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The general expression for excitation cross-section of polarized atoms by fast electrons is derived by using the methods of
the theory of an atom adapted for polarization in the plane wave Born approximation. In describing the alignment of excited
atoms, the special cases of the general expression are obtained for both the polarized and non-polarized atoms and for the
magnetic dichroism of the total ionization cross-section of polarized atoms.
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1. Introduction

For the simulation of the radiation spectrum from
plasma, the electron impact excitation cross-sections
are necessary. The electron impact-excited radiation
for high temperature plasma diagnostics was imple-
mented in the Joint European Torus, a fusion research
device of tokamak design [1, 2]. Here the spectrum in
the vicinity of deuterium Balmer α line (656 nm) was
used. This radiation was excited following the charge
exchange reaction between a neutral beam of deu-
terium atoms and the deuterium nuclei in bulk plasma.
However, the emission of radiation can also be ex-
cited by the collisions with fast electrons from the bulk
plasma that have energy exceeding 100 keV [1, 2]. For
such high energies the plane wave Born (PWB) ap-
proximation usually allows one to obtain the values
of the cross-section with sufficient accuracy. In toka-
mak, the population of the magnetic sublevels of atoms
and ions should be taken into account because of the
presence of external magnetic and the Lorentz electric
fields. Therefore, the cross-sections and other parame-
ters describing the transitions between sublevels are of
importance. The non-equilibrium population of mag-
netic sublevels or the ordering of angular momentum of
the excited atoms, otherwise called the self-alignment,
arises in the collision processes because of the oriented
flow of neutral atoms injected also for diagnostics pur-
poses. For a theoretical modelling of this process, the
expressions for the cross-section that take into account

the polarization of the states of an atom both in the ini-
tial and final states is needed.

In the present work, the general expression for the
electron impact excitation of polarized atoms is de-
rived with the help of the method used in the theory of
an atom [3–5]. This method was successfully applied
for the investigation of polarization phenomenon in the
photoionization [4, 5], photoexcitation [6], ionization
of atoms by electrons [7], radiative [8] and Auger [9]
decay, as well as photo- and dielectronic recombina-
tion [10, 11]. In this method, the probability or cross-
section of the interaction is expressed as the multiple
expansion over the multipoles (irreducible tensors) of
both the initial and final states of all the particles tak-
ing part in the process. The applied approach in this
case is an alternative to the density matrix method [12]
where the density matrix elements are expressed via
multipoles or statistical tensors. The density matrix for-
malism was used for the study of some special cases of
the polarization of the particles occurring in the excita-
tion process [13].

The main task of the present work is the derivation of
a general expression describing the excitation of polar-
ized atoms by non-polarized electrons in PWB approx-
imation by using the method based on the theory of an
atom [3]. The next section is devoted to the obtaining
of a general expression. Its special cases are presented
in Section 3. The atomic system of units is used.
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2. General expression

In the case of the energy of projectile electron being
much larger than the excitation energy of an atom, the
PWB approximation can be used for the evaluation of
the electron impact excitation cross-section of an atom.
Usually the spin polarization states of the projectile and
scattered electrons are not defined in the process

A(α0J0M0)+e−(p1) → A(α1J1M1)+e−(p2) , (1)

where αi indicates the configuration and other quantum
numbers, Ji is the total angular momentum, and Mi

is its projection onto a chosen direction for the atom.
Here i is equal to 0 and 1 for the initial and final states,
respectively. In (1), p1 and p2 are the momenta of a
free electron in the initial and final states, respectively.

The excitation cross-section equals the probability
when the wave function of the projectile electron is nor-
malized to the unity flow [14],

φk1
(re) =

1√
k1

eik1re , (2)

and that of the scattered electron is normalized to
δ(k2 − k′

2),

φk2
(re) = (2π)−3/2 eik2re , (3)

where ki = pi/~ and ki = |ki|. Then the expression
for the cross-section can be written as follows [14]:

dσ(α0J0M0p1 → α1J1M1p2)

dΩ2
=

k2

(2π)2k1
〈α1J1M1p2|H|α0J0M0p1〉

×〈α1J1M1p2|H|α0J0M0p1〉∗δ(E0 − E1) , (4)

where the operator of the electrostatic interaction be-
tween the projectile and atomic electrons is

H =
N
∑

j=1

1

|rj − re|
− Z

re
. (5)

Here Z is the nuclear charge of an atom, N is the num-
ber of electrons, re and rj are the coordinates of the
projectile and atomic electrons, respectively, E0 and
E1 are the energies of the system ‘atom+electron’ in
the initial and final states, respectively.

