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We study the simplest quark model, assuming that the sea of gluons and quark–antiquark pairs could be treated as part of
a static force, and proceed to calculate the hadronic states by solving the Schrödinger equation for a static confining interac-
tion. We refer to this model starting from a system of six interacting constituent quarks and examine how the picture of two
structureless nucleons can change when the effects caused by the substructure of the nucleons are taken into account.
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1. Introduction

One of the fundamental goals of nuclear theory is
to explain the properties of atomic nuclei in terms of
the elementary interactions between pointlike nucle-
ons. By construction, nucleon–nucleon (NN) poten-
tials must first of all reproduce the two-nucleon scatter-
ing data and the properties of the deuteron. Recently,
progress has been made not only in the phase-shift
analysis, but also in the accuracy and consistency of the
fits of realistic NN potentials to these data. As a result,
several charge-dependent NN potentials have been con-
structed, which give a very reasonable fit to the energy-
dependent partial-wave analyses of the NN scattering
and produce very good description of deuteron and
these NN data below 350 MeV. Potentials like the re-
cent Nijmegen (Nijm I, Reid93, and Nijm II) [1], the
Argonne (AV18) [2], and the CD Bonn [3] ones yield
a χ2/datum of about 1 and may be called phase-shift
equivalent. Moreover, the potentials Reid93, Nijm II,
and AV18 are local potentials. These potentials en-
joy great popularity, because they are easy to apply in
configuration-space calculations. As such, they are the
best candidates for NN potentials to use in calculations
of nuclei having more than two nucleons.

Unfortunately, good NN potentials, defined as above,
can not reproduce even the binding energy of the three-
nucleon systems. All local realistic NN forces under-
bind the triton by some 0.8 MeV. Similarly, the α parti-
cle and the lightest nuclei (with A ≤ 7), for which more
or less accurate solutions of the Schrödinger equation

can be performed, are all underbound by these poten-
tials. So far, a few different ways for solving this dis-
crepancy have been presented and investigated. They
rely on (i) the relativistic corrections, (ii) a nonlocal NN
potential, (iii) three-nucleon forces, and (iv) the struc-
ture of nucleons taken into account.

Let us briefly summarize the main results of these
modifications. Fully relativistic calculations are ex-
tremely complicated and consequently have not yet
been carried out. The kinematical corrections, yielding
a Hamiltonian with the correct transformation proper-
ties up to order (v/c)2, produce results that are small
and repulsive: approximately 0.3 MeV of repulsion in
the triton and almost 2 MeV in the α particle [4] (see,
however, [5]). Nonlocal NN potentials, such as the CD
Bonn, can improve the result for the binding energy
of the triton by some 0.4 MeV, but not more [6]. The
most impressive results for solving the problem of un-
derbinding are obtained by applying phenomenologi-
cal three-nucleon forces adjusted to achieve the correct
triton ground state energy [7]. With this addition 4He
is properly bound, while the ground state energies of
A = 5 − 8 and the excitation energies of the low-lying
states are again too high [8].

Many studies have been devoted so far to the un-
derstanding of the NN interaction starting from quark
models. A systematic connection to quantum chromo-
dynamics is established by chiral effective field theory.
Up to now the two-nucleon system has been consid-
ered in chiral perturbation theory [9, 10]. However,
due to the formidable mathematical problems, we are
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still far from a quantitative understanding of the NN
force from this point of view. Nevertheless, the suc-
cess of the pointlike constituent quark model in barion
spectroscopy demonstrates that successful application
of this approach for two nucleons could be the best
chance to understand peculiarities of this interaction
and to solve the problem how a NN potential mod-
ifies in nuclei due to presence of surrounding nucle-
ons. Let us refer to the simplest quark model, starting
from a system of six constituent quarks, and examine
now how the picture of two structureless nucleons can
change when the effects caused by the substructure of
the interacting nucleons are taken into account.

2. Confining wells of the two-nucleon system

The picture of structureless nucleons keeping indi-
viduality in bound state of two nucleons (deuteron) and
scattering states up to 350 MeV, so successful for re-
alistic potentials definition, is in essence not consistent
with any known scenario with six interacting quarks
involved into play. The models based on one-gluon
exchange between quarks can explain only the short-
range repulsion of the NN potential. The middle and
long-range attraction is obtained from the meson ex-
change between quarks [11]. The way to get a solu-
tion is a nontraditional consideration of problems with
confinement in the case when two nucleons approach
one another. As it is well known, the established low
energy spectrum of quantum chromodynamics behaves
as though hadrons are dominated by their valence quark
structure and confinement. Also, from the point of view
of quarks all nuclei are confined, too. The problem is
how the idea of quarks confined in nucleons can be ap-
plied for nuclei. Let us assume the quarks are trapped
in nucleons by an infinitely deep confining harmonic
oscillator (HO) potential, as it is often used in the Stan-
dard Model. When nucleons approach each other, the
first nucleon confinement potential comes into contact
with the corresponding potential of the second nucleon.
Let us for the sake of simplicity start the consider-
ation with one-dimensional harmonic confining wells
for quarks with a point of contact at z = 0. Nucleons
are identical, so these confinement potentials are sym-
metrical. Let the bottoms of wells be situated at points
z0 and −z0 respectively. The essential and original our
suggestion is that then, in the case when nucleons go
into contact, the overlapping confining wells must van-
ish. An example of such a potential corresponding to
z0 = 1 is given in Fig. 1.

