
Lithuanian Journal of Physics, Vol. 46, No. 2, pp. 307–310 (2006)

INFLUENCE OF ENERGY BAND DISTORTION ON THE HALL EMF
IN BIPOLAR SEMICONDUCTORS

A. Konin
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania

E-mail: konin@pfi.lt

Received 24 March 2006

A theory of the Hall electromotive force (emf) in bipolar semiconductors accounting for the boundary conditions in a real
metal–semiconductor junction and distortion of energy bands near semiconductor surface is presented. It is shown that the Hall
emf essentially depends on the surface potential under certain sample surface and bulk parameters.
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1. Introduction

It is known that the Hall emf arises in semiconduc-
tor owing to the action of the Lorenz force [1]. Un-
der this force, the flux of electron–hole pairs (EHP) oc-
curs in a bipolar semiconductor sample from one sur-
face to the opposite one. The result is the carrier den-
sity redistribution [2], which influences the Hall emf
value. The Hall emf is measured across the metallic
contacts, which also have influence on emf formation:
the non-equilibrium electrons can cross the metal–
semiconductor junction (MSJ). The above-mentioned
causes have influence on the Hall emf value. This in-
fluence may be taken into account in the framework
of quasi-neutrality approximation (by analogy with the
thermo-emf [3]). Besides that, the distortion of en-
ergy bands [4] creates the equilibrium built-in electric
field. This field separates the non-equilibrium carriers
and acts upon the non-equilibrium space charge region
(screening mode [5]) formation. The exact solution of
the continuity equations and the Poisson equation to-
gether with the boundary conditions [6] shows that the
Dember emf essentially depends on the surface poten-
tial [7]. One may expect such behaviour of the Hall
emf in samples with thickness less than the diffusion
length.

This article is aimed at the development of the Hall
emf theory in bipolar semiconductors.

2. Theory

Let us consider a bipolar semiconductor plate (−a ≤
x ≤ a). We assume that the plate thickness essentially
exceeds the Debye screening length [4]. The external
electric field E is applied along the y axis and the exter-
nal weak magnetic field B is applied along the z axis.

In linear approximation the non-equilibrium densi-
ties of electrons δn, holes δp, and non-equilibrium
electric potential δϕ are obtained from the continuity
equations [7, 8] and the Poisson equation
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where −e is the electron charge, τn (τp) is the time
characterizing the electron (hole) bulk recombination
rate [4], ε is the semiconductor electrical permittivity,
and ε0 is the vacuum permittivity.

The equations for currents in linear approximation
by small parameters |δn|/n0 ¿ 1, |δp|/p0 ¿ 1, and
|δϕ| ¿ kT/e take the form [1, 7]
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where µn (µp) is the electron (hole) mobility, k is the
Boltzmann constant, T is the temperature of the semi-
conductor, n0 (p0) is the equilibrium density of elec-
trons (holes) in the bulk of the sample, neq(x) and
peq(x) are the equilibrium densities of electrons and
holes, ϕeq(x) is the equilibrium electric potential, and
γ is the Hall factor.

The equilibrium densities and potential for special
cases are obtained in [4].

The boundary conditions (BCs) on a real MSJ are
obtained in [6]:
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where ν is the surface recombination rate (SRR) and
δϕM is the variation of electric potential of metallic
contact. For simplicity we assume that SRR values at
surfaces x = ±a coincide. Note that in our considered
case ν is the real SRR unlike the SRR values used in
quasi-neutrality models [2].

Taking into consideration that the diffusion length
significantly exceeds the Debye length we obtain the
solution of Eqs. (1), (2), and (6) as a sum of two modes
[3]: diffusion-recombination (DR) mode and screening
(S) mode. These modes are denoted by subscripts R
and S accordingly:

δn = δnR + δnS , δp = δpR + δpS ,

δϕ = δϕR + δϕS . (8)

DR mode is obtained from the solution of Eqs. (1),
(2), (6), (7), and condition of quasi-neutrality |δnR −
δpR| ¿ δnR. Moreover, the equilibrium densities neq,
peq, and potential ϕeq depend on coordinate x only
in a thin layer of a thickness approximately equal to
the Debye length. Therefore the equalities neq = n0,
peq = p0, and nϕeq = 0 are valid for DR mode. So we
derive
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where λ =
√

Dτ is the diffusion length, D =
(kT/e)[(n0 + p0)µnµp]/(n0µn + p0µp) is the bipo-

lar diffusion coefficient, τ = τnτp/(τn + τp) is the
lifetime of EHP in the bulk of the sample, η =
(µn − µp)/(n0µn + p0µp) · εε0kT/(λ2e2), ∆ϕH0 =
2αγEB(µ2

pp0 − µ2
nn0)/(n0µn + p0µp) is the classical

value of the Hall emf, and A is the factor determined
by the BCs.

