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In the case of the quantum generalization of Lévy processes, expressions for the Hermitian operator of momentum and
its eigenfunctions are proposed. The normalization constant has been determined and its relation to the translation operator
is shown. The interrelation between the momentum and the wave number has been generalized for the processes with a
non-integer dimensionality α.
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1. Introduction

The physical basis for the existence of quantum me-
chanics comprises a series of phenomena described by
the mathematical theory of the Wienerian processes.

The Lévy stochastic process is a natural generaliza-
tion of the Brownian motion or the Wiener stochastic
process [1]. The foundation for this generalization is
the theory of stable probability distributions developed
by Lévy [2]. The most fundamental property of the
Lévy distributions is the stability in respect to addi-
tion, in accordance with the generalized central limit
theorem. Thus, from the probability theory point of
view, the stable probability law is a generalization of
the well-known Gaussian law. The Lévy processes are
characterized by the Lévy index α, which takes values
0 < α ≤ 2. At α = 2 we have the Gaussian pro-
cess or the process of the Brownian motion. Lévy pro-
cess is widely used to model a variety processes such
as anomalous diffusion [3], turbulence [4], chaotic dy-
namics [5], plasma physics [6], financial dynamics [7],
biology and physiology [8] (for recent references see
e. g. [9–11]) .

The constantly increasing number of experimental
facts in various fields of knowledge related to classi-
cal non-Wienerian processes evokes a natural desire to
“close” the commutative diagram shown in Fig. 1 and,
at least formally, to consider the possible existence of
a quantum analogue of a narrower class of phenom-
ena related to Lévy processes, the so-called fractional

Fig. 1. Schematic representation of interrelations of Wienerian pro-
cesses (WP), Lévy processes (LP), quantum mechanics (QM), and

fractional quantum mechanics (FQM).

quantum mechanics (FQM) [12–14]. Unfortunately,
these works are not aimed at a thorough analysis of the
properties of the quantum operator of momentum. The
lack of such analysis results in some inaccuracies of
even gross blunders while formulating FQM (see Con-
clusions).

The present note offers a brief discussion of one of
the crucial issues related to FQM, which is the one-
dimensional operator of momentum.

Like in usual quantum mechanics (QM), one-dimen-
sional problems are a kind of excess idealization. Nev-
ertheless, they may be used for elucidating the funda-
mental features of FQM. One-dimensional problems
arise while considering the three-dimensional evolu-
tionary equation in which the interaction potential
depends on a single coordinate. This fact allows, with
the aid of a corresponding factorization, to move to a
simpler one-dimensional evolutionry equation.

The purpose of this paper is formulation, in the
explicit form, of a quantum expression of the one-
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dimensional operator of momentum for the fractional
probability processes.

2. Fractional quantum operator of momentum

The classical definition of momentum in QM fol-
lows from the invariance of the Hamiltonian of the
quantum system Ĥ with respect to the infinitesimal dis-
placements δx. Under such transformation, the wave
function ψ(x) turns into the function

ψ(x+δx) = ψ(x)+δx ∂xψ = (1+δx ∂x)ψ(x) , (1)

here ∂x is the differentiation operator over the space
variable x [15, 16].

However, it may turn out that ∂xψ does not exist,
but there exists the so-called fractional derivative ∂α

xψ
in which the order of the derivative α may be both an
integer and a fractional number. For the function de-
termined on the whole real axis R, the right and left
derivatives of the order α are defined as

∂α
±ψ(x) =

{α}
Γ(1 − {α})

×
∞
∫

0

ψ([α])(x) − ψ([α])(x∓ ξ)

ξ1+{α}
dξ , (2)

where [α] and {α} are the integer and the fractional
parts of the parameter α (for details, see Appendix).
For the bilateral derivatives to exist, it is sufficient that
ψ(x) ∈ C [α](Ω), where C [α](Ω) is a set of contin-
uously differentiated functions of the order [α] deter-
mined on the domain Ω [10].

Another peculiarity related to the operator of mo-
mentum is the expansion of the wave function ψ(x)
into a Taylor series by fractional powers [11]

ψ(x) =

[α]
∑

n=0

c(α)
n (x− x0)

α+n +Rn(x) , (3)

where c(α)
n are numerical coefficients and Rn(x) is the

residual term, which provides a better approach to the
initial function. In all such cases, determination of the
quantum operator of momentum should be specified.

