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The present work is a continuation of the development of techniques for solving the quasi-relativistic Hartree–Fock equa-
tions. The equations were formed anew out of Dirac–Hartree–Fock equations in the shape that allowed one to use the conven-
tional rather accurate self-consistent field potential instead of a simplified effective potential. The method is implemented in
computer programs and the test results are presented for some ions of the Be, Ne, and Ar isoelectronic sequences. The results
are in good coincidence with the results obtained by solving the relativistic Dirac–Hartree–Fock equations.
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1. Introduction

Among the tasks of atomic physics there is a group
of problems, such as an exploration of energy spectra
of many-electron ions in plasma or X-ray spectra, etc.,
where the relativistic effects are of importance while
calculating the radial orbitals (ROs) of the inner shells
that experience a strong nuclear field. In the spectra of
atoms and their first ions the direct relativistic effects
are only slightly expressed in the outer shells. They
can be easily taken into account in the second order
of perturbation theory within the Breit–Pauli (BP) ap-
proximation. However, the essential changes observed
in the ROs of inner shells calculated with account of
relativistic effects lead to a considerable rearrangement
of the outer shell ROs as well, although there the elec-
tron velocities are by no means relativistic. This rear-
rangement leading to the secondary relativistic effects
could be taken into account neither within the BP ap-
proximation nor by the conventional calculation of cor-
relation corrections employing the traditional Hartree–
Fock functions [1].

To deal with this problem one must solve the rel-
ativistic Dirac–Hartree–Fock (DHF) equations [2–4].
But in this case the conventional shells (l > 0) split into
subshells and their ROs become two-component. As a
result, their number grows sharply making the compu-
tations slower and more difficult. Moreover, the spectra
are then obtained within the jj-coupling instead of the

LS-coupling typical for the outer shells of atoms and
their first ions.

The way out of this situation is to apply the quasi-
relativistic Hartree–Fock (QRHF) equations [5, 6]. The
QRHF equations make possible the partial account of
the relativistic effects in the calculations of ROs keep-
ing at the same time to the usual Hartree–Fock ap-
proach. Solving the QRHF equations appears to be
rather urgent task in the cases when the relativistic ef-
fects can be taken into account within the BP approxi-
mation, where there are no reasons to perform the cal-
culations within jj-coupling.

Unfortunately, a computer program for numerical
solution of QRHF equations [7], widely known to sci-
entists, was created long ago and many disadvantages
and some inaccuracies of it emerged now. This fact im-
pelled us to create a somewhat different code based on
different methods and algorithms. The first steps have
been made in papers [8–10].

This work continues the unfolding of techniques for
solving the QRHF equations. Here the solution of the
problem of describing the potential appearing in the
relativistic terms of QRHF equations is proposed. For
this purpose the QRHF equations are formed anew out
of DHF equations in such a shape that allows one to
depart from exploiting the simplified effective poten-
tial [7], and instead use an ordinary, quite accurate
self-consistent field potential in the relativistic terms of
QRHF equations.

c© Lithuanian Physical Society, 2006
c© Lithuanian Academy of Sciences, 2006 ISSN 1648-8504



154 P. Bogdanovich and O. Rancova / Lithuanian J. Phys. 46, 153–161 (2006)

In the next part of the paper the problem of the po-
tential while forming the QRHF equations is described
and the solution of the problem is introduced. In the
third part the methods used for solving QRHF equa-
tions are described. The results are presented and com-
pared with the results of other methods in the fourth
part of the work. The conclusions with the prospects of
further investigation of the treated problem are made at
the end of the paper.

2. Formation of quasi-relativistic Hartree–Fock
equations

It is known that the one-electron relativistic effects
are of major importance when compared to the two-
electron ones. That is why the main attention was
paid to forming the one-particle quasi-relativistic equa-
tions correctly with all the major one-electron relativis-
tic corrections included into the Hamiltonian. Solv-
ing hydrogen-like equations is rather a simple task al-
lowing one to evaluate the applicability of the method
under development. However, in switching over to
the many-electron QRHF equations some problems ap-
peared while defining the potentials in the relativistic
terms of the equations.

