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Fast increase of correlations between the concentrations of elements is observed when diversity of the sample sources
decreases. Data of high resolution sector field ICP MS (inductively coupled plasma mass spectrometry) measurements of
concentrations of 25 elements in wines were tested in the present study. As much as about ten or more pairs of correlating
elements (correlation coefficient r > 0.9) were found for different wines of similar provenance. Correlation pattern is batch
and sample specific. It represents the similar sources of elements, similar element quantity governing processes. If the number
of the correlating pairs of elements is large, the mean within this list correlation coefficient can be calculated for individual
samples, relative to the values of concentrations characteristic of different batches, and it can be used for identification of
samples. Data on good potential for applicability of such individual sample-specific correlative characteristics in testing the
provenance of samples are presented as examples.
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1. Introduction

Development of multielement analysis techniques,
such as neutron activation analysis, inductively cou-
pled plasma optical emission spectrometry, and espe-
cially inductively coupled plasma mass spectrometry
(ICP MS) enabled the measurement of quantities of a
large number of elements in the same test sample. The
interest in comprehensive information on the composi-
tion of numerous samples including somewhere from
about 20 to 60 elements is common in recent geochem-
istry and environmental research [1–5], clinical and
forensic toxicology [6, 7], and food authenticity stud-
ies (e. g., [8–12] and citations therein). Various tech-
niques of analysis of such data (Anova, factor, prin-
cipal component, discriminant, cluster, dispersion and
correlation analyses, neural networks [5, 8, 10, 13]) are
used to discover the similarities in behaviour of differ-
ent elements and the common sources of their preva-
lence. The data often are used for more or less detailed
analysis of the governing processes. Many reasons and
processes of similar changes of the quantities of ele-
ments in plants and plant products are identified and
being discussed, including those related to soil and an-
thropogenic impact, such as weathering of minerals, at-

mospheric aerosols rich in industrial fumes and exhaust
gases, bioaccumulation, equipment used in production
of final materials and in treatment of incoming raw
ones. Efforts to link the concentrations of elements, the
correlations between them and the patho-physiological
situations (e. g., [14–15]) are increasing.

Implications on importance of correlations between
concentrations of chemical elements, or other sub-
stances, are often appearing in literature (including the
citations above) because of the informative and clear
physical and chemical contents included in this con-
cept. Nevertheless, the quantitative studies and direct
application of the quantitative characteristics of corre-
lations in analytical measurements is neither conven-
tional nor elaborated experimental tool. The objective
of this publication is to show that the modern multiele-
ment analysis enables cumulation of data for the quan-
titative pattern of correlations between concentrations
of elements, aid quantification procedures and applica-
tion of correlations not only to study the propagation of
chemical substances but also for characterization and
classification of samples.
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2. Method of measurement and results

Results of the measurement of concentrations of
chemical elements in the bottled wines produced in dif-
ferent countries were used in the present study. About
thirty elements in 65 wine samples, from Bulgaria,
Chile, France, Hungary, Italy, Spain, and USA (Cal-
ifornia)1 mainly, were measured. The samples were
diluted by a factor 1:4 for measurement of microele-
ments and 1:30 for measurement of elements present
at greater concentrations. Merck ICP Multi Element
Standard Solution VI as a reference material and Tm
as an internal standard were used for calibration. The
reference material was selected to include the set of ele-
ments of the main interest while at the same time it was
the determining factor of the element list. Nitric acid
(Suprapur R©, 65.3%, Merck) was added to the diluent
to get a 2% acid solution for stabilization of the sub-
samples.

High resolution double focusing sector field ICP
mass spectrometer Element2 (Thermo Finnigan MAT,
Bremen, Germany), concentric 1 ml/min flow rate neb-
ulizer, and Scott double pass spray chamber were used
for the measurements. The working conditions of the
instrument were: rf power 1100 W, argon plasma gas
flow rate 14 l/min, sample gas 1.35 l/min. Repeatabil-
ity of the measurement of the analytical signals usually
did not exceed 2–3% resulting in expanded standard
(k = 2) uncertainty of the measured concentrations of
elements within ±10% mainly.