It is reasonable to suppose that the momentum oper-
ator should be proportional to the fractional derivative:

p̂ = C∂α
+ψ(x) , (4)

here C is a certain coefficient of proportionality. For
α → 0, we must obtain a usual quantum operator of
momentum, p̂ = −i~∂x. Thus, in FMQ we always deal

with two kinds of limit transitions: (i) ~ → 0, when we
shift to classical mechanics, and (ii) α → 0, when we
turn to usual QM (see Fig. 1).

The kind of the coefficient C in the expression for
the momentum (4) is best defined if on the whole real
axis we consider a plane wave of the form

ψ(x, t) = A eiκ x−iE/~ t , κ =

(

p

~lα−1
0

)1/α

, (5)

where ~ is the Planck constant and l0 is a certain pe-
culiar scale of the length of the nonlocal process under
consideration.

Let us impose a requirement for the momentum op-
erator (4) to obey the eigenvalue equation p̂ψ = pψ.
Applying the property of the fractional derivatives,
∂α

+eκx = καeκx (Reκ > 0) (see Appendix), we obtain
that

C = (−i)α
~lα−1

0 . (6)

For the values observed in QM to be real, the corre-
sponding operators should be Hermitian. It is easy to
see that the quantum operator of momentum (4) with
the constant C from (6) is non-Hermitian. In order to
obtain a Hermitian operator of momentum, to the type
(4) operator we will add a Hermite-conjugated opera-
tor p̂+; then, the momentum operator determined in this
way

p̂ =
~lα−1

0

2

[

(−i∂+)α + (i∂̃−)α
]

, (7)

here ∼ is the symbol of transposition, will be clearly
Hermitian. Indeed, the momentum operator (7) p̂ =
(p̂+ + p̂−)/2 will be Hermitian because of the idem-
potency of the operation of Hermitian conjugation
((p̂+)+ = p̂) and the structure of the operator itself
(

p̂− = (p̂+)+
)

. On the other hand, employing the rule
of fractional integration by parts (see Appendix),

p∗ =

+∞
∫

−∞

ϕ∗ p̂+ψ dx =

1

2

+∞
∫

−∞

ϕ∗ (p̂−+ p̂+)ψ dx = p , (8)

we directly see that the momentum operator is Hermi-
tian for the different functions of state ϕ and ψ.

Thus, we obtain that the operator (7) is Hermitian
and its eigenvalues on the whole real axis are plane
waves of the (5) type. Like in the classical case, the
eigenvalues of the momentum operator do not belong
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to the class L2(R). Therefore, they don’t describe
the physically realizable states of the quantum parti-
cle. These eigenfunctions should be regarded as the
basic functions, which comprise the complete system
of functions.

3. Wave function normalization

To determine the constant normalizationA in the ex-
pression for the plane wave (5), we will take that

∫

ψ∗
pψ0 dx = δ(p) . (9)

This is a particular case of the conventional condition
∫

ψ∗
p′ψp dx = δ(p′ − p) for p ≡ 0. Using the property

of the δ-function, we shall obtain that

A =

√

|κ |
2π| p | , κ ≡

(

p

~lα−1
0

)1/α

. (10)

Let us specify the peculiarities of such normaliza-
tion. Firstly, generally speaking, the amplitude is a
complex magnitude; secondly, it depends on the eigen-
value of the momentum p . Only when α → 1, as the
case should be, A→ 1/

√
2π~ .

Inasmuch as the physical sense applies not to the am-
plitude itself but to |A|2, the complex nature of A does
not contradict unitarity. However, because of the com-
plex nature of the amplitude we may get an impression
that we deal with a damping wave; however, actually
there is no damping, because A 6= A(x, t). Besides,
the same conclusion results from analysis of the dis-
persion expression of the corresponding Hamiltonian.
The dependence A = A(p) is not a matter of principle
and may be avoided by a suitable choice of the normal-
ization condition. For instance, under condition

∫

ψ∗
κ′ψκ dx = δ(κ′ − κ) , (11)

the dependence A(p) is absent.
Another important circumstance should be noted as

regards the type of the momentum operator. Transition
to momentum representation is not a Fourier transfor-
mation. Momentum representation should be under-
stood in the sense of f -representation:

ψ(x) =

∫

afψf (x) df ,

∫

ψ∗
f ′ψf dx = δ(f ′ − f) .