Originally the quasi-relativistic equations were
formed by simply adding the mass–velocity and the
Darwin terms taken from the Pauli equations for one-
electron atoms to the usual nonrelativistic one-electron
differential equation for the radial function P (nl|r) [7].
Similarly, the local potential quasi-relativistic approxi-
mation to the Hartree–Fock equations was formed:
{
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P (nl|r) = εnlP (nl|r) . (1)

Hereinafter, εnl denotes the single-electron energy, α
is the fine structure constant, Veff(r) is the central-field
potential energy function where the nuclear contribu-
tion is −2Z/r, the electron interaction energy is also
incorporated, and the exchange part of it is taken into
account effectively. There are many ways to effectively
take into account the electron interaction energy. The
several possible models of a simplified effective poten-
tial are described and used in [7] and in a computer
program based on it.

The mass–velocity and the Darwin terms repre-
sent relativistic corrections to the α2 order. The
j-dependent spin–orbit term of the Pauli equation has
been omitted in order to obtain the radial wave func-
tions that are independent of j, even though this term
is also of α2 order. So the obtained radial func-
tion P (nl|r) forms an approximation to the (2j +
1)-weighted average of the relativistic functions nlj+

and nlj
−

.
The same quasi-relativistic equations (1) may be ob-

tained from the relativistic Dirac–Hartree–Fock equa-
tions:
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Here P (nlj|r) and Q(nlj|r) are large and small com-
ponents of a radial wave function respectively, εnlj de-
notes the single-electron energy, V (nlj|r) is a direct
part of the potential, χ

P
(nl̄j|r) and χ

Q
(nlj|r) are ex-

change parts of the potential, κ = (2j + 1)(l − j), c is
the speed of light.

In order to get the quasi-relativistic equations in the
form (1), first, it is necessary to transform the DHF
equations. For that one must compose the total poten-
tial of an atom or an ion, i. e., to add the exchange part
of the potential to the direct part of it and to get in such
a way the total potential of an atom or ion. Thus the
DHF equations in a local potential approximation ap-
pear:
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dQ(nl̄j|r)
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=
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εnlj + Veff(nlj|r)
]
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Now one may get the same quasi-relativistic equations
(1) from this local potential approximation to the DHF
equations (3) by inserting Q(nl̄j|r), found from the
first equation, into the second equation, and then ne-
glecting the spin–orbit term out of the large component
equation obtained. Unfortunately, in order to solve the
equations one needs to create some kind of an effec-
tive potential Veff(r) that would describe properly the
physical qualities of a real potential in atoms and ions.

Usage of this local potential approximation makes
the equations simpler and easier to solve. But the ap-
proximation used restricts the universality of applica-
tion of the quasi-relativistic equations since it is com-
plicated to create an effective potential that would de-
scribe equally well the properties both of the heavy
and of the light atoms and ions. This approximation
as any other one degrades the quality of the solutions
obtained.

Another approach in solving the problem of the
potential in the relativistic terms of the QRHF equa-
tions is presented here. The QRHF equations are
formed anew in a way different from that described
in [7]. Instead of forming quasi-relativistic equations
out of Pauli approximation of Dirac equations and then
adding the relativistic terms from the last equations to
the usual Hartree–Fock equations, the quasi-relativistic
Hartree–Fock equations were composed directly from
the DHF equations (2) by using the large component
equation with the elimination of a small component
from those:
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Here the direct part of the potential is denoted as
U(r) = 2[−Z/r + V (nlj|r)], X = j(j + 1) − l(l +
1)−s(s+1) is a spin–orbit interaction parameter, (4.1)
is a non-relativistic part of the equations, (4.2) marks
mass–velocity direct and exchange terms, (4.3) are di-
rect contact and spin–orbit interaction terms, (4.4) are
exchange contact and spin–orbit interaction terms, and
(4.5) are the terms of a higher order. Thus it is possible
to use the conventional fairly accurate self-consistent
field potential instead of a simplified effective potential
in the equations.

