 matrix. The orthonor-
malized eigenvectors of (5) are

v1 =













−
i(ξ − γχz)

√

ζ2 + (ξ − γχz)2

eiϕαk|| + γ(iχx − χy)
√

ζ2 + (ξ − γχz)2













, (12)

v2 =













i(ξ + γχz)
√

ζ2 + (ξ + γχz)2

eiϕαk|| + γ(iχx − χy)
√

ζ2 + (ξ + γχz)2













, (13)

where ζ is defined by ζ2 = α2k2

|| + γ2(χ2
x + χ2

y) +

2αγk||(χx sinϕ− χy cosϕ) and ξ has been given ear-
lier in Eq. (7). If kz = 0, then ξkz=0 = ζ. The
knowledge of the eigenvectors allows one to form the
unitary transformation matrix that brings the Hamilto-
nian to the diagonal form [8]. The required matrix is
U = (v∗

1,v
∗
2), where v

∗
1 and v

∗
2 are to be understood,

respectively, as the first and the second row of the ma-
trix U . Then, with the help of U the total Hamilto-
nian (5) diagonalizes to

UHU † =





E0 − ξ 0

0 E0 + ξ



 . (14)

Of course, the same unitary transformation matrix U
can be used to bring the parametrized spinor (10) to the
initial σz representation, where using the Pauli matrices

the components 〈Si〉 = 〈ψ|σi|ψ〉/2 can be calculated.
The final result is

〈Sx〉 = (15)

1

2ξ

[

cx cos 2ϑ+

(

ξcy
cz

sinφ+
γχzcx
cz

cosφ

)

sin 2ϑ

]

,

〈Sy〉 = (16)

1

2ξ

[

cy cos 2ϑ−

(

ξcx
cz

sinφ−
γχzcy
cz

cosφ

)

sin 2ϑ

]

,

〈Sz〉 =
1

2ξ
(γχz cos 2ϑ− cz cosφ sin 2ϑ) . (17)

Here cx = (γχx+αk|| sinϕ), cy = (γχy−αk|| cosϕ),
and cz =

√

ξ2 − γ2χ2
z . Using the components (15)–

(17) one can draw the spin surface in the spin space by
varying the parameters in the range ϑ = (0− π/2) and
φ = (0 − 2π). Figure 2 shows an example of the spin
surface. The geodesic lines that run over the surface
and the location of the poles on the surface depend on
the parametrization scheme used and are helpful in vi-
sualizing the surface itself. Different parametrization
schemes will give different families of the geodesic
lines, however, the topology of the surface will not
change. It can be shown that the lines in Fig. 2 ro-
tate in concert with k. The important property of the
surface shown in Fig. 2 is that it possesses exactly the
spherical symmetry, independent of direction of k and
semiconductor parameters. It appears that the radius of
the sphere is equal to 1/2. This can be proved by cal-
culating the square of the radius. After rather lengthy
algebraic manipulations (for this purpose the computer
algebra package Mathematica has been used) one can
prove that

|〈S〉|2 = 〈Sx〉
2 + 〈Sy〉

2 + 〈Sz〉
2 =

1

4
. (18)

This means that for separate as well as for combined
Rashba and Dresselhaus Hamiltonians the spin surface
in the spin space in all cases is the sphere of radius
1/2. This has not been evident at the first glance, since
the spin splitting of the bands is related to spin–orbit
interaction and, as a result, with the noncommutativ-
ity of the spin and Hamiltonian operator (5). In such
cases one would expect that the helicity rather than spin
quantum numbers are more appropriate in the problem.
Earlier we have shown [4–7] that in valence bands of
cubic semiconductors, where spin–orbit interaction is
strong and as a result the rearrangements of the band
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spectrum takes place at the Brillouin zone centre, the
hole spin surfaces are the spheroids.

The property that the spin surface has the spherical
shape for all electron wave vectors may be advanta-
geous in practical calculations. Since the spin surface
is spherical, the parameterization of the spinor can be
performed in the initial σz representation that has been
used to construct the initial Hamiltonian rather than cal-
culating the unitary matrix, switching over to the en-
ergy representation, and then back to σs representation.
In this case the knowledge of the unitary transformation
matrix is not required and the spin quantization axis or
spin direction can be selected directly in the σz repre-
sentation.

In conclusion, despite of the nonsphericity of free
electron conduction band in A3B5 and A2B6 semicon-
ductors, it is shown that the spin surface has exactly
the spherical shape for separate Rashba and Dressel-
haus Hamiltonians, as well as for a combined Rashba–
Dresselhaus Hamiltonian. Therefore, in contrast to va-
lence band holes, one has that for a free electron all
directions of the spin quantization axis in cubic semi-
conductors are equivalent.

References

[1] G. Dresselhaus, Spin–orbit coupling effects in zinc
blende structures, Phys. Rev. 100(2), 580–586 (1955).

[2] Yu.A. Bychkov and E.I. Rashba, Oscillatory effects and
the magnetic susceptibility of carriers in inversion lay-
ers, J. Phys. C 17(33), 6039–6045 (1984).

[3] W. Zawadzki and P. Pfeffer, Spin-splitting of subband
energies due to inversion asymmetry in semiconductor
heterostructures, Semicond. Sci. Technol. 19(1), R1–
R17 (2004).

[4] A. Dargys, Coherent properties of hole spin, Lithuanian
J. Phys. 43(2), 123–128 (2003).

[5] A. Dargys, Spin surfaces and trajectories in valence
bands of tetrahedral semiconductors, Phys. Status Solidi
B 241(1), 145–154 (2004).

[6] A. Dargys, Hole spin surfaces in A3B5 semiconductors,
Phys. Status Solidi B 241(13), 2954–2961 2004.

[7] A. Dargys, Spin of valence-holes in wurtzite semicon-
ductors, Phys. Rev. B 72(4), 045220-1–10 (2005).

[8] M. Tinkham, Group Theory and Quantum Mechanics
(New York, McGraw-Hill, 1964), Appendix A.

LAISVOJO ELEKTRONO SUKINYS KUBINIUOSE PUSLAIDININKIUOSE

A. Dargys

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Kvantiniai sukinio paviršiai nusako pagrindines laisvojo elekt-
rono bei skylės sukinio savybes, įskaitant superpozicines būsenas,
kai yra fiksuotas elektrono (skylės) bangos vektorius ir apibrėžta
energijų juosta. Kadangi sukinio ir orbitos sąveika puslaidinin-
kiuose yra baigtinė, manoma, kad sukinių paviršiai turėtų būti sfe-
roidai (sukimosi elipsoidai). Valentinės juostos atveju šis teiginys
buvo įrodytas darbuose [4–7]. Šiame straipsnyje parodyta, kad ku-
biniuose puslaidininkiuose, pavyzdžiui A3B5 ir A2B6 junginiuose,

nepaisant baigtinės sukinio ir orbitos sąveikos, visais atvejais lai-
dumo juostos elektronų sukinių paviršiai yra ne sferoidai, o sferos,
t. y. sukinio paviršiai nepriklauso nuo elektroninės bangos sklidimo
krypties bei parametrų, nusakančių laidumo juostos savybes. Ši
universali elektrono sukinio savybė kubiniuose puslaidininkiuose
gali palengvinti tiek energinių juostų, tiek su sukiniu susietų sa-
vybių skaičiavimus dvimačiuose dariniuose tuo atveju, kai reikia
atsižvelgti į erdvinį kvantavimą.