(12)

4. Translation operator

Lastly, let us derive the formula to express, through
the momentum operator p̂, the parallel translation op-
erator in space to any finite (not only infinitesimal) dis-
tance. From the definition of such an operator it fol-
lows:

T̂α
a+ψ(x) = ψ(x− a) , T̂α

b−ψ(x) = ψ(x+ b) . (13)

In this case, a and b denote the values of finite displace-
ments but not the coordinate ends of the interval.

Expanding the function ψ(x − a) in the neighbour-
hood of the point x into a Taylor series by fractional
powers as in (3) and employing the expression for the
“right-hand” and “left-hand” parts of the momentum
operator,

p̂α
+ = −i~lα−1

0 ∂α
+ , p̂α

− = i~lα−1
0 ∂̃α

− , (14)

we obtain that

T̂α
a+ =

∞
∑

k=0

(ia)α+k−1

(~lα−1
0 )(α+k−1)/α

p̂
(α+k−1)
+

Γ(α+ k)
≡

E
κap̂α

+

1−α , (15)

where Ez
µ is the generalized exponential function (see

Appendix). These are exactly the finite displacement
operators we have been searching for.

For α→ 1, for T̂α
a+ we obtain that

T̂α
a+ →

∞
∑

k=0

(

ia

~

)k p̂k
+

k!
≡ ei a/~ p̂

+ . (16)

The expression T̂α
b− could be obtain by substituting

in equation (16) a→ −b and p̂α
+ → p̂α

−.

5. Conclusions

Note that the classical restriction on the smoothness
of the wave function ψ(x) ∈ C2([a, b]) does not hold
here. The restriction on ψ(x) follows from the conti-
nuity equation; however, in the case of fractional di-
mension we can show that the condition of continuity
is changed, and the limitation on ψ(x) is reduced to
ψ(x) ∈ C [α]([a, b]).

Another note pertains to the structure of the momen-
tum operator. It seems highly significant that the mo-
mentum operator consists of two parts – the right and
left displacements. In classical fractional mechanics, it
is quite possible to limit ourselves to one of these two
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components, p̂+ or p̂−. In the quantum case it is im-
possible, because the full operator of momentum is a
Hermitian one.

The limit transition ~ → 0 for {α} 6= 0 means tran-
sition to classical fractional mechanics. However, the
form of the momentum operator undergoes no qual-
itative change: p̂ = (p̂+ + p̂−)/2, i. e. it consists
of two parts, each being proportional to its one-sided
derivative. For linear evolutionary equations of clas-
sical (not quantum) fractional mechanics this type of
structure of the momentum operator may be simplified
if p̂ = p̂+ or p̂ = p̂−. However, here additional con-
siderations are necessary. For the nonlinear fractional
evolutionary processes it is impossible in principle, be-
cause p̂+ = p̂− is the condition of smoothness.

Note here, too, that all results for the Hermitian
operator of momentum are valid in the case of the
Riesz quantum derivative: RDα

xφ(x) ∝ [(−i∂)α
+ +

(i∂̃)α
−]φ(x).

From the definition of κ there follows an interrela-
tion between the momentum and the wave number:

p = ~lα−1
0 κα , (17)

so for α → 1 we have κ → k, and the expression (17)
turns into p = ~k.

The appearance of the characteristic length scale of
l0 and the power dependence of the quantum particle
momentum on the wave number directly indicate the
fractional character of quantum mechanics.

Thus we have the Hermitian quantum operator of
momentum (7) with the eigenfunctions (5). This allows
us to construct the quadratic form of the Hamiltonian
Ĥ ∝ p̂ 2 instead of the power form Ĥ∝ Dα|p |α, and
the Hermitian Hamiltonian instead of non-Hermitian
proposed in [12, 13], and the unitarian Hamiltonian in-
stead of non-unitarian proposed in [14]. However, the
Hamiltonian of the FQM is the subject of a special in-
vestigation and of the forthcoming paper.

6. Appendix

The right and left fractional derivatives are defined
in the form

∂α
±f(x) =

{α}
Γ(1 − {α})

×
+∞
∫

0

f [α](x) − f [α](x∓ ξ)

ξ1+{α}
dξ , (A1)

where Γ(z) is the Euler Γ-function, α = [α] + {α}
is the sum of the integer and the fractional parts of
the real number α ∈ R. These are the so-called Mar-
chaud derivatives [17], which on the whole real axis are
more natural than, e. g., the Riemann–Liouville deriva-
tives. For instance, for the functions determined on
R : f(x) ∈ Lp, where 1 ≤ p < 1/α,

∂α
±I

α
±f(x) = f(x) , (A2)

here Iα
±f(x) is a fractional integral of the order α,

whereas for the Riemann-Liouville derivatives the
property (A2) holds only if α = 1. The Marchaud
derivatives, on sufficiently “good” functions, coincide
with the Riemann–Liouville derivatives, however, in
contrast to the latter, they allow even an increase of
the functions of the order below α at the infinity. The
differences between the Riemann–Liouville and Mar-
chaud functions, related to the behaviour at the infinity,
are absent in the case of a finite interval [18].