As an example, the mean values of concentrations of
elements in different samples from Chile (Central Val-
ley), Spain, and Toro region of Spain and their standard
deviations together with the mean and standard devia-
tion (sd) from the whole data set are presented in Ta-
ble 1. Variation of the element concentrations inside a
region usually is large, mean relative standard deviation
(rsd) is about 50%, obviously representing the differ-
ences in the soil of provenance, agriculture, and wine
production technologies. The problem is to select, if
possible, such a group of indicators that could char-
acterize the batches of interest. It is evident that dis-
crimination between the numerous batches according
to the mean concentration values is not a simple prob-
lem. Elaboration of a correlative method for character-
ization of individual samples and application of such
1 Here and further the names of the countries are used as codes for

the sample batches. More precise definition of the origin of sam-
ples is usually needed in wine pattern recognition studies. See
discussion below for more details.

characteristics for sample classification is the main ob-
jective of the present study.

3. Contents of correlative description

Variability of the concentration data can occur be-
cause of the indicators being not representative of the
batch or due to important processes that govern the
quantities of the analytes. Correlation between the con-
centrations of elements as a source of information on
similarity of the processes on which those concentra-
tions depend is well-known in analytical science. The
data even on two elements can be of interest in deter-
mining the general sources of elements and the role
of different processes. Modern multielement analysis
provides extremely wide possibilities for study of such
correlations.

The matrix of the correlation coefficients, as a quan-
titative measure of correlation in the variation of con-
centrations, of n = 22 elements for batch of wines from
Chile, as an example, is presented in Table 2. The di-
agonal values are autocorrelations, so they automati-
cally are equal to 1. The matrix is symmetric, it in-
cludes n(n − 1)/2 independent values. The supple-
mentary symmetric part is included into the table only
for convenience. So the number of independent indi-
cators increases almost as n2 and 300 values are ob-
tained for data set of 25 elements. The largest absolute
correlation coefficients (from 0.95 to 1) are marked in
bold in the table indicating that significant correlations
between the concentrations of some elements as well
as no correlations between some other ones are found.
Number distributions of the absolute values of correla-
tion coefficients for wines from Spain and from Toro
(a comparatively small region of Spain) together with
those obtained from the whole measured data set are
presented in Fig. 1.

In the last case, when the selection of the geograph-
ical regions is almost accidental, close to zero corre-
lation coefficients between concentrations of elements
prevail, and absolute correlation coefficient values sel-
dom exceed 0.5. For separate countries (Spain) dis-
tributions of correlation coefficients only slightly de-
crease with greater coefficient values whereas for small
regions (Toro region, Spain) the number of pairs with
large positive or negative correlation coefficients essen-
tially increases. As an example, at least two groups of
correlating elements can be distinguished in the matrix
of correlation coefficients for the Chile Central Valley
samples: Co, Mn, Zn and Be, U, Ni, Tl, Se, as well
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Table 1. Examples of concentrations (ng/g) of elements in wines from different regions.

All data Chile Spain Toro (Spain)
mean sd mean sd mean sd mean sd

Sr 860 430 700 67 1000 650 690 65
Al 1100 825 490 120 740 515 350 90
Ca 89000 17000 70000 12000 78000 19000 63000 2600
Fe 4000 2160 2600 910 3300 1000 3800 980
Li 37 43 12 9 52 17 61 9
Tl 0.29 0.21 0.39 0.30 0.39 0.28 0.30 0.02
U 1.20 0.70 0.66 0.24 1.78 0.46 1.71 0.08
V 81 72 81 52 142 105 83 19
Cr 28 13 21 5 25 8 25 4
Co 4.4 2.0 3.1 1.1 4.2 2.8 2.8 0.4
Ni 29 11 15 2 29 11 29 4
Cu 151 122 109 46 99 104 172 126
Zn 735 520 590 350 420 285 270 79
Ga 0.33 0.17 0.27 0.07 0.26 0.23 0.12 0.03
Se 5 3 8 5 4 3 2 1
Ba 159 86 181 104 146 55 200 11

Fig. 1. Number distribution of values of the correlation coefficients
(300 for each set): all data, Spain, and Toro (region of Spain).
Numbers of the absolute values of correlation coefficients in the

interval |r| ± 0.05 are presented.

as individual pairs (V/As, Pb/Cu, etc.). Naturally, dif-
ferent mathematical techniques could be used to detect
such regularities. In the present study we use the di-
rect estimates of the correlation coefficients. Even in
this case various techniques of data presentation and
analysis are applicable. For example, multiplication
of the correlation matrices can help to detect similar-
ities and dissimilarities of the two data sets. Sums of
the cross-correlation coefficients of an element with the
other ones for different elements and sample batches
also vary essentially, e. g., from about −4 for Al, Ca,
Pb to about 3 for Mn, Co, Ni, Tl, and Zn for Chile
(Table 2, bottom). The pattern for other countries is
different, i. e., batch specific.