Let us assume that the basis of the radial wave func-
tions of an atom is orthogonal. Then the second term of
the Hamiltonian (5) does not contribute. The insertion

of (2), (3), and (5) into a matrix element from (4) leads
to the expression

〈α1J1M1e
−ik2re |H|α0J0M0e

ik1re〉 =

〈

α1J1M1

∣

∣

∣

∣

∑

j

∫

dre eiqre
1

|rj − re|

∣

∣

∣

∣

α0J0M0

〉

=

4π

q2

〈

α1J1M1

∣

∣

∣

∣

∑

j

eiqrj

∣

∣

∣

∣

α0J0M0

〉

, (6)

where q = k1 − k2 is the transferred momentum. The
integral in (6) was integrated with the help of the for-
mula

∫

dre eiqre
1

|rk − re|
=

4π

q2
eiqrk . (7)

For the exponent in (6), the following expansion can
be used:

eiqr = 4π
∞
∑

t=0

itjt(qr)
t
∑

p=−t

Y ∗

tp(q̂) Ytp(r̂) =

∞
∑

t=0

√

(2t + 1)
t
∑

p=−t

Q(t)
p (qr) Dt

p0(q̂) , (8)

where jt(qr) is the spherical Bessel function [15],
Ytp(q̂) is the spherical function [16], and the tensor op-
erator Q

(t)
p is defined as

Q(t)
p (qr) = it jt(qr) C(t)

p (r̂)
√

2t + 1 . (9)

Here C
(t)
p is the operator of the spherical function [17].

The insertion of (8) into (6) and assumption that the
projections of the angular momenta J0 and J1 and the
rank t are all defined with respect to different axes lets
us to write down the final expression for the matrix el-
ement (6):

〈α1J1M1|H(q)|α0J0M0〉 =
4π

q2

∑

t,M̃0,M̃1,p

√
2t + 1

× 〈α1J1M̃1|Q(t)
p (qr)|α0J0M̃0〉

× DJ0

M̃0M0

(Ĵ0) D∗J1

M̃1M1

(Ĵ1) Dt
p0(q̂) . (10)

Here the transformation [16]

|jm̃〉 =
∑

m

Dj
mm̃(α, β, γ) |jm〉 (11)

is used, and the hats on J0, J1, and t indicate the polar
and azimutal angles in laboratory frame.
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The expression for the cross-section (4) is obtained
by inserting the matrix element (10) into (3):

dσ(α0J0M0 → α1J1M1q)

dΩq
=

4k2

k1q4

∑

t,t′,M̃0,M̃ ′

0
,M̃1,M̃ ′

1
,p,p′

√

(2t + 1)(2t′ + 1)

×〈α1J1M̃1|Q(t)
p |α0J0M̃0〉〈α1J1M̃

′

1|Q
(t′)
p′ |α0J0M̃

′

0〉∗

×DJ0

M̃0,M0

(Ĵ0) D∗J1

M̃1,M1

(Ĵ1) Dt
p,0(q̂) D∗J0

M̃ ′

0
,M0

(Ĵ0)

×DJ1

M̃ ′

1
,M1

(Ĵ1) D∗t′

p′,0(q̂) . (12)

The angular part of the expression (12) coincides
with that of the cross-section of the excitation of atoms
by photons [6]. Therefore, the same angular momen-
tum diagrams can be used for integration over the an-
gular part of the expression (12). Then the expression
for the electron impact excitation cross-section can be
written as follows:

dσ(α0J0M0 → α1J1M1q)

dΩq
=

4k2

k1q4

×
∑

K0,K1,Kt

1√
2K1 + 1

BexB(K0, Kt, K1)

×
∑

N0,N1,Nt

[

K0 Kt K1

N0 Nt N1

]

T ∗K0

N0
(J0, J0, M0|Ĵ0)

×TK1

N1
(J1, J1, M1|Ĵ1)

√
4π Y ∗

KtNt
(q̂) , (13)

BexB(K0, Kt, K1) =

×
∑

t,t′

[(2J0 + 1)(2J1 + 1)(2t + 1)(2t′ + 1)]1/2

×(−1)t′
[

t t′ Kt

0 0 0

]







J0 K0 J0

t Kt t′

J1 K1 J1







(14)

× (α1J1||Q(t)(q)||α0J0) (α1J1||Q(t′)(q)||α0J0)
∗ .

