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It is revealed that the orbital angular momentum is conserved during the spontaneous parametric down-conversion of a
higher-order Bessel beam propagating in a cubic nonlinear medium. This is the result of transverse selection of the sponta-
neously arising optical fields in an optical parametric generator pumped by Bessel beam, due to transverse phase matching of
interacting conical waves.
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1. Introduction

Along with the spin angular momentum, the photons
can also carry the orbital angular momentum (OAM)
[1]. The latter momentum can arise from the helical
phase front of the propagating beam. OAM eigen-
states have an azimuthal phase dependence of the form
exp(ilψ), where l (topological charge) is an integer and
corresponds to the number of times the phase changes
by 2π in a closed loop around the beam. The photons
of such a beam carry the OAM of magnitude l~ [2, 3].

A particular interest is attached to OAM in a spon-
taneous parametric down-conversion (SPDC) in χ(2)

crystals. It was predicted and experimentally confirmed
that SPDC provides an entanglement of OAM photon
states, which is related to the conservation of OAM [3–
9]. In the case of classical Laguerre–Gaussian fields the
OAM is not conserved as an observable property within
SPDC in optical parametric generator (OPG) [10]. In
contrary, it was revealed that OAM can be conserved in
the SPDC of higher-order Bessel beams [11].

Recently, it was demonstrated that SPDC in χ(3)

medium is also an excellent source of quantum-
correlated photon pairs [12, 13]. In what follows, we
demonstrate that OAM is conserved within the SPDC
of higher-order Bessel classical fields in χ(3) medium
based OPG.

The Bessel beam is a conical beam, which can be
described as a superposition of plane monochromatic

waves of frequency ω with wave vectors that lie on the
surface of a cone (Fig. 1(a)):

f(t, x, y, z) = exp [i(ωt− kzz)]
1

2π
(1)

×

2π
∫

0

S(ψ) exp [−iβ(x cosψ + y sinψ)] dψ .

In this case the magnitudes of transverse β = k sinα
and longitudinal kz = k cosα components of all wave
vectors k are the same. Here α is a half-cone angle.
We have k2 = β2 + k2

z , β2 = k2
x + k2

y , kx = β cosψ,
and ky = β sinψ, where ψ is the azimuthal angle.
Defining the angles θ and ϕ as tan θ = kx/kz and
tanϕ = ky/kz in the paraxial approximation we ob-
tain kx ≈ kθ, ky ≈ kϕ, β ≈ kα, kz ≈ k − kα2/2,
θ ≈ α cosψ, ϕ ≈ α sinψ, and θ2 + ϕ2 ≈ α2. The
spatial spectrum of the conical beam is a ring of ra-
dius α, Fig. 1(b). If S(ψ) = S0 exp [iρ(ψ + π/2)],
where ρ is an integer number, then Eq. (1) describes
ρ-order Bessel beam (or Bessel vortex beam of topo-
logical charge ρ):

f(t, x, y, z) = S0Jρ(βr) exp [iρϑ+ i(ωt− kzz)] ,
(2)

where r =
√

x2 + y2 and ϑ = arctan(y/x).
We investigate the case when the cubic nonlin-

ear medium is pumped by two higher-order Bessel
beams. The output radiation is determined by the phase
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Fig. 1. Spatial spectrum of conical beam (a) in Cartesian coordi-
nates and (b) in transverse θ, ϕ plane.

matching conditions of conical beams which for four-
wave interaction follow from

k1x + k2x = k3x + k4x , k1y + k2y = k3y + k4y ,

k1z + k2z = k3z + k4z , ω1 + ω2 = ω3 + ω4 , (3)

where subscripts 1, 2, 3, and 4 denote the wave vectors
and frequencies of signal, idler, and two pump conical
beams, respectively. The first two of Eqs. (3) describe
the transverse phase matching (TPM) conditions. The
third of Eqs. (3) corresponds to the condition of longi-
tudinal phase matching (LPM).

2. Transverse phase matching

The first and the second of Eqs. (3) can be rewritten
as

β1 cosφ1 + β2 cosφ2 = β3 cosφ3 + β4 ,

β1 sinφ1 + β2 sinφ2 = β3 sinφ3 , (4)

where φ1 = ψ1−ψ4, φ2 = ψ2−ψ4, and φ = ψ3−ψ4.
Obviously, two pump cones at given values β3 and
β4 can be transversally phase-matched simultaneously
with many pairs of signal and idler cones having differ-
ent values β1 and β2. Further we investigate the case

when ω3 = ω4 = ω0 and β3 = β4 = β0. It is impor-
tant that the nonlinear coupling of pump and various
signal and idler cones is different and depends on val-
ues of p = β1/β0 and q = β2/β0. The magnitude
of this coupling can be determined by TPM integral,
which describes an overlap of the interacting conical
beams. In the case of four-wave interaction the TPM
integrals S1(β1, ψ) and S2(β2, ψ) for signal and idler
waves, respectively, can be written as

