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Boundary conditions for non-equilibrium carrier densities and electric potential in a real metal–semiconductor junction are
obtained on the basis of the continuity equations and the Poisson equation. The non-steady state case has been analysed. It
is taken into account that holes do not penetrate into metal and the chemical potential of metal is constant. The both cases of
open or loaded by a resistor external electric circuit are considered.

Keywords: boundary conditions, continuity equations, electric potential, metal–semiconductor junction

PACS: 73.40.Sx, 73.50.Gr

1. Introduction

It is known that non-equilibrium electrons and holes
in bipolar semiconductors have influence on formation
of electromotive forces (emf) of various nature (Dem-
ber emf, Hall emf, thermo-emf, etc.) [1–3]. Usually ev-
ery emf is measured across the metallic contacts placed
on the sample surfaces. It is shown in [1, 2] that a
distortion of energy bands [4] influences the Dember
emf and the Hall emf values. For calculation of these
electromotive forces it is necessary to use the boundary
conditions (BCs) in a real metal–semiconductor junc-
tion (MSJ). The BCs in quasi-neutrality approximation
have been obtained in [5]. Owing to quasi-neutrality
approximation the BCs have been formulated at a vir-
tual surface, which is disposed at a distance of several
Debye lengths from the real MSJ. It is obvious that
the BCs [5] do not take into account a non-equilibrium
space charge region (screening mode [6]) influence on
emf formation.

This article is aimed at the formulation of the BCs in
a real metal–semiconductor junction.

2. Theory

Let us consider a metal–semiconductor junction
(MSJ), which lies at x = 0. We assume that a metal
is to the left of x = 0 and a semiconductor to the right.

BCs are derived on the basis of the continuity equations
[4, 7] and the Poisson equation:
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where δn (δp) is the non-equilibrium electron (hole)
density, −e is the electron charge, jn (jp) is the elec-
tron (hole) current density, R (G) is the carriers bulk
recombination (generation) rate, ε is the semiconductor
electrical permittivity, and ε0 is the vacuum permittiv-
ity.

In the common case the partial current densities have
the form
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where σn (σp) is the electron (hole) electric conductiv-
ity, δϕ̃n = δϕ − δFn/e is the non-equilibrium electro-
chemical potential of electrons, δϕ̃p = δϕ + δFp/e is
the non-equilibrium electrochemical potential of holes,
and δFn (δFp) is the electron (hole) non-equilibrium
chemical potential.
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The expression of θn,p depends on the field acting on
the semiconductor. If the temperature gradient arises
along the x axis, then

θn = −αn
dTn

dx
, θp = −αp

dTp

dx
,

where Tn,p is the electron (hole) temperature and αn,p

is the thermo-emf coefficient.
If the electric Ey and magnetic Bz fields act on a

sample, then

θn = −γnµnEyBz , θp = γpµpEyBz ,

where µn,p is the mobility of the carriers and γn,p is the
Hall factor of electrons or holes.

If a sample is illuminated by absorbed light, or when
the electric field acts on a sample, then θn,p = 0.

Let us consider now the case of open external elec-
tric circuit.

Integrating Eqs. (1), (2) with respect to x in a short
range from x = −ν to x = ν and taking the limit one
obtains

jn(+0) − jn(−0) = e(RS − GS) ,

jp(+0) − jp(−0) =−e(RS − GS) . (5)

The absence of surface recombination in metal has
been taken into account while deriving Eq. (5). There-
fore generation and recombination rates have the form

R = RS δ(x − 0) , G = GS δ(x − 0) , (6)

where δ(x) is the delta function, GS is the surface gen-
eration rate, and RS is the surface recombination rate
(SRR).

We can simplify Eq. (5) because there are no holes
in the metal (jp(−0) = 0) and the electric circuit is
open (jn(−0) = 0). From Eq. (5) we obtain

jn(+0) = e(RS − GS) ,

jp(+0) =−e(RS − GS) . (7)

The BCs (7) have been obtained in [6] for the case of
negligible surface generation rate.

In the first approximation by non-equilibrium carrier
densities the bulk recombination rate has the form [7]

R =
δn

τn

+
δp

τp

,

where τn (τp) is the time characterizing electron (hole)
bulk recombination rate. It is obvious that in this case
the SRR is equal to

RS = Sn δn(+0) + Sp δp(+0) , (8)

where Sn,p are the parameters characterizing SRR.
Note that in considered model the MSJ means the

layer of thickness much smaller than the Debye length
[1]. Therefore the parameters Sn,p characterize SRR in
the real MSJ. The BCs in [6] owing to quasi-neutrality
approximation are obtained at virtual surface, which is
disposed at a distance of several Debye lengths from
the real MSJ.