Here the braces and square brackets stand for the 9j and
Clebsch–Gordan coefficients, respectively, [17], and
the relation

(α1J1||Q(t)(q)||α0J0) =

[2J1 + 1]1/2 〈α1J1||Q(t)(q)||α0J0〉 (15)

is used. In (13), the tensor T K
N is defined as [8]

TK
N (J, J ′, M |Ĵ) =

[

4π

2J + 1

]1/2

(−1)J ′
−M

[

J J ′ K
M −M 0

]

YKN (Ĵ) . (16)

The relation between the reduced matrix elements cal-
culated for the states described by the total orbital L
and spin S angular momenta and by the total angular
momentum J is as follows:

〈α1L1S1J1||Q(t)(q)||α0L0S0J0〉 =

(−1)L1+S1+J0+t [(2J0 + 1)(2J1 + 1)]1/2 (17)

× 〈α1L1S1||Q(t)(q)||α0L0S0〉
{

L1 J1 S0

J0 L0 t

}

.

If the excitation is the first step of a multi-step pro-
cess, the following expression for a single term of
the expansion over multipoles of the intermediate state
should be used:

dσK1N1
(α0J0M0 → α1J1q)

dΩq
=

4k2

k1q4

∑

K0,Kt

BexB(K0, Kt, K1)
1√

2K1 + 1

×
∑

N0,Nt

[

K0 Kt K1

N0 Nt N1

]

T ∗K0

N0
(J0, J0, M0|Ĵ0)

×
√

4π Y ∗

KtNt
(q̂) . (18)

The expression (13) is a general one and can be used
for the derivation of simpler expressions describing the
total excitation cross-section of non-polarized and po-
larized atoms by non-polarized electrons as well as the
alignment of non-polarized and polarized atoms.

3. Special cases

3.1. Total cross-section for the excitation of
non-polarized atoms

The total cross-section describing the excitation of
non-polarized atoms by non-polarized electrons can be
obtained from the general expression (13) by summa-
tion over the magnetic components of the particles in
the final state and averaging over them in the initial
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state as well as by integration over the angles of a scat-
tered electron.

In PWB approximation, the differential cross-section
depends on the scattered electron angles via the trans-
ferred momentum, therefore the integration over an-
gles can be performed by integrating over the trans-
ferred momentum. The inspection of the expression
(13) shows that only the tensors T K

N (J, J, M |Ĵ) de-
pend on the projections. The application of the formula

∑

M

TK
N (J, J, M |Ĵ) = δ(K, 0)δ(N, 0) (19)

for all tensors T K
N gives K0 = N0 = K1 = N1 =

Kq = Nq = 0. The substitution of these values into
(13) and integration over the transferred momentum
leads to the following expression for the total cross-
section:

σt(α0J0 → α1J1) =

8π

(2J0 + 1)k2
1

qmax
∫

qmin

dq

q3
BexB(0, 0, 0) , (20)

where k2
1 = 2ε1, ε1 is the energy of the projectile elec-

tron, qmin = k1 − k2, and qmax = k1 + k2.

3.2. Total cross-section for the excitation of polarized
atoms

The expression for the total cross-section for the ex-
citation of polarized atoms by non-polarized electrons
can be obtained by performing the summation of the
general expression (13) over the projections M1 of the
total angular momentum J1 and integration over the an-
gles of the scattered electron. It is as follows:

σ(α0J0M0 → α1J1) =

8π

k2
1

∑

K0,N0

qmax
∫

qmin

dq

q3
BexB(K0, K0, 0) (−1)J0−M0+K0

×
[

4π

(2J0 + 1)(2K0 + 1)

]1/2 [ J0 J0 K0

M0 −M0 0

]

× Y ∗

K0N0
(Ĵ0)

√
4π YK0−N0

(q̂) . (21)

Here

BexB(K0, K0, 0) =

∑

t,t′

[

(2J0 + 1)(2t + 1)(2t′ + 1)

2K0 + 1

]1/2

(−1)2J0

×
[

t t′ K0

0 0 0

]{

t t′ K0

J0 J0 J1

}

(α1J1||Q(t)||α0J0)

× (α1J1||Q(t′)||α0J0)
∗ . (22)

The degree of magnetic dichroism in the total elec-
tron impact excitation cross-section of polarized atoms
can be defined as follows:

∆ =
σ(α0J0M0 → α1J1) − σ(α0J0 −M0 → α1J1)

σ(α0J0M0 → α1J1) + σ(α0J0 −M0 → α1J1)
.