S1(β1, ψ) =
∞
∫

0

2π
∫

0
rA∗

2(r, ϑ)A3(r, ϑ)A4(r, ϑ)

× exp [iβ1r cos(ψ − ϑ)] drdϑ ,

S2(β2, ψ) =
∞
∫

0

2π
∫

0
rA∗

1(r, ϑ)A3(r, ϑ)A4(r, ϑ)

× exp [iβ2r cos(ψ − ϑ)] drdϑ , (5)

where Aj (j = 1, 2, 3, 4) are complex amplitudes of
interacting waves in cubic nonlinear medium. In fact,
these integrals determine the spatial spectra of signal
and idler waves excited by the pump beams from quan-
tum noise level. Further we assume that all interact-
ing waves are apertured Bessel beams (Bessel–Gauss
beams), the complex amplitudes of which are

A1 = a1 exp

(

−
r2

d2
1

)

Jm(β1r) exp(imϑ) ,

A2 = a2 exp

(

−
r2

d2
2

)

Jn(β2r) exp(inϑ) ,

A3 = a3 exp

(

−
r2

d2
3

)

Jl1(β3r) exp(il1ϑ) ,

A4 = a4 exp

(

−
r2

d2
4

)

Jl2(β3r) exp(il2ϑ) , (6)

where integer numbers m, n, l1, and l2 are topologi-
cal charges of signal, idler, and two pump beams, re-
spectively. Then, integration of Eqs. (5) over ϑ at
l1 + l2 = m+ n gives

S1 = a2a3a4 exp

[

im

(

ψ +
π

2

)]

×

∞
∫

0

r exp

(

−
r2

d2
234

)

Jm(β1r)Jn(β2r)

× Jl1(β3r)Jl2(β3r)dr , (7)
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Fig. 2. TPM integral Tmnl1l2
(p, q) for (a) l1 = l2 = 0 and m = n = 0, (b) m = −1, n = 1, (c) m = −2, n = 2, (d) m = −3, n = 3.

g = 50.

S2 = a1a3a4 exp

[

in

(

ψ +
π

2

)]

×

∞
∫

0

r exp

(

−
r2

d2
134

)

Jm(β1r)Jn(β2r)

× Jl1(β3r)Jl2(β3r)dr , (8)

where d−2
134 = d−2

1 + d−2
3 + d−2

4 and d−2
234 = d−2

2 +
d−2

3 + d−2
4 . We note that for l1 + l2 6= m + n TPM

integrals S1 and S2 (Eqs. (5)) are zeroes. So, the signal
and idler vortex beams of topological charges m and
n interact parametrically with two pump Bessel beams
of topological charges l1 and l2 only if the charge con-
servation law l1 + l2 = m + n is fulfilled. In general,
the nonlinear coupling of signal, idler, and two pump
Bessel beams can be characterized by a common nor-
malized TPM integral

Tmnl1l2 =

∣

∣

∣

∣

∣

∞
∫

0

x exp

(

−
x2

g2

)

Jm(px)Jl1+l2−m(qx)

×Jl1(x)Jl2(x)dx

∣

∣

∣

∣

∣

, (9)

where, as earlier, p and q are normalized components of
transverse wave vectors of the signal and idler waves,
and g = β0d134 (or β0d234) À 1.

The numerically calculated integrals Tmnl1l2(p, q)
for l1, l2= 0, 1 and various values m and n are pre-
sented in Figs. 2–5. At l1 = 0, l2 = 0 (Fig. 2) the
absolute maximum is obtained for p = 0 and q = 0,
when m = n = 0. Accordingly we have β1 = β2 = 0.
Therefore, the strongest nonlinear coupling with two
zeroth-order pump beams is obtained when both the
signal and idler beams are axial beams. Obviously,
the coupling of two zeroth-order pump beams with the
signal and idler higher-order Bessel beams of opposite
topological charges is rather weak, compare Fig. 2(a)
and (b–d).

At l1 = l2 = 1 the strongest coupling is observed
when m = 0, n = 2 and p = 0, q ≈ 0.08 (Fig. 3). We
have T0211(p, q) = T2011(q, p), so the output radiation
will consist of two axial (signal and idler) and two axial
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Fig. 3. TPM integral Tmnl1l2
(p, q) for (a) l1 = l2 = 1 and m = n = 1, (b) m = 0, n = 2, (c) m = −1, n = 3, (d) m = −2, n = 4.

g = 50.

vortical (idler and signal) beams. The transverse wave
vector of the vortical beam β2 (or β1) is much smaller
than β0.

At l1 = 0, l2 = 1 the strongest coupling is observed
when m = 0, n = 1 and p = 0, q = 2 (Fig. 4). We
have T0101(p, q) = T1001(q, p), so the output radiation
consists of two axial (signal and idler) and two conical
vortical (idler and signal) beams. The transverse wave
vector of the conical beam β2 (or β1) is equal to 2β0.