The largest absolute correlation coefficient values
are most indicative in the correlation analysis. As an
example, the correlation coefficients between some el-

ements found for wines produced in different countries
are presented in Table 3. For comparison, the corre-
lations between the concentrations of elements in Ger-
man wines from different regions were measured [9]
and the coefficients larger than about 0.7 were found
significant. High correlation (0.99) was observed [11]
between wine and juice, wine and soil compositions.

Most characteristic correlations, as well as the whole
correlation pattern or some integral characteristics like
the sums mentioned above can be used as a character-
istic of the batch. Nevertheless, the correlative data so
far have seemed to be inapplicable for the characteriza-
tion of a single, individual sample. To our knowledge,
such approaches are missing. We find that the mul-
tielement spectrometry opens new possibilities for the
corresponding description as well.

If variation of concentrations of a large number of
analytes is determined by the same source, concen-
trations of those elements correlate. In spite of some
inevitable variations of the correlation coefficients be-
cause of the limited accuracy of determination, those
correlations are indications of some quality characteris-
tic of the batch in general and of the individual samples
as well. It is natural to expect that this quality can be
characterized by some mean parameter, e. g., mean cor-
relation coefficient, applicable as a characteristic of the
whole batch and the particular samples. Rather large
number of pairs of the correlating elements must be in-
cluded for the representative and specific description.
If this number is really large, the statistical methods of
analysis can be applicable to quantify the character of
deviations of the concentrations in an individual sample
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Table 2. Matrix of correlation of element concentrations in Chile (Central Valley) wines.

Rb Sr Na Mg Al Ca Mn K Li Be Tl

Rb 1.00 −0.17 0.85 0.73 0.22 0.07 0.55 0.90 −0.53 −0.16 0.13
Sr −0.17 1.00 −0.66 0.01 −0.95 −0.09 0.26 −0.56 −0.62 0.70 0.54
Na 0.85 −0.66 1.00 0.59 0.68 0.14 0.26 0.99 −0.09 −0.52 −0.22
Mg 0.73 0.01 0.59 1.00 0.24 0.57 0.07 0.72 −0.57 −0.31 −0.09
Al 0.22 −0.95 0.68 0.24 1.00 0.35 −0.40 0.62 0.53 −0.78 −0.60
Ca 0.07 −0.09 0.14 0.57 0.35 1.00 −0.74 0.21 0.18 −0.05 0.07
Mn 0.55 0.26 0.26 0.07 −0.40 −0.74 1.00 0.26 −0.69 0.11 0.16
K 0.90 −0.56 0.99 0.72 0.62 0.21 0.26 1.00 −0.21 −0.51 −0.20
Li −0.53 −0.62 −0.09 −0.57 0.53 0.18 −0.69 −0.21 1.00 −0.11 −0.13
Be −0.16 0.70 −0.52 −0.31 −0.78 −0.05 0.11 −0.51 −0.11 1.00 0.94
Tl 0.13 0.54 −0.22 −0.09 −0.60 0.07 0.16 −0.20 −0.13 0.94 1.00
Pb −0.92 −0.21 −0.59 −0.69 0.16 0.04 −0.70 −0.67 0.77 −0.11 −0.33
U −0.23 0.37 −0.41 −0.52 −0.52 −0.08 −0.02 −0.46 0.26 0.91 0.89
V −0.21 −0.09 −0.11 −0.27 −0.01 −0.71 0.40 −0.14 −0.19 −0.54 −0.71
Co 0.55 0.43 0.18 0.13 −0.54 −0.64 0.98 0.21 −0.77 0.28 0.33
Ni −0.30 0.56 −0.57 −0.61 −0.74 −0.37 0.22 −0.61 0.04 0.92 0.82
Cu −0.88 −0.14 −0.62 −0.85 0.02 −0.08 −0.58 −0.72 0.82 0.19 −0.01
Zn 0.56 0.02 0.39 −0.04 −0.22 −0.78 0.96 0.35 −0.48 0.04 0.12
Ga −0.54 0.54 −0.73 −0.69 −0.68 −0.20 −0.08 −0.77 0.23 0.89 0.73
As −0.29 0.26 −0.35 −0.34 −0.37 −0.78 0.51 −0.36 −0.36 −0.22 −0.45
Se 0.17 0.70 −0.26 0.11 −0.68 0.20 0.15 −0.19 −0.34 0.91 0.96
Ba 0.20 0.01 0.12 −0.30 −0.23 −0.95 0.86 0.07 −0.35 −0.13 −0.18
∑