In quasi-relativistic approximation the terms of a
higher order than α2 are discarded. Thus further on
the relativistic terms (4.5) are omitted. The contact in-
teraction (4.3) is taken into account only in the case
of s electrons as it is done in the Breit–Pauli approach
and in the quasi-relativistic equations by R.D. Cowan.
Since only the large RO component is in use and the
small component is indefinite while applying the quasi-
relativistic approximation, it is impossible to evalu-
ate the exchange potential χ

Q
and to calculate the ex-

change contact interaction (4.4). In this approach the
exchange contact interaction can be incorporated only
effectively. Tentative calculations have revealed that
the influence of the exchange contact interaction is very
small. Therefore it is decided to omit the exchange
contact interaction at this stage while developing the
QRHF method. This problem might be treated later.

In this way the QRHF equations are formed out of
the large component equation from the DHF equations
by eliminating the terms of the order higher than α2 and
applying the decribed approximations. Thus the QRHF
equations appear:
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In this work the spin–orbit interaction parameter X is
put to zero, considering that the spin–orbit interaction
averages to zero when the total angular momenta of
electrons and the statistical weight of each state are
taken into account. So the QRHF equations become
j-independent:
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The results obtained applying these QRHF equations
are compared with the results obtained using other
methods and discussed in Section 4.

3. Methods of calculation

The QRHF equations (6) are solved taking into ac-
count the finite size of the nucleus as described in pa-
pers [8–10]. Inside the nucleus the QRHF equations are
of a simpler form. The exchange interaction between
electrons is weak inside the nucleus, so it is omitted
in the equations. While the direct electron interaction
is taken into account effectively by replacing the nu-
cleus charge Z with the effective charge Zeff that also
includes the part of electron densities that are present
inside the nucleus region. Thus the equations analo-
gous to the quasi-relativistic equations for hydrogen-
like ions [10] are solved inside the nucleus.

While solving the equations inside the nucleus the
expression of the potential developed in [8] is used:

U(x) = u0 +
4
∑

k=1

u2k x2k . (7)

Here the variable x = r/R, where R is the radius of
a nucleus, is used in order to make the calculations
simpler. This potential expression allows one to de-
scribe all the distributions of charge density in a nu-
cleus treated in [8]. To get the quantitative results the
following charge density distribution inside a nucleus
has been used in solving the QRHF equations:

ρ6(x) =
3Zeff

4πR3

(

21

8
−

63

8
x4 +

21

4
x6

)

. (8)

The radius R of the nucleus is defined so that at the cen-
tre of the nucleus the charge density is approximately
equal to the density obtained by using the Fermi dis-
tribution [11–13]. The presented model of a nucleus is
equally convenient for the description of both light and
heavy nuclei.

While solving the QRHF equations the usual RO be-
haviour at the origin is preserved:

P (nl|x) = xl+1
q
∑

i=1

ai x
i . (9)

Using the expression of the potential inside the nucleus
(7) and the RO (9) in the simplified, as described above,
QRHF equations one can obtain the recurrent relation-
ship for the RO expansion coefficients ai. In [9] the
RO expansion coefficients for s electrons are presented.
In the case of other electrons, the QRHF equations are
simpler. These reasonably obtained initial points en-
sure a proper initial inclination of the RO and improve
the results of calculations.

In the region beyond the nucleus, r > R, the usual
self-consistent field potential is used in solving the
QRHF equations in the form (6). Here the equations are
solved numerically through Numerov procedure. Since
there is no reason to use another variable beyond the
nucleus, the equations are solved with the usual radial
variable r, not with x. The QRHF equations in the
case of s electrons differ from the equations for other
electrons by the presence of the first derivative of RO.
Seeking to use the same algorithms while solving the
equations for any electrons one needs to eliminate the
first derivative. In order to achieve these goals a dif-
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ferent type of RO is selected while solving the QRHF
equations for s electrons:

P (ns|r) =

√

1 −
α2

4
[εns + U(r)] S(ns|r) ≡

f(r) S(ns|r) . (10)

The multiplier f(r) is chosen so that the sum of coef-
ficients of the first derivative is equal to zero. Inserting
the new RO expression (10) into the QRHF equations
(6) one can get the QRHF equations for S(ns|r) func-
tion, where the first derivative of RO is absent as de-
scribed in [9]. The appearance of the potentials in these
equations for s electrons is different from the equations
for other electrons, but instead the same numerical pro-
cedure can be used while solving the equations.