Let us remind here that the one-parametrical family
of linear limited operators {Tα}, α ≥ 0 in the Banach
space X comprises a semi-group, if

TαTβ = Tα+β , α ≥ 0 , β ≥ 0 ,

T0ϕ = ϕ , ∀ϕ ∈ X . (A3)

A semigroup of operators is called strongly continu-
ous if

lim
α→α

0

∥

∥

∥Tαϕ− Tα
0
ϕ
∥

∥

∥ = 0 ,

0 ≤ α0 <∞ , ∀ϕ ∈ X . (A4)

From the semigroup character of the family {∂α
±}

(A1) it follows that if a semigroup is strongly contin-
uous when α = 0, it is inevitably strongly continuous
for all α ≥ 0.

From the definition of the fractional operators it fol-
lows that fractional integration operators comprise in
Lp(a, b), p ≥ 1 a semigroup, which is continuous in
the uniform topology for all α > 0. Lp(a, b), as usual,
denote a set of functions | f |p in the p power, which are
measurable according to Lebesgue.

The form of the approximation of the operator Iα
a+

to unity when α → 0 is conditioned by the form of
the generating operator L(x) ≡ lim

α→+0

∥

∥Iα
a+ϕ− ϕ

∥

∥ /α.

The expression for the operator is calculated from the
definition using the L‘Hôpital rule. The calculation
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gives the following expression for the form of Iα
a+ϕ

approximation:

L(x) =
d

dx

x
∫

a

ln(x− t)ϕ(x) dx− Γ′(1)ϕ(x) , (A5)

for almost all x.
It is convenient to make use of unified designation

also for the other integrals and derivatives, considering
that

∂α
+f = I−α

+ f =
(

Iα
+

)

f , α > 0 . (A6)

The semigroup character of the fractional derivatives
is

∂α
±∂

β
±f(x) = ∂β

±∂
α
±f(x) = ∂α+β

± f(x) . (A7)

The fractional integration by parts

b
∫

a

ϕ(x)∂α
+ψ(x)dx =

b
∫

a

ψ(x)∂α
−ϕ(x)dx . (A8)

Example 1a:

∂α
+eλx+µ = λαeλx+µ (Reλ > 0) . (A9)

Example 1b:

∂α
−eλx+µ = (−λ)αeλx+µ (Reλ < 0) . (A10)

Some special functions are a very convenient tool for
applications, e. g., the Mittag–Leffler function:

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
,

α > 0 , β > 0 . (A11)

It is obvious that E1,1(z) = ez .
Another example is the fractional exponential func-

tion:

Ez
µ =

∞
∑

k=0

zk−µ

Γ(k − µ+ 1)
= e−µE1,1−µ(z)

= ∂
(µ)
+ ez , α > 0 , β > 0 . (A12)

Note here that the Ez
µ function for the fractional shift

operator T̂α plays the same role as a usual exponent
function ez for the shift operator of the integer order.
The list could be supplemented by Wright function,
Fox H-functions, etc. [18].
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VIENMATIS TRUPMENINIS KVANTINIS JUDESIO KIEKIO OPERATORIUS

P. Miškinis

Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Santrauka
Kvantinio Lévy (Levi) vyksmo atveju pasiūlyta ermitinio vien-

mačio judesio kiekio operatoriaus išraiška

p̂ =
~lα−1

0

2

[

(−i∂+)α + (i∂̃−)α
]

,

rastos jo tikrinės funkcijos bei tikrinės vertės

ψ(x, t) = A eiκ x−i E/~ t
, κ =

(

p

~lα−1

0

)1/α

.

Išreikštu pavidalu rasta normavimo konstanta

A =

√

|κ |
2π| p | → 1√

2π~
, kai α→ 1 ,

ir poslinkio operatoriaus išraiška. Sąryšis tarp judesio kiekio ir ban-
ginio skaičiaus

p = ~l
α−1

0 κ
α

apibendrintas vyksmams, turintiems trupmeninį Lévy indeksą.