−1 0.70 0.91 −0.94 −2.11 −3.90 −3.63 2.54 −1.08 −2.60 2.48 2.77

Pb U V Co Ni Cu Zn Ga As Se Ba

Rb −0.92 −0.23 −0.21 0.55 −0.30 −0.88 0.56 −0.54 −0.29 0.17 0.20
Sr −0.21 0.37 −0.09 0.43 0.56 −0.14 0.02 0.54 0.26 0.70 0.01
Na −0.59 −0.41 −0.11 0.18 −0.57 −0.62 0.39 −0.73 −0.35 −0.26 0.12
Mg −0.69 −0.52 −0.27 0.13 −0.61 −0.85 −0.04 −0.69 −0.34 0.11 −0.30
Al 0.16 −0.52 −0.01 −0.54 −0.74 0.02 −0.22 −0.68 −0.37 −0.68 −0.23
Ca 0.04 −0.08 −0.71 −0.64 −0.37 −0.08 −0.78 −0.20 −0.78 0.20 −0.95
Mn −0.70 −0.02 0.40 0.98 0.22 −0.58 0.96 −0.08 0.51 0.15 0.86
K −0.67 −0.46 −0.14 0.21 −0.61 −0.72 0.35 −0.77 −0.36 −0.19 0.07
Li 0.77 0.26 −0.19 −0.77 0.04 0.82 −0.48 0.23 −0.36 −0.34 −0.35
Be −0.11 0.91 −0.54 0.28 0.92 0.19 0.04 0.89 −0.22 0.91 −0.13
Tl −0.33 0.89 −0.71 0.33 0.82 −0.01 0.12 0.73 −0.45 0.96 −0.18
Pb 1.00 0.09 0.19 −0.76 0.06 0.93 −0.63 0.32 0.13 −0.42 −0.27
U 0.09 1.00 −0.57 0.09 0.93 0.43 0.02 0.92 −0.35 0.74 −0.13
V 0.19 −0.57 1.00 0.25 −0.28 0.01 0.38 −0.32 0.93 −0.70 0.74
Co −0.76 0.09 0.25 1.00 0.32 −0.62 0.90 0.03 0.42 0.35 0.75
Ni 0.06 0.93 −0.28 0.32 1.00 0.39 0.21 0.95 0.01 0.70 0.14
Cu 0.93 0.43 0.01 −0.62 0.39 1.00 −0.47 0.60 0.02 −0.17 −0.20
Zn −0.63 0.02 0.38 0.90 0.21 −0.47 1.00 −0.09 0.42 0.04 0.89
Ga 0.32 0.92 −0.32 0.03 0.95 0.60 −0.09 1.00 −0.05 0.63 −0.08
As 0.13 −0.35 0.93 0.42 0.01 0.02 0.42 −0.05 1.00 −0.41 0.76
Se −0.42 0.74 −0.70 0.35 0.70 −0.17 0.04 0.63 −0.41 1.00 −0.26
Ba −0.27 −0.13 0.74 0.75 0.14 −0.20 0.89 −0.08 0.76 −0.26 1.00
∑

−1 −3.61 2.35 −1.93 2.87 2.80 −1.94 2.61 1.62 −0.87 2.23 1.44

in comparison to the mean values characteristic of the
whole batch.

As an example, the analysis of the data on Chile
Central Valley wine samples is presented below. As
can be seen from Table 2, the high level of correlations
was found for the following pairs of elements: K/Na,

K/Rb, Mn/Co, Mn/Zn, Ni/U, Ni/Ga, Cu/Pb, V/As.
The mean value of the correlation coefficient between
the corresponding concentrations was 0.95, with the
standard deviation 0.03. Deviations of concentrations
of elements of those pairs for each particular sample
from the mean values can be used to calculate the cor-
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Table 3. Comparison of correlation coefficients for some pairs of elements
for different batches.