Fig. 1. Confinement potential for two nucleons.

The left-hand branch of this potential well can be
expressed analytically as V (z) = mω2(z + z0)

2/2,
where m is the quark mass (taken equal to 1/3 of
the nucleon mass) and ω is the HO frequency. In
the same way the right-hand branch of the potential
is V (z) = mω2(z − z0)

2/2. Applying the Heaviside
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one can define analytical expression for the potential
from Fig. 1 as

V (z) =
mω2

[

(z − z0)
2Θ(z) + (z + z0)

2Θ(−z)
]

2
,

(2)
or

V (z) =
mω2(|z| − z0)

2

2
. (3)

The Hamiltonian for a quark moving in this well is
given by

H(z) = − ~
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Thus far one has considered one-dimensional con-
finement potential, while quarks in nucleons move in
the three-dimensional well. The three-dimensional
Schrödinger equation for constituent quark is
[
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Let us introduce the dimensionless variables and rewrite
the Hamiltonian as

[

− ∆r + (r − r0)
2Θ(z) (6)

+ (r + r0)
2Θ(−z) − E

]

Ψ(r) = 0 .

Here dimensionless coordinates are given in terms of
oscillator length parameter b and energy is given in cor-
responding energy quanta ~ω. Since ~ω · b2 = ~

2/m,
the constituent quark mass m, equal to one third of the
nucleon mass (m = mnucleon/3), defines the relation of
both parameters introduced: ~ω · b2 = 125 MeV fm2.

Taking centres of confining wells for nucleons at
points (0, 0, z0) and (0, 0,−z0) one can simplify the
confining potentials due to relations

(r − r0)
2 = x2 + y2 + (z − z0)

2 (7)

and

(r + r0)
2 = x2 + y2 + (z + z0)

2 . (8)

Obviously, the wells overlap and vanish on the (x, y)
plane of introduced coordinate system, hence one can
present Eq. (6) in the form

[

− d2

dx2
+ x2 − d2

dy2
+ y2 − d2

dz2
+ (z − z0)

2 Θ(z)

+ (z + z0)
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]

Ψ(x, y, z) = 0 . (9)

So, the variables in the Schrödinger equation can
be separated and it is enough to consider the one-
dimensional potential along the z axis, i. e. along the
line connecting centres of mass of interacting nucleons.

The eigenvalues and eigenfunctions of correspond-
ing one-dimensional Hamiltonians in separate confin-
ing wells are

En = n +
1

2
, Ψn(z) =

√

1

2nn!
√

π
Hn(z) e−z2/2 ,

(10)
where Hn(z) are Hermite polynomials of nth order.
So, the eigenfunctions of Hamiltonian with a well on
the left-hand branch of a graph in Fig. 1 are

Ψn(z + z0) =

√

1
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√

π
Hn(z + z0) e−(z+z0)2/2 ,

(11)

Fig. 2. Values of the oscillator quantum number n versus parameter
z0 at which the wave functions Ψn(z0) = Ψn(−z0) = 0 and
derivatives of these functions satisfy the continuity condition (14).

Fig. 3. Values of the oscillator quantum number n versus parameter
z0 at which the wave functions satisfy the continuity condition (13)

and derivatives of these functions Ψ′

n
(z0) = Ψ′

n
(−z0) = 0.

and the corresponding right-hand branch eigenfunc-
tions are

Ψn(z − z0) =

√

1

2nn!
√

π
Hn(z − z0) e−(z−z0)2/2 .

(12)
Solutions of the Schrödinger equation in the joint con-
fining well exist when eigenfunctions (11) and (12)
and their derivatives satisfy the continuity conditions
at point z = 0:

Ψn(z − z0)|z=0 = Ψn(z + z0)|z=0 (13)

and

Ψ′

n(z − z0)|z=0 = Ψ′

n(z + z0)|z=0 . (14)

It is these conditions for wave functions that give the
quantization of spectrum in joint confining well as
a function of parameter z0. The values of oscilla-
tor quanta n versus parameter z0, at which the wave
functions satisfy conditions (13) and (14), are given in
Figs. 2 and 3.
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Fig. 4. An example of the wave function antisymmetrical in joint
confining well.

Fig. 5. An example of the wave function symmetrical in joint con-
fining well.

Let us demonstrate some wave functions matching
these conditions. As mentioned, the principal quan-
tum number n gives the number of zeros of the cor-
responding wave function in its own (separate) confin-
ing well. Even values of this quantum number corre-
spond to functions symmetrical in their own well, and
odd values to functions antisymmetrical in this well.
Eigenfunctions of joint well Hamiltonian, symmetrical
as well as antisymmetrical, can be composed of func-
tions both symmetrical and antisymmetrical in their
own wells. The functions antisymmetrical in joint well
are equal to zero at the centre of well, i. e. at point z = 0
(Fig. 2); symmetrical functions have local maximum or
local minimum (zero derivative) at this point (Fig. 3).