Let us now integrate the Poisson equation (3) with
respect to x from −ν to α and with respect to α from
−ν to ν and take the limit ν → 0. One obtains
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where δϕM is the variation of electric potential of
metallic contact. Note that there are no electric field
in metal (dδϕ(−ν)/dν = 0) and the function (δn −

δp)/(εε0) is finite. Therefore we derive from Eq. (9)

δϕ(+0) = δϕM . (10)

Integrating Eq. (1) with respect to x from α to ν with
the use of Eq. (4) we derive
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Let us integrate Eq. (11) with respect to α from −ν to
ν and take the limit ν → 0. One obtains

jn(+0) = σnS [δϕ̃n(−0) − δϕ̃n(+0)]

+ e (RS − GS) , (12)

where σ−1

nS = limν→0

∫ ν
−ν σ−1

n dα, σnS is the electron
surface conductivity.

By analogy we derive from Eq. (2)

jp(+0) = σpS [δϕ̃p(−0) − δϕ̃p(+0)]

− e (RS − GS) , (13)

where σ−1

pS = limν→0

∫ ν
−ν σ−1

p dα, σpS is the hole sur-
face conductivity.

Integrating Eqs. (1) and (2) with respect to x from
−ν to α and with respect to α from −ν to ν and taking
the limit ν → 0, one obtains for the left of x = 0

jn(−0) = σnS [δϕ̃n(−0) − δϕ̃n(+0)] , (14)
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jp(−0) = σpS [δϕ̃p(−0) − δϕ̃p(+0)] . (15)

Subtracting Eq. (14) from Eq. (12) and Eq. (15) from
Eq. (13) we obtain Eq. (5) as it should be. From con-
dition jp(−0) = 0 (there are no holes in the metal)
and Eq. (14) we derive that σpS = 0. It follows from
Eq. (14) and condition jn(−0) = 0 that

δϕ̃M = δϕ(+0) −
1

e
δFn(+0) . (16)

Taking into account that the chemical potential of
the metal has not changed, we derive from Eqs. (10)
and (16)

δFn(+0) = 0 . (17)

It follows from Eqs. (7), (8), (10), and (11) that BCs
for δn, δp, and δϕ take the form

1

e
jp(+0) = −Sp δp(+0) + GS , (18)

δϕM = δϕ(+0) , (19)

δn(+0) = 0 . (20)

In the case of loaded external circuit the electric cur-
rent j0 = jn(−0) flows through metallic contact. Then
we obtain from Eq. (14)

δϕM = δϕ(+0) +
j0

σnS

. (21)

The BCs (18) and (20) remain the same. Equation (21)
has a simple physical sense: the electric potential step
at MSJ is caused by electric current through the junc-
tion and electron surface conductivity. In the case of
open external circuit, BC (21) transforms into BC (19)
as it should be. The BCs (18)–(21) differ on principle
from those obtained in quasi-neutrality approximation
[6], because they are formulated in a real MSJ.

Note that BCs (20) and (21) are correct for non-
equilibrium density and potential of any value. The BC
for the hole (electron) current in the common case takes
the form of Eq. (7).

Also it should be stressed that obtained BCs require
the exact solution of continuity equations and the Pois-
son equation.

3. Conclusion

The boundary conditions for the non-equilibrium
carrier densities and electric potential in a real metal–
semiconductor junction are obtained. The exact solu-
tion of the continuity equations and the Poisson equa-
tion together with the boundary conditions permit one
to take into account the metallic contact influence on
the formation of emf of various nature (Hall emf, Dem-
ber emf, thermo-emf, etc.).
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KRAŠTINĖS SĄLYGOS REALIOJE BIPOLINIO PUSLAIDININKIO IR METALO SANDŪROJE
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Santrauka
Nustatytos kraštinės sąlygos nepusiausviriniams elektriniam

potencialui ir krūvininkų koncentracijai realioje metalo ir puslaidi-
ninkio sandūroje remiantis nenutrūkstamumo ir Poisson’o lygtimis.

Ištirtas nestacionarios būsenos atvejis. Atsižvelgta į tai, kad metalo
cheminis potencialas yra konstanta ir metale nėra skylių. Išorinė
elektros grandinė gali būti atvira arba apkrauta omine varža.