All the methods described here are implemented in
the computer program for solving the QRHF equations.
The equations are solved for a logarithmic variable.
Accuracy and duration of calculations depend on the
step of the logarithmic variable. Test solutions of the
equations and further RO calculations reveal that in or-
der to get fairly accurate results it is necessary to use
a logarithmic variable step equal to one hundredth, but
not one sixteenth, as it is traditionally done within the
widely known program for solving the Hartree–Fock
equations [14]. The results obtained by solving the
QRHF equations in the described way are discussed in
the next section.

4. Results and discussion

The aim of this project is to take into account the rel-
ativistic effects in the calculations of ROs while stay-
ing at the same time within the usual Hartree–Fock
approximation. Later, it is proposed to employ the
obtained quasi-relativistic ROs in the well-developed
non-relativistic methodology of calculation of spectral
characteristics of atoms and ions with account of cor-
relation effects. Therefore the results received while
applying the method developed in this work and in the
previous papers (marked as QRHF) are compared with
the solutions of the non-relativistic Hartree–Fock equa-
tions with relativistic effects considered within the con-
ventional Breit–Pauli approximation [14] (marked as
HF(BP)), as well as with the results obtained by solving
the quasi-relativistic equations (1) using the computer
code rcn36 [7] (marked as CW) and with the purely
relativistic solutions of the DHF equations (marked as
DHF) with the account of the finite size of the nucleus
obtained using the GRASP2 program [15].

Table 1. Absolute values of the total energy (a. u.) of
ions in Be, Ne, and Ar isoelectronic sequences.

Seq. Z HF(BP) CW DHF QRHF

Be 10 110.2418 110.2573 110.2560 110.2547
30 1091.54 1091.99 1092.27 1092.22
50 3150.36 3155.83 3159.83 3159.59
70 6418.49 6466.44 6486.65 6485.96
99 13727.0 14283.1 14368.4 14366.7

Ne 10 128.6774 128.6931 128.6919 128.6904
30 1567.712 1568.283 1568.582 1568.455
50 4704.43 4711.12 4715.83 4714.51
70 9709.68 9765.54 9792.60 9783.74
99 20839.4 21461.6 21630.3 21539.7

Ar 20 678.932 679.083 679.104 679.073
30 1733.58 1734.19 1734.50 1734.33
50 5408.26 5415.66 5420.59 5418.87
70 11342.6 11404.3 11433.3 11422.1
99 24598.4 25282.0 25471.3 25358.7

The calculations were performed for the configura-
tions with all shells closed: for some ions of the beryl-
lium isoelectronic sequence (Z = 10 to 99), of the neon
isoelectronic sequence (Z = 10 to 99), and of the argon
isoelectronic sequence (Z = 20 to 99). For the calcula-
tions and further comparison of the results the config-
urations with all shells closed were chosen because in
this case the solutions of the DHF equations did not de-
pend on the allocations of the electrons to the subshells.
The results obtained while solving the DHF equations
are j-dependent, so in order to compare them with the
output of other methods they need to be averaged by
taking into account that j = l ± 1/2 and the statistic
weight of each state is equal to 2j +1. All values in the
tables are presented with the accuracy sufficient to see
the differences of the methods under comparison.

In Table 1 the absolute values of the total energy
of the considered ions obtained by different techniques
are presented. The results reveal that, as expected,
the quasi-relativistic methods (CW and QRHF) allow
one to take into account relativistic effects more effec-
tively than it is possible within the conventional Breit–
Pauli approximation HF(BP). As it is seen from the ta-
ble, the total energies obtained by the considered ap-
proach QRHF are in general closer to the relativistic
values DHF as compared to the output of the rcn36
code CW. In the case of the Be-like ions, where only
s electrons are present, the relative deviations of the
QRHF results from the relativistic DHF ones remain
almost the same throughout the isoelectronic sequence,
whereas the relative deviations of the CW energy val-
ues increase as the nucleus charge Z grows. However,
in the cases of other isoelectronic sequences, where not
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Table 2. Single-electron energy values (a. u.) of ions in
Be isoelectronic sequence.