Examples of the wave functions, both antisymmetri-
cal and symmetrical in joint confining wells, are shown
correspondingly in Figs. 4 and 5. The energy of a
bound state in joint confining well is indicated by a

Fig. 6. An example of two lowest levels in joint well. The level n =
0 is approximate level and represents quarks from two separated
nucleons. The level n = 9 is exact level and represents excited

quark state.

horizontal line. This line serves as zero line for wave
function presented in a figure.

As one may see in presented figures, at any small,
not equal to zero z0 value, the ground state of this joint
confining well is situated at a very high energy. At
growing z0 the ground state in the well moves down.
At some value of z0 it reaches minimal value and starts
moving up. Finally, at some value of z0 there appears
the possibility for quarks from two separated nucleons
to occupy the Standard Model states n = 0 in differ-
ent confining wells. By the way, this function is not an
exact eigenfunction for this joint well, but the overlap
of functions from different wells is negligible, so from
quantum mechanical point of view these states are al-
lowed. When z0 = 3.19, two lowest levels in joint well
are n = 9 (exact level), and n = 0 (approximate level),
shown in Fig. 6.

Let us estimate the parameters of the model. The re-
lation between b and the nucleon radius is

√

3/2 b =
0.8 fm. This gives b = 0.65 fm. This value is close to
the value for this parameter in the nonrelativistic quark
model, equal to 0.5 fm. The distance between centres
of nucleons, corresponding to the attraction, is equal
to 2z0b = 1.4 fm (Fig. 2). This value is very close to a
distance at which a bottom of the potential well of local
realistic potentials is situated. The corresponding value

for HO energy quantum is ~ω =
125 MeV fm2

(0.65 fm)2
=

292.96 MeV. It approximately equals the energy of two
pions, the exchange of which is responsible for inter-
action between nucleons in the area at a bottom of the
potential well.
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3. Conclusions

An oversimplified model of two nucleon interaction,
based on confining wells for considering quarks of dif-
ferent nucleons, is introduced. The merging of the con-
fining wells, when two nucleons enter the interaction
region, excites the six quark system, thus providing the
short-range repulsion necessary to reproduce the ex-
perimental data without any need of constituent quark
Pauli principle and one-gluon exchange taken into ac-
count. To some extent it corresponds to “quark soap”
scenario. Not a single individual nucleon is obtainable
at these distances. At large values of z0 the situation
changes and there appears the possibility of some indi-
vidualization of clusters (nucleons) in six quark system.
So, the introduced modification of confinement poten-
tial in six quark system is well consistent with char-
acteristic features of realistic potentials of NN interac-
tion (core, attraction region, and asymptotic part) and
gives the possibility for modification of NN potential,
when interacting nucleons are surrounded by additional
(spectator) nucleons, i. e. when they are in nuclei.
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SUPAPRASTINTAS DVIEJŲ NUKLEONŲ SĄVEIKOS POTENCIALO MODELIS

G.P. Kamuntavičius, A. Mašalaitė, S. Mickevičius

Vytauto Didžiojo universitetas, Kaunas, Lietuva

Santrauka
Per pastarąjį dešimtmetį atomo branduolio teorijoje pasiekta di-

delė pažanga, kurios pagrindiniai dėmenys yra aukštos kokybės
dviejų nukleonų (NN) sąveikos potencialai ir galimybė gauti di-
delio tikslumo lengviausiųjų branduolių bangines funkcijas, nau-
dojant šiuos potencialus. Naudojant tokius potencialus atkuriami
sklaidos duomenys beveik tokiu pat tikslumu, kokiu jie yra išma-
tuojami eksperimentuose.

Tačiau realistiniai potencialai, kuriais idealiai apibūdinamos
dviejų nukleonų sistemos savybės, pasirodė netinkami aprašyti
bent kiek sudėtingesnių branduolių savybes. Pradedant jau nuo

trijų nukleonų branduolių, apskaičiuota nukleonų sistemos ryšio
energija bet kuriam minėtų potencialų yra maždaug 10% mažesnė,
nei žinoma iš eksperimentų. Tai yra pagrindinis, bet ne vieninte-
lis šių potencialų trūkumas, nes, skaičiuojant naudojantis gautomis
banginėmis funkcijomis kitus tuos branduolius apibūdinančius dy-
džius, gaunami taip pat nepatenkinami rezultatai. Tokios eilės pa-
klaidos gal būtų ir priimtinos aprašant kitokias sistemas, bet atomų
branduoliams gauti tokie rezultatai labai iškraipo jų stabilumo įvai-
rių skilimų atžvilgiu vaizdus, todėl šiuo požiūriu yra visiškai nepri-
imtini.

Pasinaudojant standartiniu elementariųjų dalelių fizikos mode-
liu, išnagrinėta dviejų nukleonų sąveikos atkūrimo problema.