CA CHL ARG ESP ITA FRA BGR HUN

Sr/Li −0.42 −0.62 0.91 0.16 0.97 0.32 0.59 −0.28
Na/K −0.68 0.99 0.76 0.06 −0.9 0.88 −0.87 −0.7
Na/Be 0.99 −0.52 0.55 −0.43 0.68 0.66 0.7 0.74
Mg/U −0.12 −0.52 0.46 −0.62 0.05 −0.93 −0.7 0.92
Mg/Co 0.18 0.13 0.99 −0.93 0.12 −0.32 −0.85 −0.58
Mg/Ba 0.99 −0.3 0.85 0.21 0.03 −0.12 0.99 0.85
Mn/Co 0.09 0.98 0.84 0.33 0.69 0.52 −0.21 0.7
Mn/Zn 0.52 0.96 0.64 0.55 0.48 0.72 −0.36 0.37
Be/Se −0.17 0.91 −0.58 0.96 0.29 0.78 −0.06 −0.36
Cr/Zn 0.73 0.02 0.62 −0.03 0.34 0.95 0.83 0.09

responding mean correlation coefficient characteristic
of the individual samples, i. e.,

r =

∑

i

(

cai − cai

)

·
(

cbi − cbi

)

√

∑

i

(

cai − cai

)2 ·∑
i

(

cbi − cbi

)2
. (1)

Here i is the index of the correlating pair. In general,
the correlating elements, a and b, and the correspond-
ing mean concentration values are different for every i
and batch samples being considered.

Thus, the usual statistical analysis with the calcula-
tion of covariation and averaging over the samples can
be substituted by calculation of covariation and aver-
aging over similar (in sense of correlation) pairs of el-
ements. An example of data for calculation of the mean
correlation coefficient r corresponding to the case men-
tioned above is presented in Table 4. The relative de-
viations from the mean values were used. The mean
correlation coefficients for the particular samples in the
range between 0.75 and 0.93 (Table 5) were obtained
resulting in the mean value 0.86 with the standard de-
viation 0.075. This illustrates acceptable accuracy of
the equivalence of averaging over the samples and cor-
relating pairs inside the selected group of the correlat-
ing elements even for the small numbers of samples
and correlating pairs. Naturally, the deviations from the
same mean are used to calculate the batch characteris-
tic correlation coefficients, while deviations from inde-
pendent means for different elements enter the covari-
ation in a sample characteristic correlation coefficient
in Eq. (1). Although some lower values of the sample
characteristic correlation coefficients can be expected
for this reason, the difference decreases if the num-
bers of representative samples and correlating pairs in-
crease.

Similar correlation coefficients can be calculated for
other batches, e. g., other countries. In the particular
case, the correlation coefficient representing the pairs

of correlating elements characteristic of Chile, as pre-
sented in Table 4, was much lower (mean values −0.09,
−0.20, 0.14, and −0.31 correspondingly) when calcu-
lated for wines from France, Italy, Argentina, and Cali-
fornia (compare with Table 5) illustrating high potential
of the possibility of discrimination between batches.
Nevertheless, while attempting to classify all the mea-
sured wines from 5 countries mentioned above by ap-
plication of the positive correlations of 6 pairs of ele-
ments, three French wines could not be classified un-
equivocally. Switching from 6 pairs of correlating ele-
ments to 8, as well as taking account of negative corre-
lations enabled full classification. Such a statistical ap-
proach is possible only due to a large enough number
of the correlating pairs available for the modern multi-
element spectrometry. Possibility of the quantification
of an individual sample is decisive for such discrimina-
tion.

From the practical examples it follows that the clas-
sification according to the data on about five to ten
reference samples and a similar number of correlating
pairs can be possible, while, as follows from the addi-
tional analysis of the accuracy of the correlation coeffi-
cients as presented below, about ten reference samples
and correlating pairs ought to be preferred as the lower
limit.