In the case when l1 = 1, l2 = 2 the strongest cou-
pling is observed whenm = 0, n = 3 and p = 0, q = 2

(Fig. 5). We have T0312(p, q) = T3012(q, p), so the out-
put radiation will consist again of two axial (signal and
idler) and two conical vortical (idler and signal) beams.
The transverse wave vector of the conical beam β2 (or
β1) is equal again to 2β0.

In general, the best overlap of the four interacting
beams is obtained when one (signal or idler) beam is
the axial beam possessing zero OAM, and the other
(idler or signal) beam is the vortical beam carrying the
topological charge l1 + l2. So, the output radiation will

consist of two OAM-free and two vortical beams with
OAM equal to the sum of OAM of two pump beams.

3. Longitudinal phase matching

The LPM condition allows to determine the frequen-
cies ω1 and ω2 of signal and idler waves. At ω3 = ω4

and β3 = β4 we have k3z = k4z and the third of
Eqs. (3) can be written as

k1z + k2z = 2k3z . (10)

In the paraxial approximation kiz = ki cos(αi) ≈
ki(1 − α2

i /2), i = 1, 2, 3. Then from Eq. (10) it fol-
lows that

k1 + k2 − 2k3 =
1

2
k1α

2
1 +

1

2
k2α

2
2 − k3α

2
3 . (11)

We suppose that ω1 = ω0 + ∆ω and ω2 = ω0 − ∆ω,
where |∆ω| ¿ ω0. Then k(ω0±∆ω) ≈ k0±

1
u0

∆ω+
g0

2 ∆ω2, where k0 = k(ω0), u0 = (∂ω/∂k)ω=ω0
, and

g0 = (∂2k/∂ω2)ω=ω0
. Here u0 and g0 are group veloc-

ity and group velocity dispersion (GVD) coefficient at



V. Pyragaitė and A. Stabinis / Lithuanian J. Phys. 46, 177–183 (2006) 181

Fig. 4. TPM integral Tmnl1l2
(p, q) for (a) l1 = 0, l2 = 1 and m = 0, n = 1, (b) m = −1, n = 2, (c) m = −2, n = 3, (d) m = −3,

n = 4. g = 50.

ω = ω0, respectively. Then we can rewrite the Eq. (11)
as follows:

g0∆ω
2 ≈ k0

[

α2
1

2
+
α2

2

2
− α2

3

]

. (12)

Taking into account that αi ≈ βi/k0 we obtain

∆ω2 =
1

2k0g
(β2

1 + β2
2 − 2β2

3) . (13)

Then for β1, β2 ¿ β3 (Figs. 2(a), 3(b)) we have ω1 =
ω0 + ∆ω and ω2 = ω0 − ∆ω, where

∆ω2 = −
k0α

2
3

g0
. (14)

In this case parametric down-conversion is possible in
cubic medium with negative GVD coefficient (g0 < 0).
For β1 = 0, β2 = 2β3 or β1 = 2β3, β2 = 0 (Figs. 4(a),
5(b)) we obtain

∆ω2 =
k0α

2
3

g0
, (15)

and parametric down-conversion is feasible in cubic
nonlinear medium with g0 > 0.

4. Conclusions

It is demonstrated that the output radiation of χ(3)

medium-based OPG pumped by a higher-order Bessel
beam consists of two OAM-free and two vortical beams
the OAM of which are equal to the sum of OAM of
two pump beams. So, the OAM is conserved in cubic
nonlinear medium within the SPDC of classical higher-
order Bessel beam similarly as in the case of quantum
fields. That is the result of strong transverse selec-
tion of spontaneously arising fields in OPG pumped by
Bessel beams. The appearance of conical fields within
the SPDC in cubic nonlinear medium is feasible only
in the medium with positive GVD coefficient for signal
and idler waves.
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Fig. 5. TPM integral Tmnl1l2
(p, q) for (a) l1 = 1, l2 = 2 and m = 1, n = 2, (b) m = 0, n = 3, (c) m = −1, n = 4, (d) m = −2, n = 5.

g = 50.
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PARAMETRINIS AUKŠTESNĖS EILĖS BESELIO OPTINIO PLUOŠTO DAŽNIO MAŽINIMAS
KUBINĖJE NETIESINĖJE TERPĖJE

V. Pyragaitė, A. Stabinis

Vilniaus universitetas, Vilnius, Lietuva

Santrauka
Parodyta, kad savaiminio parametrinio aukštesnės eilės Bese-

lio (Bessel) pluošto dažnio mažinimo kubinėje netiesinėje terpėje
metu galioja orbitinio kampinio momento tvermės dėsnis. Tai

yra parametriniame šviesos generatoriuje vykstančios optinių laukų
skersinės atrankos pasekmė, kai generatorius kaupinamas Beselio
pluoštu.