Z nl HF CW DHF QRHF

10 1s 40.53982 40.58917 40.58839 40.58928
2s 7.49072 7.50140 7.50134 7.50097

30 1s 420.069 424.937 425.023 425.051
2s 96.5187 97.9125 97.9250 97.9106

50 1s 1199.61 1239.78 1241.32 1241.47
2s 285.553 297.715 297.926 297.851

70 1s 2379.15 2546.56 2554.67 2555.12
2s 574.589 626.582 627.779 627.547

99 1s 4799.99 5613.74 5648.18 5649.86
2s 1171.32 1429.87 1435.07 1434.19

only s, but also p electrons are present, the relative de-
viations of both QRHF and CW results grow along the
isoelectronic sequences. Within this work the p elec-
trons are treated in the same way as it has been done in
the quasi-relativistic approach by Cowan [7]. Such be-
haviour of the relative deviations of the energy values
impels us to work further on the methodology of the
quasi-relativistic Hartree–Fock calculations in the case
of l > 0 electrons.

Table 3. Averaged distances from the origin r (a. u.) of
ions in Be isoelectronic sequence.

Z nl HF CW DHF QRHF

10 1s 0.15617 0.1559 0.15591 0.15592
2s 0.71178 0.7106 0.71064 0.71075

30 1s 0.05068 0.04989 0.04987 0.04988
2s 0.21074 0.2076 0.20725 0.20756

50 1s 0.03024 0.02892 0.02887 0.02888
2s 0.12377 0.1184 0.11783 0.11833

70 1s 0.02155 0.01963 0.01956 0.01957
2s 0.08762 0.07990 0.07906 0.07976

99 1s 0.01521 0.01223 0.01215 0.01215
2s 0.06155 0.04981 0.04862 0.04959

Seeking a more detailed evaluation of features of the
method under development some single-electron val-
ues are presented in Tables 2 and 3 in numerical form
and in Figs. 1, 2, and 3 in graphical representation.
The results calculated for the ions of Be isoelectronic
sequence are shown in the tables. In the figures the
relative deviations of the quasi-relativistic values (CW
and QRHF) from the relativistic ones (DHF) computed
for the ions of Ne isoelectronic sequence are presented.

Fig. 1. Relative deviations of the single-electron energy values of ions in Ne isoelectronic sequence.
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Fig. 2. Relative deviations of the averaged distances from the origin r of ions in Ne isoelectronic sequence.

The relative deviations of the single-electron energies ε
are calculated as follows:

∆εCW =
εDHF − εCW

εDHF

,

∆εQRHF =
εDHF − εQRHF

εDHF

, (11)

and marked in Fig. 1 as CW and QRHF, respectively.
The relative deviations of the averaged distances from
the origin r and of the opposite quantities 1/r are cal-
culated and marked in the same way. The relative devi-
ations of the single-electron quantities obtained within
the usual Hartree–Fock approach from the relativistic
ones (DHF) are not presented in the figures, because
they are of different order of magnitude and require
figures of different scale. Moreover, they are not of
the main interest in the work. The presentation of both
the numerical values and the relative deviations shown
graphically allows one to have a clearer idea of the
properties of the methods.

The single-electron energies presented in Table 2
and their relative deviations plotted in Fig. 1 for Be
and Ne isoelectronic sequences reveal that in the case

of s electrons the QRHF results are in general closer
to the relativistic DHF ones. However, Fig. 1 shows
that in the case of p electrons the relative deviations
of CW and QRHF results from the DHF solutions are
very small. That is an expected outcome keeping in
mind that the p electrons are treated in the same way
within the both mentioned methods. Therefore, it is
necessary to apply some different methods rather than
those used in [7] for the treatment of the l > 0 elec-
trons. It is also seen from the table and the figure that
the single-electron energy values QRHF are in some
cases deeper than the relativistic values DHF. However,
in the case of hydrogen-like ions presented in [9, 10]
the single-electron energies of s electrons were found
to be very close to the relativistic values DHF. Possibly,
some many-electron effects are not properly taken into
account. These facts provide us with the materials for
further investigations.