4. Accuracy of results

First of all the reliability of description depends on
the accuracy of initial data, i. e., the accuracy of the
correlation coefficients. It is well known from statis-
tics that for n = 10 or more measurements the corre-
lation can be detected at the level of confidence P =
0.95 if the experimental value |rn| ·

√
n − 1 exceeds

the critical value 1.9 (for comparison, the correspond-
ing critical value for P = 0.999 is 2.6). Ten measure-
ments is an acceptable number to regard the correlation
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Table 4. Initial data for calculation of the positive correlation coefficients for Chile wine samples 14, 34, 41, 47, and 55
according to Eq. (1).

Pair Element a Relative deviations from mean value in samples Element b Relative deviations from mean value in samples
14 34 41 47 55 14 34 41 47 55

K/Na K 1.045 0.907 −0.670 −0.622 −0.660 Na 1.305 0.745 −0.758 −0.696 −0.596
K/Rb K 1.045 0.907 −0.670 −0.622 −0.660 Rb 0.320 0.304 −0.071 −0.118 −0.435

Mn/Co Mn 0.339 −0.093 −0.061 0.532 −0.718 Co 0.172 −0.030 0.071 0.363 −0.577
Mn/Zn Mn 0.339 −0.093 −0.061 0.532 −0.718 Zn 0.659 −0.255 −0.138 0.522 −0.789
Ni/U Ni −0.018 −0.177 0.212 0.041 −0.058 U 0.020 −0.394 0.582 −0.136 −0.072
Ni/Ga Ni −0.018 −0.177 0.212 0.041 −0.058 Ga −0.120 −0.319 0.383 0.029 0.026
Cu/Pb Cu −0.128 −0.558 0.143 −0.066 0.609 Pb −0.429 −0.641 −0.119 −0.033 1.222
V/As V 0.004 −0.230 −0.825 0.941 0.110 As −0.194 −0.278 −0.444 0.977 −0.062

Fig. 2. Dependence of the relative standard deviation of the coeffi-
cients of correlation on the absolute value of the correlation coef-
ficient for 20, 10, and 5 samples and different scatter of the initial

data.

coefficient of about 0.9 or 1 as significant. In corre-
spondence with this condition, element pairs with cor-
relation coefficients of about or larger than 0.9 by ab-
solute value were selected for analysis. It is hard to
evaluate the dependence of the accuracy of correlation
coefficients on the accuracy of the input data analyti-
cally in details. In Fig. 2 the results of some modelling
calculations concerning data sets characteristic of the
multielement spectrometry are presented.

Random data, scattered within the ranges from ±2%
to ±30% of the measured values, were added to the
initial data and variations of the coefficients of correla-
tions were quantified for 20, 10, and 5 measured values.
The results, as presented in Fig. 2, confirm the impor-
tance of the number of the measured values (samples,
correlating pairs of elements) and show good potential
of the ICP mass spectrometry: if the relative standard
uncertainties of the data do not exceed 10% (usual for
ICP MS measurements) then for about ten measured
values the rsd of the correlation coefficients within 0.1
can be expected for correlation coefficients as low as
0.6.

Application of correlative characteristics of individ-
ual samples for pattern recognition includes the listing

of characteristic correlating pairs of elements for each
batch, calculation of corresponding mean correlation
coefficients for individual samples, and analysis of the
data. An example of the data obtained is presented in
Table 5. Statistical criteria of hypothesis testing, dis-
persion analysis, or outlier tests can be used to clas-
sify the data. The values in Table 5 that were found
in agreement with the reference values for the regions
were marked in bold. As an example, according to the
list of positively correlating pairs of elements the sam-
ple 56 could be classified as from France or Italy, but
the negative correlation coefficient corresponds only to
that for France.

Selection of the acceptable geographical region or
some other criteria for classification of batches is a
problem. As can be seen from Fig. 1, when very dif-
ferent samples are included into a batch, the correlation
coefficients decrease. Sufficient number of correlating
pairs of elements can be regarded as a test that the vari-
ability within the batch is not too wide to regard that
batch as a potential classification unit. In correspon-
dence with the material presented above the analysis of
both the positive and the negative correlations includ-
ing at least about ten independent pairs of elements in
each of the two groups is needed. No doubt the samples
must be representative of the batch.