(23)
After inserting (21) into (23) and taking into ac-

count the fact that only the terms with K0 = odd and
K0 = even contribute to the numerator and denomi-
nator, respectively, one arrives at the expression for the
degree of the magnetic dichroism

∆ = −
{

∑

K0=odd

√

2K0 + 1 BexB(K0)

×
[

J0 J0 K0

M0 −M0 0

]

PK0
(Ĵ0)

}{

∑

K0=even

√

2K0 + 1

×BexB(K0)

[

J0 J0 K0

M0 −M0 0

]

PK0
(Ĵ0)

}−1

. (24)

Here PK(cos θ) is the Legendre polynomial, the labo-
ratory axis z is directed along the transferred momen-
tum q, and

BexB(K0) =

qmax
∫

qmin

dq

q3
BexB(K0, K0, 0) . (25)

The expression (24) becomes simpler when the di-
rection of J0 coincides with the z axis. Then M0 = J0,
PK0

(0) = 1, and

∆ = −
{

∑

K0=odd

√

2K0 + 1 BexB(K0)(−1)K0

×
[

J0 J0 K0

J0 −J0 0

]}{

∑

K0=even

√

2K0 + 1 BexB(K0)

×
[

J0 J0 K0

J0 −J0 0

]}−1

. (26)
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In the case of J0 = 1/2,

∆ = −

√
3BexB(1)

[

1/2 1/2 1
1/2−1/2 0

]

BexB(0)

[

1/2 1/2 0
1/2−1/2 0

] =
−
√

3BexB(1)

BexB(0)
.

(27)
For J0 = 1, it is as follows:

∆ =
3BexB(1)√

2BexB(0) +
√

5BexB(2)
. (28)

The expression of the magnetic dichroism can also
be obtained for larger values of J0.

3.3. The alignment of excited atoms

The axial symmetry with respect to the direction of
the movement of a projectile electron is characteristic
to the electron impact excitation of atoms. Therefore,
the excited atoms cannot be oriented. They can be only
aligned with respect to this direction [12]. When the
scattered electrons are not polarized and both the pro-
jectile electrons and the target atoms are randomly ori-
ented, the expression of the cross-section describing the
alignment of the excited atoms can be obtained by av-
eraging the expression (18) over the projections of J0

and integrating over the angles of a scattered electron.
It is as follows:

σA(α0J0 → α1J1) =

1

2J0 + 1

∑

M0

∫

dΩe
dσ(α0J0M0~q → α1J1)

dΩe
=

8π

k2
1(2J0 + 1)

∑

K1N1

[

4π

2K1 + 1

]

1

2

×
qmax
∫

qmin

dq

q3
BexB(0, K1, K1) Y ∗

K1N1
(q̂) =

σt(α0J0 → α1J1)

[

1 +
∑

K1>0

AK1

]

, (29)

where

AK1
=

[

qmax
∫

qmin

dq

q3
BexB(0, K1, K1) PK1

(cos θ)

]

×
[

qmax
∫

qmin

dq

q3
BexB(0, 0, 0)

]−1

(30)

is the alignment parameter and the angle θ is measured
from the direction of a projectile electron. In (30),

cos θ =
q2 + k2

1 − k2
2

2qk1
=

1

[2µε1]1/2

(

q

2
+

µ∆E

q

)

(31)
is the angle between the directions of a projectile elec-
tron and momentum transfer [18], ε1 and ε2 are the en-
ergies of the projectile and scattered electrons, respec-
tively, ∆E is the energy lost by the projectile electron.

4. Concluding remarks

In the PWB approximation, the general expression
for the electron impact excitation of polarized atoms is
obtained for the first time. The cross-section is repre-
sented in the form of the multiple expansion over the
multipoles of the initial and final states of an atom as
well as the state of transferred momentum. The general
expression is used to derive simpler expressions for the
total cross-section of electron impact excitation of non-
polarized and polarized atoms, the alignment of excited
atoms, and the magnetic dichroism in the excitation of
polarized atoms by non-polarized electrons.
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[8] A. Kupliauskienė and V. Tutlys, Angular distribution
of radiation following photoionization of polarized
atoms, Physica Scripta 70, 241–250 (2004).
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POLIARIZUOTŲ ATOMŲ SUŽADINIMAS GREITAISIAIS ELEKTRONAIS
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Santrauka
Taikant atomo teorijos matematinį aparatą, Borno artinyje gau-

tos poliarizuotų atomų sužadinimo greitais nepoliarizuotais elekt-
ronais diferencialinio skerspjūvio bendrosios išraiškos. Jos pa-
togios aiškinant atskirus poliarizacijos atvejus, sutinkamus kon-

krečiuose eksperimentuose, bei gaunant juos aprašančių diferencia-
linių skerspjūvių išraiškas. Gautos poliarizuotų atomų sužadinimo
nepoliarizuotais elektronais pilnutinio skerspjūvio magnetinio di-
chroizmo išraiška bei nepoliarizuotais elektronais sužadinto atomo
rikiavimo išraiška kaip atskiri bendrosios išraiškos atvejai.