Since the main purpose of the work is to get the
correct ROs for further usage, the averaged distances
from the origin r and the relative deviations of these
and of the opposite quantities 1/r obtained in the men-
tioned different ways are presented in Table 3 and in
Figs. 2 and 3 for Be and Ne isoelectronic sequences.
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Fig. 3. Relative deviations of the averaged inverse distances from the origin 1/r of ions in Ne isoelectronic sequence.

As seen from the table and the figures, these val-
ues in the treated QRHF case are pretty close to the
relativistic values DHF. The difference between the
non-relativistic (HF) and the quasi-relativistic (QRHF)
results presented in Table 3 is especially obvious. It
is expected that the usage of the quasi-relativistic ROs
instead of non-relativistic ones in further calculations
of the spectral characteristics of atoms and ions will
affect them in a positive way. The differences of the
behaviour of the relative deviations of r and 1/r in the
case of 1s and 2s electrons plotted in Figs. 2 and 3 for
Ne isoelectronic sequence are caused most likely by the
lack of orthogonalization.

5. Conclusion

The new form of the QRHF equations presented in
the paper is free of the additional approximations such
as the creation of an artificial effective potential. The
developed methods for solving the equations with ac-
count of the finite size of the nucleus ensure the proper
behaviour of the RO in the vicinity of the origin and
give additional opportunities for the calculation of nu-
clear effects. The obtained test results demonstrate

that the relativistic corrections applied in the described
way are rather effective, even though one keeps stay-
ing within the usual Hartree–Fock approach. At the
same time it is obvious that there is still a lot of space
for improvement of the method. The presented test re-
sults show that the direct contact interaction might be
overestimated for the s electrons and underestimated in
other cases. Also the question of the exchange contact
interaction might be investigated deeper. All these are
the matter of further investigations.

In the presented work the problem of orthogonality
of the ROs of equal l and different n is not investigated,
because the CW results are not orthogonalized. We
also do not employ the orthogonalization in our cal-
culations in order to see the differences between the
methods caused purely by the usage of potentials, nu-
clear models, methods of calculations, but not by the
lack of orthogonalization, since the aim of this work is
to treat the problem of the potential while solving the
QRHF equations. The problem of orthogonality of the
ROs will be investigated in the future.

The QRHF calculations seem to be promising
enough new possibilities in the calculations of spectral
characteristics of atoms and ions in the future. The de-
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velopment of this method will be continued taking into
consideration the assumptions mentioned above.
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KITAS KVAZIRELIATYVISTINIŲ HARTRIO IR FOKO LYGČIŲ PAVIDALAS
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Santrauka
Toliau plėtojama kvazireliatyvistinių Hartrio (Hartree) ir Foko

(Fock) lygčių sprendimo metodika. Iš Dirako (Dirac), Hartrio ir
Foko lygčių gauta nauja kvazireliatyvistinių Hartrio ir Foko ly-
gčių forma, kuri leidžia atsisakyti supaprastinto efektinio poten-
cialo, o naudoti pakankamai tikslų įprastą suderintinio lauko po-
tencialą. Kaip ir ankstesniuose darbuose, kvazireliatyvistinės Hart-

rio ir Foko lygtys sprendžiamos, atsižvelgiant į baigtinį branduolio
tūrį. Pateikti bandomųjų skaičiavimų rezultatai kai kuriems Be, Na
ir Ar izoelektroninių sekų jonams. Šitie rezultatai pakankamai ge-
rai sutampa su tikslių reliatyvistinių Dirako, Hartrio ir Foko lygčių
sprendiniais, gautais atsižvelgiant į baigtinį atomo branduolio tūrį.
Paskutiniame darbo skyriuje nurodytos tolimesnės metodo plėto-
jimo perspektyvos.