Multivariate techniques, such as Principal Compo-
nent Analysis (PCA) and some other, are used for clas-
sification and concise presentation of large data sets. In
Fig. 3 the results of the PCA analysis of the correla-
tion coefficients, similar to Table 5, for wine samples
from California, Chile, France, and Italy are presented.
The axes of the ellipses correspond to the confidence
probability of 0.95 (Student’s coefficients included) for
each of the two principal components. As follows from
the picture, the classification of the samples at such a
confidence level is possible. Nevertheless, two princi-
pal components explain only about 58% of the varia-
tions of the data, three components explain 74% of the
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Table 5. Example of application of correlation coefficients calculated for individual
samples for classification of the samples (see text for details).

Region Chile France Italy
Sample 14 34 41 47 55 56 30

Largest positive correlation coefficient as for

California 0.27 0.29 −0.08 0.14 0.54 0.01 0.34
Chile 0.82 0.87 0.75 0.93 0.92 0.59 0.19
France −0.14 0.14 0.25 0.43 −0.12 0.93 −0.04
Italy −0.19 0.53 −0.92 −0.22 −0.04 0.77 0.91
Toro (Spain) −0.09 0.17 −0.23 0.09 −0.32 0.03 0.32

Largest negative correlation coefficient as for

California 0.11 −0.43 −0.18 0.41 −0.20 0.34 0.12
Chile −0.76 −0.93 −0.70 −0.77 −0.92 −0.14 0.21
France 0.01 0.04 0.25 −0.08 0.49 −0.72 0.51
Italy 0.43 0.58 0.45 0.37 0.40 0.36 −0.88
Toro (Spain) 0.61 0.72 0.57 0.11 −0.11 0.22 −0.47

Fig. 3. Scatter plot of PCA analysis of correlation coefficients for
wines from Italy, France, Chile, and California.

variance, and even four components explain only 82%
of the variance. So the problem is that dimension of
the space that can be used for figures is too small. It
is natural, as the indicators corresponding to all the re-
gions (if the correlation coefficients involve a sufficient
number of pairs) are equally essential, and dimension
of the space cannot be reduced without significant loss
of information. Just the data that are in some special in-
tervals of the values are most important here. The sta-
tistical data analysis seems more promising in the case.
However, especially if the range of correlation coeffi-
cients being regarded is wide, caution is needed con-
cerning possible data deviation from the normal distri-
bution. If only the information about the whole batch in
general is considered and the integral data for batches
such as the full set of correlation coefficients, sums over
elements (bottom of Table 2), etc., are used, then ap-
plication of the concise presentation affordable by the
multivariate techniques is suitable and convenient.

As follows from the material presented above, the
modern analytical spectrometry provides a lot of data
for analysis of the correlation relations between the an-
alytes that may be of interest for identification and stud-
ies of the physical and chemical processes and identifi-
cation of the individual samples. Application of corre-
lations between elements enables easy elimination of
non-specific information and related noise and high-
lights the information of the physical interest. The
method is proposed to extend the applicability of the
quantitative correlative description used for characteri-
zation of the batches to single, individual, samples, and
to enable direct application of the correlations between
elements for sample classification.
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DAUGIAELEMENTĖS ANALIZINĖS SPEKTROMETRIJOS TAIKYMAS KORELIACINIAM
BANDINIŲ KLASIFIKAVIMUI
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Santrauka
Pastebimas staigus koreliacijos koeficientų tarp elementų kon-

centracijų didėjimas, kai gruopuojamų bandinių kilmė yra pa-
našesnė. 25 elementų koncentracijos buvo išmatuotos aukščiau-
sia skiriamąja geba indukcinės plazmos masių spektrometrijos me-
todu. Apie dešimt ar net daugiau koreliuojančių elementų porų (ku-
rių koreliacijos koeficientas r > 0,9) buvo aptikta skirtinguose vy-

nuose iš panašių šaltinių. Koreliuojančios poros yra grupės ir mėgi-
nio ypatumas. Jos rodo panašumą tarp elemento koncentracijų ir jų
šaltinių. Jeigu koreliuojančių porų skaičius tarp elementų yra ganė-
tinai didelis, tai pasinaudoję tuo sąrašu mes galime apskaičiuoti vi-
dutinius koreliacijos koeficientus pavieniams bandiniams bet kurią
klasifikuojamą grupę atitinkančiam koreliuojančių elementų porų
sąrašui. Toks metodas gali būti naudojamas mėginiams atpažinti.