The continuity equations for S mode take the form
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Solving Eqs. (4) and (11) we obtain
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Substituting Eq. (12) into Eq. (3) one gets for S mode
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With the use of Eqs. (5), (6), (9), (12), and relations [4]
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and ϕS is the surface potential (SP).
Let us calculate the Hall emf in a common case

(without solution of Eq. (13)). It follows from Eqs. (7),
(8) that the Hall emf ϕH is equal to

∆ϕH = δϕM(a) − δϕM(−a) (15)
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From Eqs. (6), (9), (12), and (14) we derive

δϕS(a) =
kT

eneq(a)
δnS(a) = − kT

eneq(a)
δnR(a)

=−QEB
kT

eneq(a)
tanh

(

a

λ

)

. (16)



A. Konin / Lithuanian J. Phys. 46, 307–310 (2006) 309

Finally we obtain from Eqs. (10), (15), and (16):
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In conclusion we present the solutions of Eqs. (5), (6),
(12), and (13) for S mode at small SP:
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rD =

√

εε0kT

e2(n0 + p0)

is the Debye length and
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3. Discussion of results

It follows from Eqs. (10) and (19) that the non-
equilibrium potential is equal to its classical value in
two cases: the sample is massive (a À λ) or the SRR is
large enough (ν À λ/τ ). Therefore let us consider thin
intrinsic semiconductor sample (a ¿ λ) with small
values of SRR (ν ¿ λ/τ ). In this case we derive from
Eqs. (10) and (19)
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Fig. 1. The Hall potential δϕ distribution in Ge for some SP values:
1 for ϕS

= −5.4 mV, 2 for ϕS
= 5.4 mV. Line 3 gives the classical

distribution.

Fig. 2. The Hall emf dependence on SP ϕS for some SRR values:
1 for ν = 10 cm/s, 2 for ν = 20 cm/s, 3 for ν = 40 cm/s.

As it follows from Eq. (20) |δϕ| is two times less
than classical potential distribution [1] in the bulk of
the sample and is more than 0.5ϕH0 at the surfaces
x = ±a.

The distribution of non-equilibrium electric poten-
tial in pure Ge (T = 312 K, λ = 0.1 cm, a = 0.05 cm,
µn = 3800 cm2/(V·s), µp = 1800 cm2/(V·s), rD =
3.5 · 10−5 cm, E = −10 V/cm, B = 2 · 10−2 T)
for SRR ν = 40 cm/s is shown in Fig. 1. Curve
3 represents the classical potential distribution, that
is ϕH0x/(2a). It is seen that δϕ value in the region
499 < x ≤ 500 µm is determined by both DR and S
modes and in the region 0 < x ≤ 499 µm by DR mode
only.

The Hall emf dependence on the SP in pure Ge (E =
−2.5 V/cm and the other parameters are the same as in
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Fig. 1) for some SRR values is shown in Fig. 2. As it is
seen the Hall emf has a maximum ∆ϕ
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.

The value of ∆ϕ
D. MAX

essentially exceeds the classical
Hall emf (∆ϕH0 = 1.18 mV) and strongly depends on
SRR.

These features peculiar to the Hall emf in bipolar
semiconductors are conditioned by two reasons: (i) the
non-equilibrium electrons can cross the MSJ, (ii) the
built-in electric field Eeq = −dϕeq/dx changes the S
mode carrier density and so changes the Hall emf.

4. Conclusions

The theory of the Hall emf accounting for the distor-
tion of energy bands near semiconductor surfaces has
been developed. It is shown that the Hall emf essen-
tially depends on the surface potential for small enough

surface recombination rates in samples with thickness
less than the diffusion length.
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ENERGIJOS JUOSTŲ IŠKRAIPYMO ĮTAKA HOLO ELEKTROVARAI BIPOLINIUOSE
PUSLAIDININKIUOSE
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Santrauka
Pateikiama Holo elektrovaros (EV) teorija, kurioje atsižvelgta

į nepusiausvirojo krūvininkų tankio ir elektrinio potencialo kraš-
tines sąlygas realioje metalo ir puslaidininkio sandūroje ir energi-

jos juostų kreivumą puslaidininkio paviršiuje. Įrodyta, kad plones-
niuose už difuzijos ilgį bandiniuose, jei paviršinės rekombinacijos
sparta nedidelė, Holo EV priklauso nuo paviršiaus elektrinio po-
tencialo.


